Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1892-1900, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37694473

ABSTRACT

Protective forests are the ecological barriers of oases in arid sand areas and can effectively prevent and control wind and sand hazards. The structural characteristics of individual trees, as the basic unit of protective forests, are the key factors affecting the protective benefits. With the typical leafless tree species of Ulan Buh Desert oasis, i.e., Populus alba var. pyramidalis, Populus nigra var. thevestina, and Populus popularis, as the research objects, and by using the ground-based LiDAR and through computational fluid dynamics (CFD), we fully explored the structural characteristics of individual trees and their surrounding aerodynamic characteristics on the basis of real 3D models. We further established the relationship between structural parameters of individual trees and wind field index. The results showed that combining AdQSM and MeshLab to build tree models had high accuracy. The wind field around the individual trees could be roughly divided into six regions, including the attenuation zone of the windward side of the plant, the acceleration zone at the top of the plant, the eddy zone, the calm zone, the transition zone, and the recovery zone of leeward side of the plant. The pressure field around individual trees showed a gradual change of high pressure on the windward side to low pressure on the leeward side. Horizontally, in the range of 20% to 50% reduction in relative wind speed, the effective protection distances were 0.21H-1.51H, 0.20H-0.91H, and 0.25H-1.64H (H was the corresponding tree height) for P. alba var. pyramidalis, P. nigra var. thevestina, and P. popularis, corresponding to effective protection areas of 18-294, 15-227, and 18-261 m2, respectively. The maximum wind speed decay rate in the vertical direction was at 0.3H height for P. alba var. pyramidalis and P. popularis, and was reflected at 0.5H height for P. nigra var. thevestina. The correlation and stepwise regression analysis of the single tree structure parameters with the wind field indicators clearly indicated that optical porosity and volume porosity dominated the protection effect. Among the wind field factors, the best regression models related to the porous coefficient were screened for three factors, including diameter at breast height, tree surface area, and optical porosity. The regression variables screened for effective protection distance and effective protection area differed among the classes.


Subject(s)
Populus , Sand , Farms , Wind , Computer Simulation , Forests
2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-988207

ABSTRACT

Objective To construct a rapid prediction system to improve the accuracy and efficiency of evaluation of the consequences of nuclear accidents at a field scale. Methods Base on a diagnostic wind field model and Lagrangian particle diffusion, we established a rapid prediction method for wind field and pollutant dispersion around complex underlying surfaces within a field scale, in a way of visual discrimination of buildings and vegetation distribution. With data simulation and the use of a real urban field example, the simulated results were compared with wind tunnel test measurements and computational fluid dynamics results to study the influence of complex underlying surfaces on wind field and pollutant transport in the region. Results The rapid prediction system could clearly simulate the high-resolution wind field and pollutant concentration distribution of the region in about five minutes. It could interface with geographic information software and couple with a mesoscale weather prediction model. In terms of accuracy, the system performed well in wind field simulation, with the fractional deviations of wind speed and wind direction being 0.33 and −0.08, respectively. Concentration field simulation was greatly affected by the wind field, and the ratios of simulated concentrations to observed concentrations were between 0.05 and 3.4, except for a few low concentration points. Conclusion The rapid prediction system can effectively simulate the distribution characteristics of the flow field and improve calculation efficiency when ensuring calculation accuracy, which provides an important reference for emergency response to nuclear accidents.

3.
J Sci Food Agric ; 93(12): 3129-32, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23413204

ABSTRACT

BACKGROUND: Livestock operations are under increasing pressure to fulfil minimum environmental requirements and avoid polluting the atmosphere. In regions with high farm animal densities, new farm buildings receive building permission only when biological exhaust air treatment systems (BEATS) are in place, such as biofilters. However, it is currently unknown whether BEATS can harbour pathogens such as zoonotic agents, which are potentially emitted via the purified gas. Because BEATS are located very close to the livestock building, it is assumed that BEATS-related microorganisms are aerially transported to farm animals via the inlet system of the ventilation system. To support this hypothesis, a computer simulation was applied to calculate the wind field around a facility consisting of a virtual livestock house and an adjacent biofilter. RESULTS: Under the chosen wind conditions (speed and direction), it can be shown that turbulences and eddies may occur in the near surrounding of a livestock building with an adjacent biofilter. Consequently, this might cause the entry of the released biofilter's purified gas into the barn, including possible microorganisms within this purified gas. CONCLUSIONS: If field investigations verify the results of the simulations, counter-measures must be taken to ensure biosecurity on farms with BEATS.


Subject(s)
Air Conditioning , Animal Diseases/prevention & control , Animal Husbandry , Livestock/microbiology , Models, Biological , Air Conditioning/instrumentation , Air Filters/microbiology , Air Filters/veterinary , Air Microbiology , Air Pollution/prevention & control , Animal Diseases/microbiology , Animal Diseases/transmission , Animal Husbandry/instrumentation , Animals , Computer Simulation , Germany , Ventilation/instrumentation , Wind , Zoonoses/microbiology , Zoonoses/prevention & control , Zoonoses/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...