Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38998271

ABSTRACT

This study investigates the effectiveness of combined thermal and athermal stimuli in mitigating the extremely high-density nature of dislocation networks in the form of low-angle grain boundaries in FeCrAl alloy. Electron wind force, generated from very low duty cycle and high current density pulses, was used as the athermal stimulus. The electron wind force stimulus alone was unable to remove the residual stress (80% low-angle grain boundaries) due to cold rolling to 25% thickness reduction. When the duty cycle was increased to allow average temperature of 100 °C, the specimen could be effectively annealed in 1 min at a current density of 3300 A/mm2. In comparison, conventional thermal annealing requires at least 750 °C and 1.5 h. For specimens with 50% thickness reduction (85% low-angle grain boundaries), the electron wind force was again unable to anneal the defects even at 3300 A/mm2 current density and average temperature of 100 °C. Intriguingly, allowing average concurrent temperature of 200 °C eliminated almost all the low-angle grain boundaries at a current density of 700 A/mm2, even lower than that required for the 25% thickness reduced specimens. Comprehensive electron and X-ray diffraction evidence show that alloys with extremely high defect density can be effectively annealed in less than a minute at approximately 200 °C, offering a substantial improvement over conventional high-temperature annealing.

2.
Beilstein J Nanotechnol ; 15: 490-499, 2024.
Article in English | MEDLINE | ID: mdl-38711580

ABSTRACT

Aeromaterials represent a class of increasingly attractive materials for various applications. Among them, aero-ZnS has been produced by hydride vapor phase epitaxy on sacrificial ZnO templates consisting of networks of microtetrapods and has been proposed for microfluidic applications. In this paper, a cost-effective technological approach is proposed for the fabrication of aero-ZnS by using physical vapor transport with Sn2S3 crystals and networks of ZnO microtetrapods as precursors. The morphology of the produced material is investigated by scanning electron microscopy (SEM), while its crystalline and optical qualities are assessed by X-ray diffraction (XRD) analysis and photoluminescence (PL) spectroscopy, respectively. We demonstrate possibilities for controlling the composition and the crystallographic phase content of the prepared aerogels by the duration of the technological procedure. A scheme of deep energy levels and electronic transitions in the ZnS skeleton of the aeromaterial was deduced from the PL analysis, suggesting that the produced aerogel is a potential candidate for photocatalytic and sensor applications.

3.
Environ Sci Pollut Res Int ; 31(17): 25991-26005, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492138

ABSTRACT

The use of geopolymers (GP) in cementitious composites provides a solution to reduce the significant carbon emissions associated with conventional cement production, thereby advancing environmentally friendly concrete construction practices. The promise of hybrid fiber-reinforced fly ash (FA)-based GP (HFGP) composites that combine microfibers and nanoparticles has not yet been fully comprehended. This research aims to enhance the mechanical and microstructural properties of HFGP blends by varying the proportion of nano calcium carbonate ( n - C a C O 3 ). The production of HFGP involved the use of two types of fibers: 1% carbon fibers and 0.5% basalt fibers. To achieve HFGP blends with a consistent fiber ratio, we incorporated four different levels of n - C a C O 3 , comprising 1%, 2%, 3%, and 4% of the mixture. The analysis of fractured samples encompassed microstructural and mineralogical characterization, which was conducted using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis. The results unveiled that the HFGP blend containing 3% n - C a C O 3 exhibited the highest levels of hardness, compressive strength, toughness modulus, and flexural strength while the use of 2% n - C a C O 3 produced the highest results for fracture toughness and impact strength. SEM analysis illustrated that n - C a C O 3 had a significant positive impact on the microstructure of GP. A considerable rise in hump intensity between 20 and 40 °C ( 2 θ ) was also seen in the XRD examination, indicating that calcium silicate hydrate (CSH) had formed after the primary binder, such as sodium aluminosilicate hydrate (NASH), had been present. The stretching of O-H bonds in water molecules was also seen in the HFGP spectra at 3399, 3436, 3436, and 3438 cm-1. Due to the higher water content in the HFGP network, which may influence the material's strength, these bands were more apparent and larger in specimens with additions of nanoparticles and hybrid fibers.


Subject(s)
Nanocomposites , Materials Testing , Hardness , Compressive Strength , Nanocomposites/chemistry , Water
4.
Microsc Microanal ; 30(2): 236-252, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38447180

ABSTRACT

Modern analytical tools, from microfocus X-ray diffraction (XRD) to electron microscopy-based microtexture measurements, offer exciting possibilities of diffraction-based multiscale residual strain measurements. The different techniques differ in scale and resolution, but may also yield significantly different strain values. This study, for example, clearly established that high-resolution electron backscattered diffraction (HR-EBSD) and high-resolution transmission Kikuchi diffraction (HR-TKD) [sensitive to changes in interplanar angle (Δθθ)], provide quantitatively higher residual strains than micro-Laue XRD and transmission electron microscope (TEM) based precession electron diffraction (PED) [sensitive to changes in interplanar spacing (Δdd)]. Even after correcting key known factors affecting the accuracy of HR-EBSD strain measurements, a scaling factor of ∼1.57 (between HR-EBSD and micro-Laue) emerged. We have then conducted "virtual" experiments by systematically deforming an ideal lattice by either changing an interplanar angle (α) or a lattice parameter (a). The patterns were kinematically and dynamically simulated, and corresponding strains were measured by HR-EBSD. These strains showed consistently higher values for lattice(s) distorted by α, than those altered by a. The differences in strain measurements were further emphasized by mapping identical location with HR-TKD and TEM-PED. These measurements exhibited different spatial resolution, but when scaled (with ∼1.57) provided similar lattice distortions numerically.

5.
Small ; 20(13): e2307236, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37974471

ABSTRACT

Bimetallic metal-organic frameworks (MOFs) are promising nanomaterials whose reactivity towards biomolecules remains challenging due to issues related to synthesis, stability, control over metal oxidation state, phase purity, and atomic level characterization. Here, these shortcomings are rationally addressed through development of a synthesis of mixed metal Zr/Ce-MOFs in aqueous environment, overcoming significant hurdles in the development of MOF nanozymes, sufficiently stable on biologically relevant conditions. Specifically, a green and safe synthesis of Zr/Ce-MOF-808 is reported in water/acetic acid mixture which affords remarkably water-stable materials with reliable nanozymatic reactivity, including MOFs with a high Ce content previously reported to be unstable in water. The new materials outperform analogous bimetallic MOF nanozymes, showcasing that rational synthesis modifications could impart outstanding improvements. Further, atomic-level characterization by X-ray Absorption Fine Structure (XAFS) and X-ray Diffraction (XRD) confirmed superior nanozymes arise from differences in the synthetic method, which results in aqueous stable materials, and Ce incorporation, which perturbs the ligand exchange dynamics of the material, and could ultimately be used to fine tune the intrinsic MOF reactivity. Similar rational strategies which leverage metals in a synergistic manner should enable other water-stable bimetallic MOF nanozymes able to surpass existing ones, laying the path for varied biotechnological applications.


Subject(s)
Metal-Organic Frameworks , Nanostructures , Acetic Acid , Biotechnology , Water
6.
Biomimetics (Basel) ; 8(6)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37887581

ABSTRACT

This work aimed to compare the effect of four new toothpastes (P1-P4) based on pure and biomimetic substituted nano-hydroxyapatites (HAPs) on remineralization of human enamel. Artificially demineralized enamel slices were daily treated for ten days with different toothpastes according to the experimental design. Tooth enamel surfaces were investigated using atomic force microscope (AFM) images and surface roughness (Ra) determined before and after treatment. The surface roughness of enamel slices was statistically analyzed by one-way ANOVA and Bonferroni's multiple comparison test. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) data revealed the HAP structure with crystal sizes between 28 and 33 nm and crystallinity between 29 and 37%. The average size of HAP particles was found to be between 30 and 40 nm. The Ra values indicated that P3 (HAP-Mg-Zn-Sr-Si) toothpaste was the most effective after 10 days of treatment, leading to the lowest mean roughness. The P3 and P2 (HAP) toothpastes were found to be effective in promoting remineralization. Specifically, their effectiveness can be ranked as follows: P3 = P2 > P4 (HAP-Mg-Zn-Si) > P1 (HAP-Zn), considering both the chemical composition and the size of their constitutive nanoparticles. The proposed toothpastes might be used successfully to treat early tooth decay.

7.
Plants (Basel) ; 12(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37631226

ABSTRACT

The main aim of this study is to find relevant analytic fingerprints for plants' structural characterization using spectroscopic techniques and thermogravimetric analyses (TGAs) as alternative methods, particularized on cabbage treated with selenium-baker's yeast vinasse formulation (Se-VF) included in a foliar fertilizer formula. The hypothesis investigated is that Se-VF will induce significant structural changes compared with the control, analytically confirming the biofortification of selenium-enriched cabbage as a nutritive vegetable, and particularly the plant biostimulant effects of the applied Se-VF formulation on cabbage grown in the field. The TGA evidenced a structural transformation of the molecular building blocks in the treated cabbage leaves. The ash residues increased after treatment, suggesting increased mineral accumulation in leaves. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) evidenced a pectin-Iα-cellulose structure of cabbage that correlated with each other in terms of leaf crystallinity. FTIR analysis suggested the accumulation of unesterified pectin and possibly (seleno) glucosinolates and an increased network of hydrogen bonds. The treatment with Se-VF formulation induced a significant increase in the soluble fibers of the inner leaves, accompanied by a decrease in the insoluble fibers. The ratio of soluble/insoluble fibers correlated with the crystallinity determined by XRD and with the FTIR data. The employed analytic techniques can find practical applications as fast methods in studies of the effects of new agrotechnical practices, while in our particular case study, they revealed effects specific to plant biostimulants of the Se-VF formulation treatment: enhanced mineral utilization and improved quality traits.

8.
Environ Geochem Health ; 45(8): 6471-6493, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37326777

ABSTRACT

The geochemistry of fly ash produced from the combustion of coal at thermal power plants presents a significant challenge for disposal and environmental impact due to its complex mineralogical and elemental composition. The objective of this study was to investigate the mineralogical and elemental distribution of thirty lignite samples from the Barmer Basin using advanced techniques such as X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF) and inductively coupled plasma mass spectrometry (ICP-MS). XRD analysis revealed the presence of minerals such as haematite (Fe2O3), nepheline, anhydrite, magnesite, andalusite, spinel and anatase. Other minor minerals included albite, siderite, periclase, calcite, mayenite, hauyne, pyrite, cristobalite, quartz, nosean and kaolinite. XRF analysis demonstrated that the most abundant elements in the Barmer Basin lignite ash were iron oxide (Fe2O3), sulphur oxide (SO3), calcium oxide (CaO), and quartz (SiO2) followed by minor traces of toxic oxides (SrO, V2O5, NiO, Cr2O3, Co2O3, CuO) that are known to have adverse effects on human health and the environment. The rare earth element (REE) composition showed higher concentrations of Tb, Dy, Ho, Er, Tm, Yb, Lu, Y and Sc at the Giral and lower concentrations at Sonari mine. The Barmer lignites recorded higher concentration of trace elements such as V, Cr, Co, Ni, Cu and Sr while lower concentration of Rb, Cs, Ba, Pb, As, Th and U were observed within optimal range. The study findings revealed the predominant mineral concentration, elemental makeup, trace elements and rare earth elements associated with lignite reserves in the Barmer Basin.


Subject(s)
Metals, Rare Earth , Trace Elements , Humans , Trace Elements/analysis , Coal/analysis , Silicon Dioxide/analysis , Quartz/analysis , India , Minerals/analysis , Metals, Rare Earth/analysis
9.
Small ; 19(38): e2301770, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37222115

ABSTRACT

Aqueous zinc batteries (ZIBs) have attracted considerable attention in recent years because of their high safety and eco-friendly features. Numerous studies have shown that adding Mn2+ salts to ZnSO4 electrolytes enhanced overall energy densities and extended the cycling life of Zn/MnO2 batteries. It is commonly believed that Mn2+ additives in the electrolyte inhibit the dissolution of MnO2 cathode. To better understand the role of Mn2+ electrolyte additives, the ZIB using a Co3 O4 cathode instead of MnO2 in 0.3 m MnSO4 + 3 m ZnSO4 electrolyte is built to avoid interference from MnO2 cathode. As expected, the Zn/Co3 O4 battery exhibits electrochemical characteristics nearly identical to those of Zn/MnO2 batteries. Operando synchrotron X-ray diffraction (XRD), ex situ X-ray absorption spectroscopy (XAS), and electrochemical analyses are carried out to determine the reaction mechanism and pathway. This work demonstrates that the electrochemical reaction occurring at cathode involves a reversible Mn2+ /MnO2 deposition/dissolution process, while a chemical reaction of Zn2+ /Zn4 SO4 (OH)6 ∙5H2 O deposition/dissolution is involved during part of the charge/discharge cycle due to the change in the electrolyte environment. The reversible Zn2+ /Zn4 SO4 (OH)6 ∙5H2 O reaction contributes no capacity and lowers the diffusion kinetics of the Mn2+ /MnO2 reaction, which prevents the operation of ZIBs at high current densities.

10.
Small ; 19(28): e2301731, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37173815

ABSTRACT

The commercialization of high-energy Li-metal batteries is impeded by Li dendrites formed during electrochemical cycling and the safety hazards it causes. Here, a novel porous copper current collector that can effectively mitigate the dendritic growth of Li is reported. This porous Cu foil is fabricated via a simple two-step electrochemical process, where Cu-Zn alloy is electrodeposited on commercial copper foil and then Zn is electrochemically dissolved to form a 3D porous structure of Cu. The 3D porous Cu layers on average have a thickness of ≈14 um and porosity of ≈72%. This current collector can effectively suppress Li dendrites in cells cycled with a high areal capacity of 10 mAh cm-2 and under a high current density of 10 mA cm-2 . This electrochemical fabrication method is facile and scalable for mass production. Results of advanced in situ synchrotron X-ray diffraction reveal the phase evolution of the electrochemical deposition and dealloying processes.

11.
Int J Mol Sci ; 24(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37047764

ABSTRACT

The postmortem interval (PMI) is difficult to estimate in later stages of decomposition. There is therefore a need to develop reliable methodologies to estimate late PMI. This study aims to assess whether there is a correlation between changes in the mineral composition of human teeth and the estimation of PMI. X-ray diffraction (XRD) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy techniques were performed to address this challenge. Forty healthy human teeth obtained from odontological clinics were stored at different times (0, 10, 25, 50 years; N = 10/group). XRD and ATR-FTIR parameters related to the structure and composition of teeth were studied. Our results showed that the crystallinity index, crystal size index, mineral-to-organic matrix ratio (M/M) and carbonate/phosphate ratio (C/P) had the strongest association with PMI. For larger PMIs, there was a significant increase in crystallinity, crystal size and M/M ratio, while the C/P ratio showed a specific decrease with increasing PMI. According to our results, the parameters of crystallinity, crystal size, M/M ratio and C/P ratio can be considered highly accurate in determining a PMI of 10 years of data; crystallinity and mineral maturity can be considered useful in determining a PMI of 25 years; and crystallinity and mineral maturity can be considered highly accurate in determining a PMI of 50 years. A particular XRD index was identified as the most suitable parameter to estimate PMI: crystallinity. The joint use of XRD and ATR-FTIR analyses could be a promising alternative for dating human teeth.


Subject(s)
Postmortem Changes , Humans , Fourier Analysis , X-Ray Diffraction , Autopsy , Spectroscopy, Fourier Transform Infrared/methods
12.
Chemosphere ; 334: 138638, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37100254

ABSTRACT

The synthesis of metal nanoparticles using green chemistry methods has gained significant attention in the field of landscape enhancement. Researchers have paid close attention to the development of very effective green chemistry approaches for the production of metal nanoparticles (NPs). The primary goal is to create an environmentally sustainable technique for generating NPs. At the nanoscale, ferro- and ferrimagnetic minerals such as magnetite exhibit superparamagnetic properties (Fe3O4). Magnetic nanoparticles (NPs) have received increased interest in nanoscience and nanotechnology due to their physiochemical properties, small particle size (1-100 nm), and low toxicity. Biological resources such as bacteria, algae, fungus, and plants have been used to manufacture affordable, energy-efficient, non-toxic, and ecologically acceptable metallic NPs. Despite the growing demand for Fe3O4 nanoparticles in a variety of applications, typical chemical production processes can produce hazardous byproducts and trash, resulting in significant environmental implications. The purpose of this study is to look at the ability of Allium sativum, a member of the Alliaceae family recognized for its culinary and medicinal benefits, to synthesize Fe3O4 NPs. Extracts of Allium sativum seeds and cloves include reducing sugars like glucose, which may be used as decreasing factors in the production of Fe3O4 NPs to reduce the requirement for hazardous chemicals and increase sustainability. The analytic procedures were carried out utilizing machine learning as support vector regression (SVR). Furthermore, because Allium sativum is widely accessible and biocompatible, it is a safe and cost-effective material for the manufacture of Fe3O4 NPs. Using the regression indices metrics of root mean square error (RMSE) and coefficient of determination (R2), the X-ray diffraction (XRD) study revealed the lighter, smoother spherical forms of NPs in the presence of aqueous garlic extract and 70.223 nm in its absence. The antifungal activity of Fe3O4 NPs against Candida albicans was investigated using a disc diffusion technique but exhibited no impact at doses of 200, 400, and 600 ppm. This characterization of the nanoparticles helps in understanding their physical properties and provides insights into their potential applications in landscape enhancement.


Subject(s)
Garlic , Metal Nanoparticles , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Ferrosoferric Oxide , Antioxidants/chemistry , Antifungal Agents , Green Chemistry Technology/methods , Plant Extracts/chemistry
13.
Chemosphere ; 325: 138414, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36925012

ABSTRACT

Soil biogeochemistry is intrinsically coupled to the redox cycling of iron and manganese. Oxidized manganese forms various (hydr)oxides that may reductively transform and dissolve, thereby serving as electron acceptors for microbial metabolisms. Furthermore, manganese oxides might reduce purely abiotically by oxidation of dissolved Mn2+ in a specific route of transformation from birnessite (MnIVO2) into metastable feitknechtite (ß-MnIIIOOH) and stable manganite (γ-MnIIIOOH). In natural soil solutions, however, dissolved Mn2+ is not abundant and organic substances such as low-molecular-weight organic acids (LMWOA) may be oxidized and serve as an electron donor for manganese oxide reduction instead. We investigated whether LMWOA would impact the transformation of birnessite at a temperature of 290 ± 2 K under ambient pressure for up to 1200 d. We found that birnessite was reductively transformed into feitknechtite, which subsequently alters into the more stable manganite without releasing Mn2+ into the solution. Instead, LMWOA served as electron donors and were oxidized from lactate into pyruvate, acetate, oxalate, and finally, inorganic carbon. We conclude that the reductive transformation of short-range ordered minerals like birnessite by the abiotic oxidation of LMWOA is a critical process controlling the abundance of LMWOA in natural systems besides their microbial consumption. Our results further suggest that the reduction of MnIV oxides not necessarily results in their dissolution at neutral and alkaline pH but also forms more stable MnIII oxyhydroxides with less oxidative degradation potential for organic contaminants.


Subject(s)
Manganese , Oxides , Manganese/chemistry , Oxides/chemistry , Manganese Compounds/chemistry , Oxidation-Reduction , Soil , Organic Chemicals
14.
Small ; 19(25): e2300759, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36919820

ABSTRACT

SiOx anode has a more durable cycle life than Si, being considered competitive to replace the conventional graphite. SiOx usually serves as composites with carbon to achieve more extended cycle life. However, the carbon microstructure dependent Li-ion storage behaviors in SiOx /C anode have received insufficient attention. Herein, this work demonstrates that the disorder of carbon can determine the ratio of inter- and intragranular Li-ion diffusions. The resulted variation of platform characteristics will result in different compatibility when matching SiOx . Rational disorder induced intergranular diffusion can benefit phase transition of SiOx /C, benefiting the electrochemical performance. Through a series of quantitative calculations and in situ X-ray diffraction characterizations, this work proposes the rational strategy for the future optimization, thus achieving preferable performance of SiOx /C anode.

15.
Materials (Basel) ; 16(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36984370

ABSTRACT

Cobalt Iron Yttrium (CoFeY) magnetic film was made using the sputtering technique in order to investigate the connection between the thickness and annealing procedures. The sample was amorphous as a result of an insufficient thermal driving force according to X-ray diffraction (XRD) examination. The maximum low-frequency alternate-current magnetic susceptibility (χac) values were raised in correlation with the increased thickness and annealing temperatures because the thickness effect and Y addition improved the spin exchange coupling. The best value for a 50 nm film at annealing 300 °C for χac was 0.20. Because electron carriers are less constrained in their conduction at thick film thickness and higher annealing temperatures, the electric resistivity and sheet resistance are lower. At a thickness of 40 nm, the film's maximum surface energy during annealing at 300 °C was 28.7 mJ/mm2. This study demonstrated the passage of photon signals through the film due to the thickness effect, which reduced transmittance. The best condition was found to be 50 nm with annealing at 300 °C in this investigation due to high χac, strong adhesion, and low resistivity, which can be used in magnetic fields.

16.
Int Orthod ; 21(1): 100711, 2023 03.
Article in English | MEDLINE | ID: mdl-36463787

ABSTRACT

BACKGROUND: Overcoming the failure percentage of orthodontic mini-screws (OMSs), which is about 30% of overall orthodontic cases, especially in malocclusion treatment that requires orthopaedic heavy forces, is a great challenge. Bacterial infections, soft tissue and bone inflammation, and weak connections between bones and the OMS surface are among the main causalities of this failure. OBJECTIVE: The aim of the study is to evaluate in vitro the microbiological activities of the deposited nanomaterials (Silver/hydroxyapatite nanoparticles (Ag/HA NPs) and zinc oxide nanoparticles (ZnO NPs)) in terms of microbial inhibition. In addition, the in-vitro cytotoxicity and cytocompatibility of the synthesized nano-coatings prior to their in-vivo application in animal models were tested on four types of cells, namely, fibroblasts, osteocytes, osteoblasts, and oral epithelial cells. MATERIALS AND METHODS: Ag/HA NPs and ZnO NPs were built up onto the surface of titanium OMSs by electrochemical deposition. This electrochemical deposition was performed on 50 orthodontic mini screws and the deposited materials were characterized with the aid of scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) analysis, X-ray Diffraction (XRD) and nano-scratch test. In addition, the microbiological activities of the deposited nanomaterials were explored in vitro in terms of microbial inhibition. Furthermore, the cytotoxicity and cytocompatibility were tested on four types of cells, namely, fibroblasts, osteocytes, osteoblasts and oral epithelial cells. RESULTS: SEM images revealed spherical Ag NPs in the range of 40-70nm in diameter, rod-shaped HA NPs and porous scaly ZnO NPs on the surface of the OMSs. XRD analysis confirmed the crystal structures of AgNPs, HA NPs, and ZnO NPs. ZnO NPs coated OMS had the highest antimicrobial activity than Ag/HA coated OMS against Gram-positive, Gram-negative and fungal strains. Moreover, after incubation, the decrease in the number of bacterial colonies was significant with ZnO and Ag/HA nanoparticles (with the greatest decrease for the former), due to the potent antibacterial effect of nanoparticles against Escherichia coli and Enterococcus faecalis. Moreover, ZnO NPs-coated OMSs showed a better cytocompatibility with oral epithelium, bone cells, and fibroblasts compared to Ag/HA NPs. CONCLUSION: The suggested nanocoating is a promising strategy to overcome the development of an inflammatory zone around the fixed OMSs.


Subject(s)
Zinc Oxide , Animals , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Silver/pharmacology , Silver/chemistry , Titanium , Durapatite/pharmacology , Inflammation
17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-973758

ABSTRACT

ObjectiveTo analyze the polarized light microscopic characteristics, the composition of physical phases and their relative contents of Maifanitum from different origins, and to establish the Fourier characteristic fingerprint of Maifanitum powder crystals by X-ray diffraction(XRD). MethodA total of 26 batches of Maifanitum samples were selected, and the microscopic characteristics of the sample powders and grinding flakes were observed by polarized light microscopy under single polarized light and orthogonal polarized light, and the main phase compositions and their relative contents were analyzed by powder crystal XRD technique, and the XRD Fourier characteristic fingerprint of Maifanitum was established. The incident light source of XRD was Cu target Kβ radiation, the light tube voltage and light tube current were 40 kV and 40 mA, respectively, the divergence slit was 1°, the scattering slit was 1°, the receiving slit was 0.2 mm, the scanning speed was 5°·min-1 with continuous scanning and scanning range of 5-90°(2θ), and the step length was 0.02°. ResultThe polarized light micrographs of powders and grinding flakes of Maifanitum were obtained, and the main phases were plagioclase, potassium feldspar and quartz, and a few samples also contained illite, pyrite, iron dolomite, calcite, iron amphibole and chlorite, etc. The relative total content of feldspar phases was 61.9%-82.4%, and the relative content of quartz was 12.6%-33.6%. The XRD Fourier fingerprint analysis method of Maifanitum with 13 common peaks as the characteristic fingerprint information was established, and the similarity calculated by the mean correlation coefficient method was 0.920 9-0.997 7, the similarity calculated by the mean angle cosine method was 0.940 5-0.998 4, the similarity calculated by the median correlation coefficient method was 0.921 1-0.997 5, and the similarity calculated by the median angle cosine method was 0.947 5-0.998 2. ConclusionThe polarized light microscopic identification characteristics of Maifanitum are mainly plagioclase, quartz and potassium feldspar, and the technique of powder crystal XRD Fourier fingerprint analysis can be used for the identification of Maifanitum.

18.
Materials (Basel) ; 15(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36500008

ABSTRACT

The aim of this work is to investigate the effect of annealing and thickness on various physical properties in Co40Fe40Yb20 thin films. X-ray diffraction (XRD) was used to determine the amorphous structure of Co40Fe40Yb20 films. The maximum surface energy of 40 nm thin films at 300 °C is 34.54 mJ/mm2. The transmittance and resistivity decreased significantly as annealing temperatures and thickness increased. At all conditions, the 10 nm film had the highest hardness. The average hardness decreased as thickness increased, as predicted by the Hall-Petch effect. The highest low-frequency alternative-current magnetic susceptibility (χac) value was discovered when the film was annealed at 200 °C with 50 nm, and the optimal resonance frequency (ƒres) was in the low frequency range, indicating that the film has good applicability in the low frequency range. At annealed 200 °C and 50 nm, the maximum saturation magnetization (Ms) was discovered. Thermal disturbance caused the Ms to decrease when the temperature was raised to 300 °C. The optimum process conditions determined in this study are 200 °C and 50 nm, with the highest Ms, χac, strong adhesion, and low resistivity, which are suitable for magnetic applications, based on magnetic properties and surface energy.

19.
Materials (Basel) ; 15(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36500173

ABSTRACT

A typical body-centered cubic (BCC) CoFe(110) peak was discovered at approximately 2θ = 44.7°. At 2θ = 46°, 46.3°, 47.7°, 55.4°, 54.6°, and 56.4°, the Yb2O3 and Co2O3 oxide peaks were visible in all samples. However, with a heat treatment temperature of 300 °C, there was no typical peak of CoFe(110). Electrical characteristics demonstrated that resistivity and sheet resistance reduced dramatically as film thickness and annealing temperatures increased. At various heat treatments, the maximum hardness was 10 nm. The average hardness decreased as the thickness increased, and the hardness trend decreased slightly as the annealing temperature was higher. The highest low-frequency alternative-current magnetic susceptibility (χac) value was discovered after being annealed at 200 °C with 50 nm, and the optimal resonance frequency (fres) was discovered to be within the low-frequency range, indicating that the Co40Fe40Yb20 film can be used in low-frequency applications. The maximum saturation magnetization (Ms) was annealed at 200 °C for 50 nm. Thermal disturbance caused the Ms to decrease as the temperature reached to 300 °C. The results show that when the oxidation influence of as-deposited and thinner films is stronger than annealing treatments and thicker thickness, the magnetic and electrical properties can be enhanced by the weakening peak of the oxide, which can also reduce interference.

20.
Front Plant Sci ; 13: 1041924, 2022.
Article in English | MEDLINE | ID: mdl-36570952

ABSTRACT

Sugarcane bagasse is commonly combusted to generate energy. Unfortunately, recycling strategies rarely consider the resulting ash as a potential fertilizer. To evaluate this recycling strategy for a sustainable circular economy, we characterized bagasse ash as a fertilizer and measured the effects of co-gasification and co-combustion of bagasse with either chicken manure or sewage sludge: on the phosphorus (P) mass fraction, P-extractability, and mineral P phases. Furthermore, we investigated the ashes as fertilizer for soybeans under greenhouse conditions. All methods in combination are reliable indicators helping to assess and predict P availability from ashes to soybeans. The fertilizer efficiency of pure bagasse ash increased with the ash amount supplied to the substrate. Nevertheless, it was not as effective as fertilization with triple-superphosphate and K2SO4, which we attributed to lower P availability. Co-gasification and co-combustion increased the P mass fraction in all bagasse-based ashes, but its extractability and availability to soybeans increased only when co-processed with chicken manure, because it enabled the formation of readily available Ca-alkali phosphates. Therefore, we recommend co-combusting biomass with alkali-rich residues to increase the availability of P from the ash to plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...