Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
J Mech Behav Biomed Mater ; 160: 106760, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39366083

ABSTRACT

Extracranial carotid artery aneurysms (ECCA) lead to rupture and neurologic symptoms from embolisation, with potentially fatal outcomes. Investigating the biomechanical behaviour of EECA with blood flow dynamics is crucial for identifying regions more susceptible to rupture. A coupled three-dimensional (3D) Windkessel-framework and hyperelastic fluid-structure interaction (FSI) analysis of ECCAs with patient-specific geometries, was developed in this paper with a particular focus on hemodynamic parameters and the arterial wall's biomechanical response. The blood flow has been modelled as non-Newtonian, pulsatile, and turbulent. The biomechanical characteristics of the aneurysm and artery are characterised employing a 5-parameter Mooney-Rivlin hyperelasticity model. The Windkessel effect is also considered to efficiently simulate pressure profile of the outlets and to capture the dynamic changes over the cardiac cycle. The study found the aneurysm carotid artery exhibited the high levels of pressure, wall shear stress (WSS), oscillatory shear index (OSI), and relative residence time (RRT) compared to the healthy one. The deformation of the arterial wall and the corresponding von Mises (VM) stress were found significantly increased in aneurysm cases, in comparison to that of no aneurysm cases, which strongly correlated with the hemodynamic characteristics of the blood flow and the geometric features of the aneurysms. This escalation would intensify the risk of aneurysm wall rupture. These findings have critical implications for enhancing treatment strategies for patients with extracranial aneurysms.

2.
Int J Numer Method Biomed Eng ; : e3867, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39239830

ABSTRACT

The Windkessel (WK) model is a simplified mathematical model used to represent the systemic arterial circulation. While the WK model is useful for studying blood flow dynamics, it suffers from inaccuracies or uncertainties that should be considered when using it to make physiological predictions. This paper aims to develop an efficient and easy-to-implement uncertainty quantification method based on a local gradient-based formulation to quantify the uncertainty of the pressure waveform resulting from aleatory uncertainties of the WK parameters and flow waveform. The proposed methodology, tested against Monte Carlo simulations, demonstrates good agreement in estimating blood pressure uncertainties due to uncertain Windkessel parameters, but less agreement considering uncertain blood-flow waveforms. To illustrate our methodology's applicability, we assessed the aortic pressure uncertainty generated by Windkessel parameters-sets from an available in silico database representing healthy adults. The results from the proposed formulation align qualitatively with those in the database and in vivo data. Furthermore, we investigated how changes in the uncertainty of the Windkessel parameters affect the uncertainty of systolic, diastolic, and pulse pressures. We found that peripheral resistance uncertainty produces the most significant change in the systolic and diastolic blood pressure uncertainties. On the other hand, compliance uncertainty considerably modifies the pulse pressure standard deviation. The presented expansion-based method is a tool for efficiently propagating the Windkessel parameters' uncertainty to the pressure waveform. The Windkessel model's clinical use depends on the reliability of the pressure in the presence of input uncertainties, which can be efficiently investigated with the proposed methodology. For instance, in wearable technology that uses sensor data and the Windkessel model to estimate systolic and diastolic blood pressures, it is important to check the confidence level in these calculations to ensure that the pressures accurately reflect the patient's cardiovascular condition.

3.
Physiol Meas ; 45(8)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39094611

ABSTRACT

Objective.Arterial pulse wave analysis (PWA) is now established as a powerful tool to investigate the cardiovascular system, and several clinical studies have shown how PWA can provide valuable prognostic information over and beyond traditional cardiovascular risk factors. Typically these techniques are applied to chronic conditions, such as hypertension or aging, to monitor the slow structural changes of the vascular system which lead to important alterations of the arterial PW. However, their application to acute critical illness is not currently widespread, probably because of the high hemodynamic instability and acute dynamic alterations affecting the cardiovascular system of these patients.Approach.In this work we propose a review of the physiological and methodological basis of PWA, describing how it can be used to provide insights into arterial structure and function, cardiovascular biomechanical properties, and to derive information on wave propagation and reflection.Main results.The applicability of these techniques to acute critical illness, especially septic shock, is extensively discussed, highlighting the feasibility of their use in acute critical patients and their role in optimizing therapy administration and hemodynamic monitoring.Significance.The potential for the clinical use of these techniques lies in the ease of computation and availability of arterial blood pressure signals, as invasive arterial lines are commonly used in these patients. We hope that the concepts illustrated in the present review will soon be translated into clinical practice.


Subject(s)
Critical Illness , Pulse Wave Analysis , Humans
4.
Ann Biomed Eng ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969956

ABSTRACT

As full-scale detailed hemodynamic simulations of the entire vasculature are not feasible, numerical analysis should be focused on specific regions of the cardiovascular system, which requires the identification of lumped parameters to represent the patient behavior outside the simulated computational domain. We present a novel technique for estimating cardiovascular model parameters using gappy Proper Orthogonal Decomposition (g-POD). A POD basis is constructed with FSI simulations for different values of the lumped model parameters, and a linear operator is applied to retain information that can be compared to the available patient measurements. Then, the POD coefficients of the reconstructed solution are computed either by projecting patient measurements or by solving a minimization problem with constraints. The POD reconstruction is then used to estimate the model parameters. In the first test case, the parameter values of a 3-element Windkessel model are approximated using artificial patient measurements, obtaining a relative error of less than 4.2%. In the second case, 4 sets of 3-element Windkessel are approximated in a patient's aorta geometry, resulting in an error of less than 8% for the flow and less than 5% for the pressure. The method shows accurate results even with noisy patient data. It automatically calculates the delay between measurements and simulations and has flexibility in the types of patient measurements that can handle (at specific points, spatial or time averaged). The method is easy to implement and can be used in simulations performed in general-purpose FSI software.

5.
Am J Physiol Regul Integr Comp Physiol ; 327(3): R349-R361, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39005079

ABSTRACT

Angiotensin II (ANG II) is known to play an important role in regulating renal hemodynamics. We sought to quantify this effect in an in vivo rat model with high-resolution renal arterial (RA) impedance. This study examines the effects of ANG II and its type 1 receptor blocker telmisartan (TELM) on RA impedance. In baroreflex-deactivated rats, we measured RA pressure (Pr) and blood flow (Fr) during random ventricular pacing to induce pressure fluctuation at three different mean Pr (60, 80, and 100 mmHg). We then estimated RA impedance as the transfer function from Fr to Pr. The RA impedance was found to align with a three-element Windkessel model consisting of proximal (Rp) and distal (Rd) resistance and compliance (C). Our study showed Rd reflected the composite characteristics of afferent and efferent arterioles. Rd increased with increasing Pr under the baseline condition with a slope of 1.03 ± 0.21 (× 10-1) min·mL-1. ANG II significantly increased the slope by 0.72 ± 0.29 (× 10-1) min·mL-1 (P < 0.05) without affecting the intercept. TELM significantly reduced the intercept by 34.49 ± 4.86 (× 10-1) mmHg·min·mL-1 (P < 0.001) from the baseline value of 37.93 ± 13.36 (× 10-1) mmHg·min·mL-1, whereas it did not affect the slope. In contrast, Rp was less sensitive than Rd to ANG II or TELM, suggesting Rp may represent the characteristics of elastic large arteries. Our findings provide valuable insights into the influence of ANG II on the dynamics of the renal vasculature.NEW & NOTEWORTHY This present method of quantifying high-resolution renal arterial impedance could contribute to elucidating the characteristics of renal vasculature influenced by physiological mechanisms, renal diseases, or pharmacological effects. The present findings help construct a lumped-parameter renal hemodynamic model that reflects the influence of angiotensin II.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Angiotensin II , Rats, Sprague-Dawley , Renal Artery , Renal Circulation , Telmisartan , Vascular Resistance , Animals , Telmisartan/pharmacology , Angiotensin II/pharmacology , Male , Angiotensin II Type 1 Receptor Blockers/pharmacology , Renal Artery/drug effects , Renal Circulation/drug effects , Vascular Resistance/drug effects , Benzimidazoles/pharmacology , Rats , Benzoates/pharmacology , Models, Cardiovascular
6.
Biomech Model Mechanobiol ; 23(5): 1469-1490, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38918266

ABSTRACT

Pulmonary artery stenosis (PAS) often presents in children with congenital heart disease, altering blood flow and pressure during critical periods of growth and development. Variability in stenosis onset, duration, and severity result in variable growth and remodeling of the pulmonary vasculature. Computational fluid dynamics (CFD) models enable investigation into the hemodynamic impact and altered mechanics associated with PAS. In this study, a one-dimensional (1D) fluid dynamics model was used to simulate hemodynamics throughout the pulmonary arteries of individual animals. The geometry of the large pulmonary arteries was prescribed by animal-specific imaging, whereas the distal vasculature was simulated by a three-element Windkessel model at each terminal vessel outlet. Remodeling of the pulmonary vasculature, which cannot be measured in vivo, was estimated via model-fitted parameters. The large artery stiffness was significantly higher on the left side of the vasculature in the left pulmonary artery (LPA) stenosis group, but neither side differed from the sham group. The sham group exhibited a balanced distribution of total distal vascular resistance, whereas the left side was generally larger in the LPA stenosis group, with no significant differences between groups. In contrast, the peripheral compliance on the right side of the LPA stenosis group was significantly greater than the corresponding side of the sham group. Further analysis indicated the underperfused distal vasculature likely moderately decreased in radius with little change in stiffness given the increase in thickness observed with histology. Ultimately, our model enables greater understanding of pulmonary arterial adaptation due to LPA stenosis and has potential for use as a tool to noninvasively estimate remodeling of the pulmonary vasculature.


Subject(s)
Computer Simulation , Models, Cardiovascular , Pulmonary Artery , Stenosis, Pulmonary Artery , Vascular Remodeling , Stenosis, Pulmonary Artery/physiopathology , Stenosis, Pulmonary Artery/diagnostic imaging , Animals , Pulmonary Artery/physiopathology , Pulmonary Artery/pathology , Hemodynamics , Hydrodynamics , Disease Models, Animal
7.
Med Biol Eng Comput ; 62(10): 3151-3161, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38787486

ABSTRACT

The gastrointestinal (GI) peristalsis is an involuntary wave-like contraction of the GI wall that helps to propagate food along the tract. Many GI diseases, e.g., gastroparesis, are known to cause motility disorders in which the physiological contractile patterns of the wall get disrupted. Therefore, to understand the pathophysiology of these diseases, it is necessary to understand the mechanism of GI motility. We present a coupled electromechanical model to describe the mechanism of GI motility and the transduction pathway of cellular electrical activities into mechanical deformation and the generation of intraluminal pressure (IP) waves in the GI tract. The proposed model consolidates a smooth muscle cell (SMC) model, an actin-myosin interaction model, a hyperelastic constitutive model, and a Windkessel model to construct a coupled model that can describe the origin of peristaltic contractions in the intestine. The key input to the model is external electrical stimuli, which are converted into mechanical contractile waves in the wall. The model recreated experimental observations efficiently and was able to establish a relationship between change in luminal volume and pressure with the compliance of the GI wall and the peripheral resistance to bolus flow. The proposed model will help us understand the GI tract's function in physiological and pathophysiological conditions.


Subject(s)
Gastrointestinal Tract , Models, Biological , Pressure , Gastrointestinal Tract/physiology , Humans , Peristalsis/physiology , Gastrointestinal Motility/physiology , Animals , Myosins/metabolism , Muscle Contraction/physiology , Myocytes, Smooth Muscle/physiology
8.
J Biomech Eng ; 146(10)2024 10 01.
Article in English | MEDLINE | ID: mdl-38683061

ABSTRACT

Computational fluid dynamics (CFD) simulations are widely used to develop and analyze blood-contacting medical devices such as left ventricular assist devices (LVADs). This work presents an analysis of the transient behavior of two centrifugal LVADs with different designs: HeartWare VAD and HeartMate3. A scale-resolving methodology is followed through Large Eddy Simulations, which allows for the visualization of turbulent structures. The three-dimensional (3D) LVAD models are coupled to a zero-dimensional (0D) 2-element Windkessel model, which accounts for the vascular resistance and compliance of the arterial system downstream of the device. Furthermore, both continuous- and pulsatile-flow operation modes are analyzed. For the pulsatile conditions, the artificial pulse of HeartMate3 is imposed, leading to a larger variation of performance variables in HeartWare VAD than in HeartMate3. Moreover, CFD results of pulsatile-flow simulations are compared to those obtained by accessing the quasi-steady maps of the pumps. The quasi-steady approach is a predictive tool used to provide a preliminary approximation of the pulsatile evolution of flow rate, pressure head, and power, by only imposing a speed pulse and vascular parameters. This preliminary quasi-steady solution can be useful for deciding the characteristics of the pulsatile speed law before running a transient CFD simulation, as the former entails a significant reduction in computational cost in comparison to the latter.


Subject(s)
Heart-Assist Devices , Hydrodynamics , Pulsatile Flow , Models, Cardiovascular , Computer Simulation , Centrifugation , Humans
9.
J Endovasc Ther ; : 15266028241235876, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528650

ABSTRACT

CLINICAL IMPACT: On needs-based ex vivo monitoring of implantable devices or tissues/organs in cardiovascular simulators provides new insights and paves new paths for device prototypes. The insights gained could not only support the needs of patients, but also inform engineers, scientists and clinicians about undiscovered aspects of diseases (during routine monitoring). We analyze seminal and current work and highlight a variety of opportunities for developing preclinical tools that would improve strategies for future implantable devices. Holistically, mock circulation loop studies can bridge the gap between in vivo and in vitro approaches, as well as clinical and laboratory settings, in a mutually beneficial manner.

10.
Sci Rep ; 14(1): 5913, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467721

ABSTRACT

Central aortic diastolic pressure decay time constant ( τ ) is according to the two-element Windkessel model equal to the product of total peripheral resistance ( R ) times total arterial compliance ( C ). As such, it is related to arterial stiffness, which has considerable pathophysiological relevance in the assessment of vascular health. This study aimed to investigate the relationship of the constant τ with the product T MBP cPP , given by heart period ( T ) times the ratio of mean blood pressure (MBP) to central pulse pressure ( cPP ). The relationship was derived by performing linear fitting on an in silico population of n1 = 3818 virtual subjects, and was subsequently evaluated on in vivo data (n2 = 2263) from the large Asklepios study. The resulted expression was found to be τ = k ' T MBP cPP , with k ' = 0.7 (R2 = 0.9). The evaluation of the equation on the in vivo human data reported high agreement between the estimated and reference τ values, with a correlation coefficient equal to 0.94 and a normalized RMSE equal to 5.5%. Moreover, the analysis provided evidence that the coefficient k ' is age- and gender-independent. The proposed formula provides novel theoretical insights in the relationship between τ and central blood pressure features. In addition, it may allow for the evaluation of τ without the need for acquiring the entire central blood pressure wave, especially when an approximation of the cPP is feasible. This study adds to the current literature by contributing to the accessibility of an additional biomarker, such as the central diastolic pressure decay time constant, for the improved assessment of vascular ageing.


Subject(s)
Arteries , Vascular Stiffness , Humans , Blood Pressure/physiology , Arteries/physiology , Aorta/physiology , Arterial Pressure , Vascular Resistance
11.
Front Physiol ; 14: 1187561, 2023.
Article in English | MEDLINE | ID: mdl-37745247

ABSTRACT

Objective: The temporal complexity of photoplethysmography (PPG) provides valuable information about blood pressure (BP). In this study, we aim to interpret the stochastic PPG patterns with a model-based simulation, which may help optimize the BP estimation algorithms. Methods: The classic four-element Windkessel model is adapted in this study to incorporate BP-dependent compliance profiles. Simulations are performed to generate PPG responses to pulse and continuous stimuli at various timescales, aiming to mimic sudden or gradual hemodynamic changes observed in real-life scenarios. To quantify the temporal complexity of PPG, we utilize the Higuchi fractal dimension (HFD) and autocorrelation function (ACF). These measures provide insights into the intricate temporal patterns exhibited by PPG. To validate the simulation results, continuous recordings of BP, PPG, and stroke volume from 40 healthy subjects were used. Results: Pulse simulations showed that central vascular compliance variation during a cardiac cycle, peripheral resistance, and cardiac output (CO) collectively contributed to the time delay, amplitude overshoot, and phase shift of PPG responses. Continuous simulations showed that the PPG complexity could be generated by random stimuli, which were subsequently influenced by the autocorrelation patterns of the stimuli. Importantly, the relationship between complexity and hemodynamics as predicted by our model aligned well with the experimental analysis. HFD and ACF had significant contributions to BP, displaying stability even in the presence of high CO fluctuations. In contrast, morphological features exhibited reduced contribution in unstable hemodynamic conditions. Conclusion: Temporal complexity patterns are essential to single-site PPG-based BP estimation. Understanding the physiological implications of these patterns can aid in the development of algorithms with clear interpretability and optimal structures.

12.
Cardiovasc Eng Technol ; 14(4): 505-525, 2023 08.
Article in English | MEDLINE | ID: mdl-37308695

ABSTRACT

PURPOSE: The choice of appropriate boundary conditions is a crucial step in the development of cardiovascular models for blood flow simulations. The three-element Windkessel model is usually employed as a lumped boundary condition, providing a reduced order representation of the peripheral circulation. However, the systematic estimation of the Windkessel parameters remains an open problem. Moreover, the Windkessel model is not always adequate to model blood flow dynamics, which often require more elaborate boundary conditions. In this study, we propose a method for the estimation of the parameters of high order boundary conditions, including the Windkessel model, from pressure and flow rate waveforms at the truncation point. Moreover, we investigate the effect of adopting higher order boundary conditions, corresponding to equivalent circuits with more than one storage element, on the accuracy of the model. METHOD: The proposed technique is based on Time-Domain Vector Fitting, a modeling algorithm that, given samples of the input and output of a system, such as pressure and flow waveforms, can derive a differential equation approximating their relation. RESULTS: The capabilities of the proposed method are tested on a 1D circulation model consisting of the 55 largest human systemic arteries, to demonstrate its accuracy and its usefulness to estimate boundary conditions with order higher than the traditional Windkessel models. The proposed method is compared to other common estimation techniques, and its robustness in parameter estimation is verified in presence of noisy data and of physiological changes of aortic flow rate induced by mental stress. CONCLUSION: Results suggest that the proposed method is able to accurately estimate boundary conditions of arbitrary order. Higher order boundary conditions can improve the accuracy of cardiovascular simulations, and Time-Domain Vector Fitting can automatically estimate them.


Subject(s)
Arteries , Hemodynamics , Humans , Blood Pressure/physiology , Hemodynamics/physiology , Arteries/physiology , Aorta/physiology , Models, Cardiovascular
13.
Exp Physiol ; 108(8): 1057-1065, 2023 08.
Article in English | MEDLINE | ID: mdl-37309084

ABSTRACT

NEW FINDINGS: What is the central question of this study? High-intensity interval exercise (HIIE) is recommended for its favourable haemodynamic stimulation, but excessive haemodynamic fluctuations may stress the brain: is the cerebral vasculature protected against exaggerated systemic blood flow fluctuation during HIIE? What is the main finding and its importance? Time- and frequency-domain indices of aortic-cerebral pulsatile transition were lowered during HIIE. The findings suggest that the arterial system to the cerebral vasculature may attenuate pulsatile transition during HIIE as a defence mechanism against pulsatile fluctuation for the cerebral vasculature. ABSTRACT: High-intensity interval exercise (HIIE) is recommended because it provides favourable haemodynamic stimulation, but excessive haemodynamic fluctuations may be an adverse impact on the brain. We tested whether the cerebral vasculature is protected against systemic blood flow fluctuation during HIIE. Fourteen healthy men (age 24 ± 2 years) underwent four 4-min exercises at 80-90% of maximal workload (Wmax ) interspaced by 3-min active rest at 50-60% Wmax . Transcranial Doppler measured middle cerebral artery blood velocity (CBV). Systemic haemodynamics (Modelflow) and aortic pressure (AoP, general transfer function) were estimated from an invasively recorded brachial arterial pressure waveform. Using transfer function analysis, gain and phase between AoP and CBV (0.39-10.0 Hz) were calculated. Stroke volume, aortic pulse pressure and pulsatile CBV increased during exercise (time effect: P < 0.0001 for all), but a time-domain index of aortic-cerebral pulsatile transition (pulsatile CBV/pulsatile AoP) decreased throughout the exercise bouts (time effect: P < 0.0001). Furthermore, transfer function gain reduced, and phase increased throughout the exercise bouts (time effect: P < 0.0001 for both), suggesting the attenuation and delay of pulsatile transition. The cerebral vascular conductance index (mean CBV/mean arterial pressure; time effect: P = 0.296), an inverse index of cerebral vascular tone, did not change even though systemic vascular conductance increased during exercise (time effect: P < 0.0001). The arterial system to the cerebral vasculature may attenuate pulsatile transition during HIIE as a defence mechanism against pulsatile fluctuation for the cerebral vasculature.


Subject(s)
Arterial Pressure , Hemodynamics , Male , Humans , Young Adult , Adult , Hemodynamics/physiology , Arterial Pressure/physiology , Exercise/physiology , Ultrasonography, Doppler, Transcranial , Stroke Volume/physiology , Blood Pressure/physiology
14.
Physiol Meas ; 44(6)2023 06 06.
Article in English | MEDLINE | ID: mdl-37280722

ABSTRACT

Objective.Deriving time-domain analytical solutions to two- three- and four-element Windkessel models, which are commonly used in teaching and research to analyse the behaviour of the arterial pressure-flow relationship.Approach.The governing (first-order, non-homogeneous, linear) differential equations are solved analytically, based on a piecewise linear function that can accurately approximate typical aortic flow waveforms.Main results.Closed-form expressions for arterial pressure are obtained both in transient conditions and in steady-state periodic regime.Significance.In most cases Windkessel models are studied in the frequency domain and when studied in the time domain, numerical methods are used. The main advantage of the proposed expressions is that they are an explicit, exact, and easily understood mathematical description of the model behaviour. Moreover, they avoid the use of Fourier analysis or numerical solvers to integrate the differential equations.


Subject(s)
Aorta , Models, Cardiovascular , Vascular Resistance , Blood Pressure
15.
J Neurosurg Pediatr ; 32(3): 302-311, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37382303

ABSTRACT

OBJECTIVE: Traditional models of intracranial dynamics fail to capture several important features of the intracranial pressure (ICP) pulse. Experiments show that, at a local amplitude minimum, the ICP pulse normally precedes the arterial blood pressure (ABP) pulse, and the cranium is a band-stop filter centered at the heart rate for the ICP pulse with respect to the ABP pulse, which is the cerebral windkessel mechanism. These observations are inconsistent with existing pressure-volume models. METHODS: To explore these issues, the authors modeled the ABP and ICP pulses by using a simple electrical tank circuit, and they compared the dynamics of the circuit to physiological data from dogs by using autoregressive with exogenous inputs (ARX) modeling. RESULTS: The authors' ARX analysis showed close agreement between the circuit and pulse suppression in the canine cranium, and they used the analogy between the circuit and the cranium to examine the dynamics that underlie this pulse suppression. CONCLUSIONS: This correspondence between physiological data and circuit dynamics suggests that the cerebral windkessel consists of the rhythmic motion of the brain parenchyma and CSF that continuously opposes systolic and diastolic blood flow. Such motion has been documented with flow-sensitive MRI. In thermodynamic terms, the direct current (DC) power of cerebral arterial perfusion drives smooth capillary flow and alternating current (AC) power shunts pulsatile energy through the CSF to the veins. This suggests that hydrocephalus and related disorders are disorders of CSF path impedance. Obstructive hydrocephalus is the consequence of high CSF path impedance due to high resistance. Normal pressure hydrocephalus (NPH) is the consequence of high CSF path impedance due to low inertance and high compliance. Low-pressure hydrocephalus is the consequence of high CSF path impedance due to high resistance and high compliance. Ventriculomegaly is an adaptive physiological response that increases CSF path volume and thereby reduces CSF path resistance and impedance. Pseudotumor cerebri is the consequence of high DC power with normal CSF path impedance. CSF diversion by shunting is an accessory windkessel-it drains energy (and thereby lowers ICP) and lowers CSF path resistance and impedance. Cushing's reflex is an accessory windkessel in extremis-it maintains DC power (arterial hypertension) and reduces AC power (bradycardia). The windkessel theory is a thermodynamic approach to the study of energy flow through the cranium, and it points to a new understanding of hydrocephalus and related disorders.


Subject(s)
Hydrocephalus , Pseudotumor Cerebri , Animals , Dogs , Brain , Intracranial Pressure/physiology , Magnetic Resonance Imaging
16.
Front Bioeng Biotechnol ; 11: 1178483, 2023.
Article in English | MEDLINE | ID: mdl-37251565

ABSTRACT

Introduction: Patient-specific computational fluid dynamics (CFD) models permit analysis of complex intra-aortic hemodynamics in patients with aortic dissection (AD), where vessel morphology and disease severity are highly individualized. The simulated blood flow regime within these models is sensitive to the prescribed boundary conditions (BCs), so accurate BC selection is fundamental to achieve clinically relevant results. Methods: This study presents a novel reduced-order computational framework for the iterative flow-based calibration of 3-Element Windkessel Model (3EWM) parameters to generate patient-specific BCs. These parameters were calibrated using time-resolved flow information derived from retrospective four-dimensional flow magnetic resonance imaging (4D Flow-MRI). For a healthy and dissected case, blood flow was then investigated numerically in a fully coupled zero dimensional-three dimensional (0D-3D) numerical framework, where the vessel geometries were reconstructed from medical images. Calibration of the 3EWM parameters was automated and required ~3.5 min per branch. Results: With prescription of the calibrated BCs, the computed near-wall hemodynamics (time-averaged wall shear stress, oscillatory shear index) and perfusion distribution were consistent with clinical measurements and previous literature, yielding physiologically relevant results. BC calibration was particularly important in the AD case, where the complex flow regime was captured only after BC calibration. Discussion: This calibration methodology can therefore be applied in clinical cases where branch flow rates are known, for example, via 4D Flow-MRI or ultrasound, to generate patient-specific BCs for CFD models. It is then possible to elucidate, on a case-by-case basis, the highly individualized hemodynamics which occur due to geometric variations in aortic pathology high spatiotemporal resolution through CFD.

17.
Interv Neuroradiol ; : 15910199231175622, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37170614

ABSTRACT

BACKGROUND: Cerebral hyperperfusion syndrome (CHS) occurs after the restoration of blood flow to a previously low-flow, low-pressure region of the cerebral vasculature, which subsequently responds with chronic compensatory vasodilation, leading to a dysregulated state. Sudden restoration of normal blood flow can overwhelm the vasculature leading to intracranial hemorrhage (ICH). Separately, the Windkessel phenomenon describes the capacity for elastic vessels to expand with systolic pressure and decompress with diastole, thereby suppressing distal pulse pressure. We encountered a case involving giant basilar aneurysms in which we believe the Windkessel phenomenon precipitated a catastrophic manifestation of CHS at treatment. OBSERVATION: We present a 60-year-old female found to have marked dolichoectasia of the right cervical internal carotid, vertebral, and basilar arteries concurrent with two large vertebrobasilar dissecting-type fusiform aneurysms. Managed conservatively for ten years before developing gait ataxia, new imaging revealed dramatic interval growth of the larger aneurysm. Flow diversion with partial coiling of the aneurysms was pursued. The patient suffered intra-procedural catastrophic thalamic and midbrain hemorrhage with intraventricular extension. A meticulous review of the case data was undertaken. Our findings suggest that giant aneurysms can act as a Windkessel reservoir, depressing the distal pulse pressure. Flow diversion bypasses the reservoir, increasing the distal pulse pressure beyond the autoregulatory capacity, resulting in ICH analogous to CHS. LESSONS: CHS and Windkessel phenomenon can contribute to catastrophic sequelae in the treatment of giant intracranial aneurysms with flow diversion. Awareness of this mechanism can protect future patients from harm.

18.
Front Physiol ; 14: 1085871, 2023.
Article in English | MEDLINE | ID: mdl-37007991

ABSTRACT

Background: Intracranial photoplethysmography (PPG) signals can be measured from extracranial sites using wearable sensors and may enable long-term non-invasive monitoring of intracranial pressure (ICP). However, it is still unknown if ICP changes can lead to waveform changes in intracranial PPG signals. Aim: To investigate the effect of ICP changes on the waveform of intracranial PPG signals of different cerebral perfusion territories. Methods: Based on lump-parameter Windkessel models, we developed a computational model consisting three interactive parts: cardiocerebral artery network, ICP model, and PPG model. We simulated ICP and PPG signals of three perfusion territories [anterior, middle, and posterior cerebral arteries (ACA, MCA, and PCA), all left side] in three ages (20, 40, and 60 years) and four intracranial capacitance conditions (normal, 20% decrease, 50% decrease, and 75% decrease). We calculated following PPG waveform features: maximum, minimum, mean, amplitude, min-to-max time, pulsatility index (PI), resistive index (RI), and max-to-mean ratio (MMR). Results: The simulated mean ICPs in normal condition were in the normal range (8.87-11.35 mm Hg), with larger PPG fluctuations in older subject and ACA/PCA territories. When intracranial capacitance decreased, the mean ICP increased above normal threshold (>20 mm Hg), with significant decreases in maximum, minimum, and mean; a minor decrease in amplitude; and no consistent change in min-to-max time, PI, RI, or MMR (maximal relative difference less than 2%) for PPG signals of all perfusion territories. There were significant effects of age and territory on all waveform features except age on mean. Conclusion: ICP values could significantly change the value-relevant (maximum, minimum, and amplitude) waveform features of PPG signals measured from different cerebral perfusion territories, with negligible effect on shape-relevant features (min-to-max time, PI, RI, and MMR). Age and measurement site could also significantly influence intracranial PPG waveform.

19.
Front Bioeng Biotechnol ; 11: 1127855, 2023.
Article in English | MEDLINE | ID: mdl-36926690

ABSTRACT

Background: Image-based computational hemodynamic modeling and simulations are important for personalized diagnosis and treatment of cardiovascular diseases. However, the required patient-specific boundary conditions are often not available and need to be estimated. Methods: We propose a pipeline for estimating the parameters of the popular three-element Windkessel (WK3) models (a proximal resistor in series with a parallel combination of a distal resistor and a capacitor) of the aortic arch arteries in patients receiving thoracic endovascular aortic repair of aneurysms. Pre-operative and post-operative 1-week duplex ultrasound scans were performed to obtain blood flow rates, and intra-operative pressure measurements were also performed invasively using a pressure transducer pre- and post-stent graft deployment in arch arteries. The patient-specific WK3 model parameters were derived from the flow rate and pressure waveforms using an optimization algorithm reducing the error between simulated and measured pressure data. The resistors were normalized by total resistance, and the capacitor was normalized by total resistance and heart rate. The normalized WK3 parameters can be combined with readily available vessel diameter, brachial blood pressure, and heart rate data to estimate WK3 parameters of other patients non-invasively. Results: Ten patients were studied. The medians (interquartile range) of the normalized proximal resistor, distal resistor, and capacitor parameters are 0.10 (0.07-0.15), 0.90 (0.84-0.93), and 0.46 (0.33-0.58), respectively, for common carotid artery; 0.03 (0.02-0.04), 0.97 (0.96-0.98), and 1.91 (1.63-2.26) for subclavian artery; 0.18 (0.08-0.41), 0.82 (0.59-0.92), and 0.47 (0.32-0.85) for vertebral artery. The estimated pressure showed fairly high tolerance to patient-specific inlet flow rate waveforms using the WK3 parameters estimated from the medians of the normalized parameters. Conclusion: When patient-specific outflow boundary conditions are not available, our proposed pipeline can be used to estimate the WK3 parameters of arch arteries.

SELECTION OF CITATIONS
SEARCH DETAIL