Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 585
Filter
1.
Article in English | MEDLINE | ID: mdl-38982896

ABSTRACT

BACKGROUND: Skeletal muscle injury is one of the most common sports injuries; if not properly treated or not effective rehabilitation treatment after injury, it can be transformed into chronic cumulative injury. Curcumin, an herbal ingredient, has been found to promote skeletal muscle injury repair and regeneration. The Wnt5a pathway is related to the expression of myogenic regulatory factors, and Ca2+ promotes the differentiation and fusion process of myoblasts. This study explored the effect and mechanism of curcumin on myoblast differentiation during the repair and regeneration of injured skeletal muscle and its relationship with the Wnt5a pathway and Ca2+ channel. METHODS: Myogenic differentiation of C2C12 cells was induced with 2% horse serum, and a mouse (male, 10 weeks old) model of acute skeletal muscle injury was established using cardiotoxin (20 µL). In addition, we constructed a Wnt5a knockdown C2C12 cell model and a Wnt5a knockout mouse model. Besides, curcumin was added to the cell culture solution (80 mg/L) and fed to the mice (50 mg/kg). Fluorescence microscopy was used to determine the concentration of Ca2+. Western blot and RT-qPCR were used to detect the protein and mRNA levels of Wnt5a, CaN, NFAT2, MyoD, Myf5, Pax7, and Myogenin. The expression levels of MyoD, Myf5, Myogenin, MHC, Desmin, and NFAT2 were detected using immunofluorescence techniques. In addition, MyoD expression was observed using immunohistochemistry, and morphological changes in mouse muscle tissue were observed using HE staining. RESULTS: During myoblast differentiation and muscle regeneration, Wnt5a expression was upregulated (P < 0.001) and the Wnt5a signalling pathway was activated. Wnt5a overexpression promoted the expression of MyoD, Myf5, Myogenin, MHC, and Desmin (P < 0.05), and conversely, knockdown of Wnt5a inhibited their expression (P < 0.001). The Wnt5a pathway mediated the opening of Ca2+ channels, regulated the expression levels of CaN, NFAT2, MyoD, Myf5, Myogenin, MHC, and Desmin (P < 0.01) and promoted the differentiation of C2C12 myoblasts and the repair and regeneration of injured skeletal muscle. The expression of Wnt5a, CaN, NFAT2, MyoD, Myogenin, Myf5, and MHC in C2C12 myoblast was significantly increased after curcumin intervention (P < 0.05); however, their expression decreased significantly after knocking down Wnt5a on the basis of curcumin intervention (P < 0.05). Similarly, in Wnt5a knockout mice, the promotion of muscle regeneration by curcumin was significantly attenuated. CONCLUSIONS: Curcumin can activate the Wnt5a signalling pathway and mediate the opening of Ca2+ channels to accelerate the myogenic differentiation of C2C12 cells and the repair and regeneration of injured skeletal muscle.

2.
J Cell Commun Signal ; 18(2): e12038, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38946717

ABSTRACT

The morbidity and death rates of calcified aortic valves|calcific aortic valve (CAV) disease (CAVD) remain high for its limited therapeutic choices. Here, we investigated the function, therapeutic potential, and putative mechanisms of Enoyl coenzyme A hydratase 1 (ECH1) in CAVD by various in vitro and in vivo experiments. Single-cell sequencing revealed that ECH1 was predominantly expressed in valve interstitial cells and was significantly reduced in CAVs. Overexpression of ECH1 reduced aortic valve calcification in ApoE-/- mice treated with high cholesterol diet, while ECH1 silencing had the reverse effect. We also identified Wnt5a, a noncanonical Wnt ligand, was also altered when ECH1 expression was modulated. Mechanistically, we found that ECH1 exerted anti-calcific actions through suppressing Wnt signaling, since CHIR99021, a Wnt agonist, may significantly lessen the protective impact of ECH1 overexpression on the development of valve calcification. ChIP and luciferase assays all showed that ECH1 overexpression prevented Runx2 binding to its downstream gene promoters (osteopontin and osteocalcin), while CHIR99021 neutralized this protective effect. Collectively, our findings reveal a previously unrecognized mechanism of ECH1-Wnt5a/Ca2+ regulation in CAVD, implying that targeting ECH1 may be a potential therapeutic strategy to prevent CAVD development.

3.
Arch Toxicol ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38971901

ABSTRACT

Steroid-induced osteonecrosis of the femoral head (SONFH) is a prevalent form of osteonecrosis in young individuals. More efficacious clinical strategies must be used to prevent and treat this condition. One of the mechanisms through which SONFH operates is the disruption of normal differentiation in bone marrow adipocytes and osteoblasts due to prolonged and extensive use of glucocorticoids (GCs). In vitro, it was observed that atorvastatin (ATO) effectively suppressed the impact of dexamethasone (DEX) on bone marrow mesenchymal stem cells (BMSCs), specifically by augmenting their lipogenic differentiation while impeding their osteogenic differentiation. To investigate the underlying mechanisms further, we conducted transcriptome sequencing of BMSCs subjected to different treatments, leading to the identification of Wnt5a as a crucial gene regulated by ATO. The analyses showed that ATO exhibited the ability to enhance the expression of Wnt5a and modulate the MAPK pathway while regulating the Wnt canonical signaling pathway via the WNT5A/LRP5 pathway. Our experimental findings provide further evidence that the combined treatment of ATO and DEX effectively mitigates the effects of DEX, resulting in the upregulation of osteogenic genes (Runx2, Alpl, Tnfrsf11b, Ctnnb1, Col1a) and the downregulation of adipogenic genes (Pparg, Cebpb, Lpl), meanwhile leading to the upregulation of Wnt5a expression. So, this study offers valuable insights into the potential mechanism by which ATO can be utilized in the prevention of SONFH, thereby holding significant implications for the prevention and treatment of SONFH in clinical settings.

4.
Ren Fail ; 46(2): 2369176, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38913943

ABSTRACT

Abnormal Wnt5a expression is associated with dysregulated inflammation and organ dysfunction. However, the effect of Wnt5a activation on the duration of organ dysfunction remains unclear. This prospective study investigated the association between Wnt5a levels and persistent acute kidney injury (AKI) in patients with urosepsis. Serum creatinine and Wnt5a levels were measured on days 1 and 5 and at discharge in 87 patients diagnosed with urosepsis. Patients with urosepsis were classified into an improving acute kidney injury (AKI) group and a persistent or worsening AKI group according to the AKI stage on days 1 and 5. AKI recovery was defined as a discharge-to-baseline serum creatinine ratio of <1.5. Twenty-eight patients with urosepsis (32.2%) had persistent or worsening AKI, and their Wnt5a levels were higher on days 1 and 5 and at discharge than those with improving AKI. The association between Wnt5a levels and persistent or worsening AKI was maintained after adjusting for age, sex, baseline serum creatinine levels, and disease severity. Moreover, elevated Wnt5a levels were associated with an increased risk of major adverse kidney events. High Wnt5a levels at discharge were associated with unrecovered AKI and participants with AKI recovery had a steeper Wnt5a slope over time than those without recovery, irrespective of age, sex, baseline serum creatinine level, or disease severity. Assessment of Wnt5a expression was helpful in predicting AKI persistence and adverse outcomes in patients with urosepsis. Therefore, Wnt5a may serve as a valuable bio-marker for identifying the risk of persistence of AKI.


Subject(s)
Acute Kidney Injury , Creatinine , Sepsis , Wnt-5a Protein , Humans , Wnt-5a Protein/metabolism , Wnt-5a Protein/blood , Acute Kidney Injury/etiology , Acute Kidney Injury/blood , Acute Kidney Injury/metabolism , Acute Kidney Injury/diagnosis , Male , Female , Sepsis/complications , Sepsis/blood , Middle Aged , Aged , Prospective Studies , Creatinine/blood , Urinary Tract Infections/complications , Urinary Tract Infections/blood , Biomarkers/blood , Severity of Illness Index
5.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Article in English | MEDLINE | ID: mdl-38884729

ABSTRACT

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Subject(s)
Heart Septal Defects, Ventricular , Humans , Chromosome Aberrations , DNA Copy Number Variations/genetics , Genetic Predisposition to Disease/genetics , Heart Septal Defects, Ventricular/genetics , Mutation , Transcription Factors/genetics
6.
Mol Med ; 30(1): 93, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898476

ABSTRACT

BACKGROUND: The epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBECs) is essential for airway remodeling during asthma. Wnt5a has been implicated in various lung diseases, while its role in the EMT of HBECs during asthma is yet to be determined. This study sought to define whether Wnt5a initiated EMT, leading to airway remodeling through the induction of autophagy in HBECs. METHODS: Microarray analysis was used to investigate the expression change of WNT5A in asthma patients. In parallel, EMT models were induced using 16HBE cells by exposing them to house dust mites (HDM) or interleukin-4 (IL-4), and then the expression of Wnt5a was observed. Using in vitro gain- and loss-of-function approaches via Wnt5a mimic peptide FOXY5 and Wnt5a inhibitor BOX5, the alterations in the expression of the epithelial marker E-cadherin and the mesenchymal marker protein were observed. Mechanistically, the Ca2+/CaMKII signaling pathway and autophagy were evaluated. An autophagy inhibitor 3-MA was used to examine Wnt5a in the regulation of autophagy during EMT. Furthermore, we used a CaMKII inhibitor KN-93 to determine whether Wnt5a induced autophagy overactivation and EMT via the Ca2+/CaMKII signaling pathway. RESULTS: Asthma patients exhibited a significant increase in the gene expression of WNT5A compared to the healthy control. Upon HDM and IL-4 treatments, we observed that Wnt5a gene and protein expression levels were significantly increased in 16HBE cells. Interestingly, Wnt5a mimic peptide FOXY5 significantly inhibited E-cadherin and upregulated α-SMA, Collagen I, and autophagy marker proteins (Beclin1 and LC3-II). Rhodamine-phalloidin staining showed that FOXY5 resulted in a rearrangement of the cytoskeleton and an increase in the quantity of stress fibers in 16HBE cells. Importantly, blocking Wnt5a with BOX5 significantly inhibited autophagy and EMT induced by IL-4 in 16HBE cells. Mechanistically, autophagy inhibitor 3-MA and CaMKII inhibitor KN-93 reduced the EMT of 16HBE cells caused by FOXY5, as well as the increase in stress fibers, cell adhesion, and autophagy. CONCLUSION: This study illustrates a new link in the Wnt5a-Ca2+/CaMKII-autophagy axis to triggering airway remodeling. Our findings may provide novel strategies for the treatment of EMT-related diseases.


Subject(s)
Asthma , Autophagy , Epithelial Cells , Epithelial-Mesenchymal Transition , Wnt-5a Protein , Humans , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Asthma/metabolism , Asthma/pathology , Asthma/genetics , Epithelial Cells/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Bronchi/metabolism , Bronchi/pathology , Male , Cell Line , Female , Middle Aged , Signal Transduction , Adult
7.
Elife ; 132024 May 23.
Article in English | MEDLINE | ID: mdl-38780011

ABSTRACT

The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.


Subject(s)
Receptor Tyrosine Kinase-like Orphan Receptors , Signal Transduction , Wnt-5a Protein , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Humans , Animals , Crystallography, X-Ray , Protein Domains , Mice , Protein Conformation , Wnt Proteins/metabolism , Wnt Proteins/genetics
8.
Pathol Res Pract ; 259: 155369, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820928

ABSTRACT

Bladder cancer is a common malignancy with a poor prognosis worldwide. Positive cofactor 4 (PC4) is widely reported to promote malignant phenotypes in various tumors. Nonetheless, the biological function and mechanism of PC4 in bladder cancer remain unclear. Here, for the first time, we report that PC4 is elevated in bladder cancer and is associated with patient survival. Moreover, PC4 deficiency obviously inhibited bladder cancer cell proliferation and metastasis by reducing the expression of genes related to cancer stemness (CD44, CD47, KLF4 and c-Myc). Through RNA-seq and experimental verification, we found that activation of the Wnt5a/ß-catenin pathway is involved in the malignant function of PC4. Mechanistically, PC4 directly interacts with Sp1 to promote Wnt5a transcription. Thus, our study furthers our understanding of the role of PC4 in cancer stemness regulation and provides a promising strategy for bladder cancer therapy.


Subject(s)
Gene Expression Regulation, Neoplastic , Kruppel-Like Factor 4 , Neoplastic Stem Cells , Urinary Bladder Neoplasms , Wnt-5a Protein , Animals , Humans , Mice , beta Catenin/metabolism , beta Catenin/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Kruppel-Like Factor 4/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Sp1 Transcription Factor/metabolism , Sp1 Transcription Factor/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Wnt Signaling Pathway/physiology , Wnt Signaling Pathway/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics
9.
Biosci Biotechnol Biochem ; 88(7): 776-783, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38714325

ABSTRACT

Atherosclerosis (AS) is the major cause of multiple cardiovascular diseases. In addition, the lipid accumulation of human vascular smooth muscle cells (HVSMCs) can cause the occurrence of AS. Secreted frizzled-related protein 5 (Sfrp5) was known to be downregulated in AS; however, the detailed function of Sfrp5 in HVSMCs remains unclear. Specifically, we found that Sfrp5 expression in oxLDL-treated HVSMCs was downregulated. Sfrp5 overexpression inhibited the viability of HVSMCs induced by oxLDL. In addition, oxLDL-induced proliferation and migration in HVSMCs were abolished by Sfrp5 overexpression. Sfrp5 overexpression reduced oxLDL-caused oxidative stress, lipid accumulation, and inflammation in HVSMCs. Meanwhile, oxLDL treatment increased the expressions of Wnt5a, c-Myc, and ß-catenin in HVSMCs, while this phenomenon was rescued by Sfrp5 overexpression. Furthermore, the inhibitory effect of Sfrp5 upregulation on the viability and migration of HVSMCs was reversed by R-spondin 1. These results indicate that Sfrp5 overexpression could reverse oxLDL-induced lipid accumulation in HVSMCs through inactivating Wnt5a/ß-catenin signaling pathway.


Subject(s)
Cell Movement , Lipid Metabolism , Lipoproteins, LDL , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Wnt-5a Protein , Humans , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Cell Movement/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Oxidative Stress , beta Catenin/metabolism , beta Catenin/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Signal Transduction
10.
Aging Cell ; : e14202, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780001

ABSTRACT

Age-related intervertebral disk degeneration (IVDD) involves increased oxidative damage, cellular senescence, and matrix degradation. Pyrroloquinoline quinone (PQQ) is a water-soluble vitamin-like compound with strong anti-oxidant capacity. The goal of this study was to determine whether PQQ can prevent aging-related IVDD, and the underlying mechanism. Here, we found that dietary PQQ supplementation for 12 months alleviated IVDD phenotypes in aged mice, including increased disk height index and reduced histological scores and cell loss, without toxicity. Mechanistically, PQQ inhibited oxidative stress, cellular senescence, and senescence-associated secretory phenotype (SASP) in the nucleus pulposus and annulus fibrosus of aged mice. Similarly, PQQ protected against interleukin-1ß-induced matrix degradation, reactive oxygen species accumulation, and senescence in human nucleus pulposus cells (NPCs) in vitro. Molecular docking predicted and biochemical assays validated that PQQ interacts with specific residues to dissociate the Keap1-Nrf2 complex, thereby increasing nuclear Nrf2 translocation and activation of Nrf2-ARE signaling. RNA sequencing and luciferase assays revealed Nrf2 can transcriptionally upregulate Wnt5a by binding to its promoter, while Wnt5a knockdown prevented PQQ inhibition of matrix metalloproteinase-13 in NPCs. Notably, PQQ supplementation failed to alleviate aging-associated IVDD phenotypes and oxidative stress in aged Nrf2 knockout mice, indicating Nrf2 is indispensable for PQQ bioactivities. Collectively, this study demonstrates Nrf2 activation by PQQ inhibits aging-induced IVDD by attenuating cellular senescence and matrix degradation. This study clarifies Keap1-Nrf2-Wnt5a axis as the novel signaling underlying the protective effects of PQQ against aging-related IVDD, and provides evidence for PQQ as a potential agent for clinical prevention and treatment of natural aging-induced IVDD.

11.
Mol Neurobiol ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795301

ABSTRACT

Spinal cord injury (SCI) is a severe neurological condition that can lead to paralysis or even death. This study explored the potential benefits of bone marrow mesenchymal stem cell (BMSC) transplantation for repairing SCI. BMSCs also differentiate into astrocytes within damaged spinal cord tissues hindering the cell transplantation efficacy, therefore it is crucial to enhance their neuronal differentiation rate to facilitate spinal cord repair. Wnt5a, an upstream protein in the non-classical Wnt signaling pathway, has been implicated in stem cell migration, differentiation, and neurite formation but its role in the neuronal differentiation of BMSCs remains unclear. Thus, this study investigated the role and underlying mechanisms of Wnt5a in promoting neuronal differentiation of BMSCs both in vivo and in vitro. Wnt5a enhanced neuronal differentiation of BMSCs in vitro while reducing astrocyte differentiation. Additionally, high-throughput RNA sequencing revealed a correlation between Wnt5a and phosphoinositide 3-kinase (PI3K)/protein kinase B(AKT) signaling, which was confirmed by the use of the PI3K inhibitor LY294002 to reverse the effects of Wnt5a on BMSC neuronal differentiation. Furthermore, transplantation of Wnt5a-modified BMSCs into SCI rats effectively improved the histomorphology (Hematoxylin and eosin [H&E], Nissl and Luxol Fast Blue [LFB] staining), motor function scores (Footprint test and Basso-Beattie-Bresnahan [BBB]scores)and promoted neuron production, axonal formation, and remodeling of myelin sheaths (microtubule associated protein-2 [MAP-2], growth-associated protein 43 [GAP43], myelin basic protein [MBP]), while reducing astrocyte production (glial fibrillary acidic protein [GFAP]). Therefore, targeting the Wnt5a/PI3K/AKT pathway could enhance BMSC transplantation for SCI treatment.

12.
In Vitro Cell Dev Biol Anim ; 60(5): 482-488, 2024 May.
Article in English | MEDLINE | ID: mdl-38709417

ABSTRACT

The Wnt signaling pathway is a fundamental cellular communication system with extensive implications in various organs including the heart. In cardiac homeostasis, it governs essential processes like cellular proliferation, differentiation, and apoptosis, ensuring the heart's structural and functional integrity from embryonic stages and throughout life. Both canonical and non-canonical Wnt signaling pathways play a critical role during embryonic heart development in a region- and stage-specific manner. Canonical Wnt signaling also plays a significant role in heart diseases such as myocardial infarction and heart failure. However, the role of non-canonical Wnt signaling in heart diseases has not been fully elucidated. Wnt5a is a major ligand that activates non-canonical Wnt pathway, and recent studies start to clarify the role of the Wnt5a signaling axis in cardiac health and disease. In this review, we will briefly summarize the previous findings on the role of Wnt signaling pathways in heart development and diseases, and then focus on the role of Wnt5a signaling in heart failure progression. The multifaceted roles of the Wnt signaling pathway highlight its therapeutic potential for various types of heart diseases.


Subject(s)
Heart Diseases , Heart , Wnt Signaling Pathway , Humans , Animals , Heart Diseases/metabolism , Heart Diseases/pathology , Heart/embryology , Heart/growth & development , Wnt-5a Protein/metabolism
13.
Cancer Med ; 13(7): e7148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558536

ABSTRACT

BACKGROUND: Non-canonical WNT family (WNT5A pathway) signaling via WNT5A through ROR1 and its partner, ROR2, or Frizzled2 (FZD2) is linked to processes driving tumorigenesis and therapy resistance. We utilized a large dataset of urothelial carcinoma (UC) tumors to characterize non-canonical WNT signaling through WNT5A, ROR1, ROR2, or FZD2 expression. METHODS: NextGen Sequencing of DNA (592 genes or WES)/RNA (WTS) was performed for 4125 UC tumors submitted to Caris Life Sciences. High and low expression of WNT5A, ROR1, ROR2, and FZD2 was defined as ≥ top and

Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt Signaling Pathway/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism
14.
Iran J Basic Med Sci ; 27(6): 671-677, 2024.
Article in English | MEDLINE | ID: mdl-38645498

ABSTRACT

Objectives: Wnt5a, which regulates the activities of osteoblasts and osteoclasts, is reportedly overexpressed in osteoarthritis (OA) tissues. The purpose of this study was to elucidate its role in the development of OA by deleting Wnt5a in osteocalcin (OCN)-expressing cells. Materials and Methods: Knee OA was induced by anterior cruciate ligament transection (ACLT) in OCN-Cre;Wnt5afl/fl knockout (Wnt5a-cKO) mice and control littermates. Eight weeks after surgery, histological changes, cell apoptosis, and matrix metabolism of cartilage were evaluated by toluidine blue, TUNEL staining, and im-immunohistochemistry analyses, respectively. In addition, the subchondral bone microarchitecture of mice was examined by micro-computed tomography (micro-CT). Results: Histological scores show substantial cartilage degeneration occurred in ACLT knees, coupled with decreased collagen type II expression and enhanced matrix metalloproteinase 13 expression, as well as higher proportions of apoptotic cells. Micro-CT results show that ACLT resulted in decreased bone mineral density, bone volume/trabecular volume, trabecular number, and structure model index of subchondral bones in both Wnt5a-cKO and control littermates; although Wnt5a-cKO mice display lower BMD and BV/TV values, no significant difference was observed between Wnt5a-cKO and control mice for any of these values. Conclusion: Our findings indicate that Wnt5a deficiency in OCN-expressing cells could not prevent an osteoarthritic phenotype in a mouse model of post-traumatic OA.

15.
J Pharm Anal ; 14(4): 100901, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665223

ABSTRACT

The density and composition of lymphocytes infiltrating colon tumors serve as predictive factors for the clinical outcome of colon cancer. Our previous studies highlighted the potent anti-cancer properties of the principal compounds found in Garcinia yunnanensis (YTE-17), attributing these effects to the regulation of multiple signaling pathways. However, knowledge regarding the mechanism and effect of YTE-17 in the prevention of colorectal cancer is limited. In this study, we conducted isobaric tags for relative and absolute quantification (iTRAQ) analysis on intestinal epithelial cells (IECs) exposed YTE-17, both in vitro and invivo, revealing a significant inhibition of the Wnt family member 5a (Wnt5a)/c-Jun N-terminal kinase (JNK) signaling pathway. Subsequently, we elucidated the influence and mechanism of YTE-17 on the tumor microenvironment (TME), specifically focusing on macrophage-mediated T helper 17 (Th17) cell induction in a colitis-associated cancer (CAC) model with Wnt5a deletion. Additionally, we performed the single-cell RNA sequencing (scRNA-seq) on the colonic tissue from the Wnt5a-deleted CAC model to characterize the composition, lineage, and functional status of immune mesenchymal cells during different stages of colorectal cancer (CRC) progression. Remarkably, our findings demonstrate a significant reduction in M2 macrophage polarization and Th17 cell phenotype upon treatment with YTE-17, leading to the restoration of regulatory T (Treg)/Th17 cell balance in azoxymethane (AOM)/dextran sodium sulfate (DSS) model. Furthermore, we also confirmed that YTE-17 effectively inhibited the glycolysis of Th17 cells in both direct and indirect co-culture systems with M2 macrophages. Notably, our study shed light on potential mechanisms linking the non-canonical Wnt5a/JNK signaling pathway and well-established canonical ß-catenin oncogenic pathway in vivo. Specifically, we proposed that Wnt5a/JNK signaling activity in IECs promotes the development of cancer stem cells with ß-catenin activity within the TME, involving macrophages and T cells. In summary, our study undergoes the potential of YTE-17 as a preventive strategy against CRC development by addressing the imbalance with the immune microenvironment, thereby mitigating the risk of malignancies.

16.
In Vitro Cell Dev Biol Anim ; 60(5): 489-501, 2024 May.
Article in English | MEDLINE | ID: mdl-38587578

ABSTRACT

Ror-family receptors, Ror1 and Ror2, are type I transmembrane proteins that possess an extracellular cysteine-rich domain, which is conserved throughout the Frizzled-family receptors and is a binding site for Wnt ligands. Both Ror1 and Ror2 function primarily as receptors or co-receptors for Wnt5a to activate the ß-catenin-independent, non-canonical Wnt signaling, thereby regulating cell polarity, migration, proliferation, and differentiation depending on the context. Ror1 and Ror2 are expressed highly in many tissues during embryogenesis but minimally or scarcely in adult tissues, with some exceptions. In contrast, Ror1 and Ror2 are expressed in many types of cancers, and their high expression often contributes to the progression of the disease. Therefore, Ror1 and Ror2 have been proposed as potential targets for the treatment of the malignancies. In this review, we provide an overview of the regulatory mechanisms of Ror1/Ror2 expression and discuss how Wnt5a-Ror1/Ror2 signaling is mediated and regulated by their interacting proteins.


Subject(s)
Receptor Tyrosine Kinase-like Orphan Receptors , Wnt-5a Protein , Humans , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Animals , Wnt Signaling Pathway , Signal Transduction , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology
17.
Cell Mol Gastroenterol Hepatol ; 18(2): 101347, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38670488

ABSTRACT

BACKGROUND & AIM: Telocytes, a recently identified type of subepithelial interstitial cell, have garnered attention for their potential roles in tissue homeostasis and repair. However, their contribution to gastric metaplasia remains unexplored. This study elucidates the role of telocytes in the development of metaplasia within the gastric environment. METHODS: To investigate the presence and behavior of telocytes during metaplastic transitions, we used drug-induced acute injury models (using DMP-777 or L635) and a genetically engineered mouse model (Mist1-Kras). Lineage tracing via the Foxl1-CreERT2;R26R-tdTomato mouse model was used to track telocyte migratory dynamics. Immunofluorescence staining was used to identify telocyte markers and evaluate their correlation with metaplasia-related changes. RESULTS: We confirmed the existence of FOXL1+/PDGFRα+ double-positive telocytes in the stomach's isthmus region. As metaplasia developed, we observed a marked increase in the telocyte population. The distribution of telocytes expanded beyond the isthmus to encompass the entire gland and closely reflected the expansion of the proliferative cell zone. Rather than a general response to mucosal damage, the shift in telocyte distribution was associated with the establishment of a metaplastic cell niche at the gland base. Furthermore, lineage-tracing experiments highlighted the active recruitment of telocytes to the emerging metaplastic cell niche, and we observed expression of Wnt5a, Bmp4, and Bmp7 in PDGFRα+ telocytes. CONCLUSIONS: These results suggest that telocytes contribute to the evolution of a gastric metaplasia niche. The dynamic behavior of these stromal cells, their responsiveness to metaplastic changes, and potential association with Wnt5a, Bmp4, and Bmp7 signaling emphasize the significance of telocytes in tissue adaptation and repair.

18.
Dev Cell ; 59(10): 1302-1316.e5, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38569553

ABSTRACT

The planar cell polarity (PCP) complex is speculated to function in murine lung development, where branching morphogenesis generates an epithelial tree whose distal tips expand dramatically during sacculation. Here, we show that PCP is dispensable in the airway epithelium for sacculation. Rather, we find a Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme: loss of Vangl1/2 inhibits mesenchymal thinning and expansion of the saccular epithelium. Further, loss of mesenchymal Wnt5a mimics sacculation defects observed in Vangl2-mutant lungs, implicating mesenchymal Wnt5a/Vangl signaling as a key regulator of late lung morphogenesis. A computational model predicts that sacculation requires a fluid mesenchymal compartment. Lineage-tracing and cell-shape analyses are consistent with the mesenchyme acting as a fluid tissue, suggesting that loss of Vangl1/2 impacts the ability of mesenchymal cells to exchange neighbors. Our data thus identify an explicit function for Vangl and the pulmonary mesenchyme in actively shaping the saccular epithelium.


Subject(s)
Cell Polarity , Lung , Mesoderm , Morphogenesis , Nerve Tissue Proteins , Animals , Mesoderm/metabolism , Mice , Lung/metabolism , Lung/pathology , Lung/embryology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Signal Transduction , Organogenesis/genetics , Receptors, G-Protein-Coupled
19.
BMC Infect Dis ; 24(1): 335, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509522

ABSTRACT

BACKGROUND: Lung endothelial barrier injury plays an important role in the pathophysiology of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Mesenchymal stem cells (MSCs) therapy has shown promise in ARDS treatment and restoration of the impaired barrier function. It has been reported that Wnt5a shows protective effects on endothelial cells. Therefore, the study aimed to investigate whether overexpression of Wnt5a could promote the protective effects of MSCs on Lipopolysaccharide (LPS)-induced endothelial cell injury. METHODS: To evaluate the protective effects of MSCs overexpressing Wnt5a, we assessed the migration, proliferation, apoptosis, and angiogenic ability of endothelial cells. We assessed the transcription of protective cellular factors using qPCR and determined the molecular mechanism using Western blot analysis. RESULTS: Overexpression of Wnt5a upregulated the transcription of protective cellular factors in MSCs. Co-culture of MSCWnt5a promoted endothelial migration, proliferation and angiogenesis, and inhibited endothelial cell apoptosis through the PI3K/AKT pathway. CONCLUSIONS: Overexpression of Wnt5a promoted the therapeutic effect of MSCs on endothelial cell injury through the PI3K/AKT signaling. Our study provides a novel approach for utilizing genetically modified MSCs in the transplantation therapy for ARDS.


Subject(s)
Mesenchymal Stem Cells , Respiratory Distress Syndrome , Humans , Lipopolysaccharides/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Endothelial Cells , Signal Transduction , Mesenchymal Stem Cells/metabolism , Respiratory Distress Syndrome/therapy
20.
Biochem Biophys Res Commun ; 704: 149723, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38430698

ABSTRACT

Subclinical hyperthyroidism is defined biochemically as a low or undetectable thyroid-stimulating hormone (TSH) with normal thyroid hormone levels. Low TSHR signaling is considered to associate with cognitive impairment. However, the underlying molecular mechanism by which TSHR signaling modulates memory is poorly understood. In this study, we found that Tshr-deficient in the hippocampal neurons impairs the learning and memory abilities of mice, accompanying by a decline in the number of newborn neurons. Notably, Tshr ablation in the hippocampus decreases the expression of Wnt5a, thereby inactivating the ß-catenin signaling pathway to reduce the neurogenesis. Conversely, activating of the Wnt/ß-catenin pathway by the agonist SKL2001 results in an increase in hippocampal neurogenesis, resulting in the amelioration in the deficits of memory caused by Tshr deletion. Understanding how TSHR signaling in the hippocampus regulates memory provides insights into subclinical hyperthyroidism affecting cognitive function and will suggest ways to rationally design interventions for neurocognitive disorders.


Subject(s)
Hyperthyroidism , beta Catenin , Mice , Animals , beta Catenin/metabolism , Receptors, Thyrotropin/genetics , Receptors, Thyrotropin/metabolism , Wnt Signaling Pathway/physiology , Receptors, G-Protein-Coupled/metabolism , Hippocampus/metabolism , Neurogenesis/physiology , Hyperthyroidism/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...