Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
1.
Molecules ; 29(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39203026

ABSTRACT

Binary AsxSe100-x alloys from the border of a glass-forming region (65 < x < 70) subjected to nanomilling in dry and dry-wet modes are characterized by the XRPD, micro-Raman scattering (micro-RS) and revised positron annihilation lifetime (PAL) methods complemented by a disproportionality analysis using the quantum-chemical cluster modeling approach. These alloys are examined with respect to tetra-arsenic biselenide As4Se2 stoichiometry, realized in glassy g-As65Se35, glassy-crystalline g/c-As67Se33 and glassy-crystalline g/c-As70Se30. From the XRPD results, the number of rhombohedral As and cubic arsenolite As2O3 phases in As-Se alloys increases after nanomilling, especially in the wet mode realized in a PVP water solution. Nanomilling-driven amorphization and reamorphization transformations in these alloys are identified by an analysis of diffuse peak halos in their XRPD patterning, showing the interplay between the levels of a medium-range structure (disruption of the intermediate-range ordering at the cost of an extended-range one). From the micro-RS spectroscopy results, these alloys are stabilized by molecular thioarsenides As4Sen (n = 3, 4), regardless of their phase composition, remnants of thioarsenide molecules destructed under nanomilling being reincorporated into a glass network undergoing a polyamorphic transition. From the PAL spectroscopy results, volumetric changes in the wet-milled alloys with respect to the dry-milled ones are identified as resulting from a direct conversion of the bound positron-electron (Ps, positronium) states in the positron traps. Ps-hosting holes in the PVP medium appear instead of positron traps, with ~0.36-0.38 ns lifetimes ascribed to multivacancies in the As-Se matrix. The superposition of PAL spectrum peaks and tails for pelletized PVP, unmilled, dry-milled, and dry-wet-milled As-Se samples shows a spectacular smoothly decaying trend. The microstructure scenarios of the spontaneous (under quenching) and activated (under nanomilling) decomposition of principal network clusters in As4Se2-bearing arsenoselenides are recognized. Over-constrained As6·(2/3) ring-like network clusters acting as pre-cursors of the rhombohedral As phase are the main products of this decomposition. Two spontaneous processes for creating thioarsenides with crystalline counterparts explain the location of the glass-forming border in an As-Se system near the As4Se2 composition, while an activated decomposition process for creating layered As2Se3 structures is responsible for the nanomilling-driven molecular-to-network transition.

2.
Mol Pharm ; 21(9): 4524-4540, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39109552

ABSTRACT

Molecular interactions between active pharmaceutical ingredients (APIs) and xanthine (XAT) derivatives were analyzed using singular value decomposition (SVD). XAT derivatives were mixed with equimolar amounts of ibuprofen (IBP) and diclofenac (DCF), and their dissolution behaviors were measured using high-performance liquid chromatography. The solubility of IBP decreased in mixtures with caffeine (CFN) and theophylline (TPH), whereas that of DCF increased in mixtures with CFN and TPH. No significant differences were observed between the mixtures of theobromine (TBR) or XAT with IBP and DCF. Mixtures with various molar ratios were analyzed using differential scanning calorimetry, X-ray powder diffraction, and Fourier-transform infrared spectroscopy to further explore these interactions. The results were subjected to SVD. This analysis provides valuable insights into the differences in interaction strength and predicted interaction sites between XAT derivatives and APIs based on the combinations that form mixtures. The results also showed the impact of the XAT derivatives on the dissolution behavior of IBP and DCF. Although IBP and DCF were found to form intermolecular interactions with CFN and TPH, these effects resulted in a reduction of the solubility of IBP and an increase in the solubility of DCF. The current approach has the potential to predict various interactions that may occur in different combinations, thereby contributing to a better understanding of the impact of health supplements on pharmaceuticals.


Subject(s)
Caffeine , Calorimetry, Differential Scanning , Ibuprofen , Powders , Solubility , X-Ray Diffraction , Caffeine/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Ibuprofen/chemistry , Calorimetry, Differential Scanning/methods , Powders/chemistry , X-Ray Diffraction/methods , Theophylline/chemistry , Chromatography, High Pressure Liquid/methods , Theobromine/chemistry , Diclofenac/chemistry , Xanthine/chemistry
3.
Materials (Basel) ; 17(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39063786

ABSTRACT

The oxidation behaviour of iron-based 316L stainless steel was investigated in the temperature range of 700 to 1000 °C. The test specimens in the shape of plates were produced by selective laser melting. After fabrication, the samples were sandblasted and then annealed in air for different periods of time (0.5, 2, 8, 32 h). Under the influence of temperature and time, stainless steels tend to form an oxide layer. Scanning electron microscopy, energy dispersive analysis, and X-ray diffraction were employed to analyse the composition of this layer. Notably, a thin oxide layer primarily composed of (Fe-Cr) formed on the surface due to temperature effects. In addition, with increasing temperature (up to 1000 °C), the oxide of the main alloying elements, specifically Mn2(Fe-Cr)O4, appeared alongside the Fe-Cr oxide. Furthermore, the samples were subjected to conversion X-ray (CXMS) and conversion electron (CEMS) Mössbauer spectroscopy. CXMS revealed a singlet with a decreasing Mössbauer effect based on the surface metal oxide thickness. CEMS revealed the presence of Fe3+ in the surface layer (0.3 µm). Moreover, an interesting phenomenon occurred at higher temperature levels due to the inhomogeneously thick surface metal oxide layer and the tangential direction of the Mössbauer radiation towards the electron detector.

4.
Chimia (Aarau) ; 78(5): 297-303, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38822772

ABSTRACT

Deciphering the structural intricacies of catalysts is essential to advance their atomic-scale engineering. Solid catalysts are complex, with structural features spanning multiple length scales and involving dynamics, which possess challenges in understanding structure-performance relationships. However, advanced operando X-ray characterization techniques, including X-ray absorption spectroscopy (XAS), diffraction (XRD), and pair distribution function analysis (PDF) allow elucidation of structural features under working conditions, discovering transitions from supported nanocrystals to dispersed sites, from solid solutions to supported nanoparticles, or structural changes at the local level. In this mini-review, we discuss case studies exploring the structure of catalysts over different lengths and time scales under different applications, such as CO2 hydrogenation to methanol or the dry reforming of methane, using a combination of operando XAS, XRD and PDF.

5.
J Hazard Mater ; 476: 134928, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38943892

ABSTRACT

Serpentinite is a widespread rock type used worldwide as building material. Heavy metals like Ni in both the serpentinite products and serpentinite mining wastes pose potential environmental and health issues. This work devises an analytical protocol to identify and quantify the Ni speciation in the mineralogical matrix, through: i) bulk Ni quantification; ii) quantitative mineralogical and chemical analysis of each Ni-rich mineral; iii) comparison of bulk analysis results with the sum of each contribution from the Ni-rich minerals. As case study, two commercial serpentinites "Verde Giada" (VG) and "Verde Vittoria" (VV) from Valmalenco (Northern Italy) were analysed by ICP-MS, XRPD, TGA-MSEGA, SEM, TEM, EPMA, and micro-Raman spectroscopy. The bulk Ni content is 1500-1750 mg/kg and 1390-1620 mg/kg for VG and VV, respectively. The major minerals from XRPD and EPMA (antigorite, olivine, pyroxene, magnetite, brucite) account for 1094 and 1291 mg/kg of Ni for VG and VV, respectively. SEM/TEM and EPMA highlighted the presence of minor chrysotile, pentlandite, heazlewoodite, awaruite, rising the computed Ni to 1924 and 1761 mg/kg for VG and VV, in good agreement with bulk ICP-MS. This protocol provides robust results and can thus enhance the exposure assessment of Ni and eventually other naturally occurring hazardous metals.

6.
Molecules ; 29(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38792035

ABSTRACT

The crystal structure of 4-methylcatechol (4MEC) has, to date, never been solved, despite its very simple chemical formula C7O2H8 and the many possible applications envisaged for this molecule. In this work, this gap is filled and the structure of 4MEC is obtained by combining X-ray powder diffraction and first principle calculations to carefully locate hydrogen atoms. Two molecules are present in the asymmetric unit. Hirshfeld analysis confirmed the reliability of the solved structure, since the two molecules show rather different environments and H-bond interactions of different directionality and strength. The packing is characterised by a peculiar hydrogen bond network with hydroxyl nests formed by two adjacent octagonal frameworks. It is noteworthy that the observed short contacts suggest strong inter-molecular interactions, further confirmed by strong inter-crystalline aggregation observed by microscopic images, indicating the growth, in many crystallization attempts, of single aggregates taller than half a centimetre and, often, with spherical shapes. These peculiarities are induced by the presence of methyl group in 4MEC, since the parent compound catechol, despite its chemical similarity, shows a standard layered packing alternating hydrophobic and polar layers. Finally, the complexity and peculiarity of the packing and crystal growth features explain why a single crystal could not be obtained for a standard structural analysis.

7.
Materials (Basel) ; 17(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673084

ABSTRACT

Multifunctional nanocomposites from an equimolar As4S4/Fe3O4 cut section have been successfully fabricated from coarse-grained bulky counterparts, employing two-step mechanochemical processing in a high-energy mill operational in dry- and wet-milling modes (in an aqueous solution of Poloxamer 407 acting as a surfactant). As was inferred from the X-ray diffraction analysis, these surfactant-free and surfactant-capped nanocomposites are ß-As4S4-bearing nanocrystalline-amorphous substances supplemented by an iso-compositional amorphous phase (a-AsS), both principal constituents (monoclinic ß-As4S4 and cubic Fe3O4) being core-shell structured and enriched after wet milling by contamination products (such as nanocrystalline-amorphous zirconia), suppressing their nanocrystalline behavior. The fluorescence and magnetic properties of these nanocomposites are intricate, being tuned by the sizes of the nanoparticles and their interfaces, dependent on storage after nanocomposite fabrication. A specific core-shell arrangement consisted of inner and outer shell interfaces around quantum-confined nm-sized ß-As4S4 crystallites hosting a-AsS, and the capping agent is responsible for the blue-cyan fluorescence in as-fabricated Poloxamer capped nanocomposites peaking at ~417 nm and ~442 nm, while fluorescence quenching in one-year-aged nanocomposites is explained in terms of their destroyed core-shell architectures. The magnetic co-functionalization of these nanocomposites is defined by size-extended heterogeneous shells around homogeneous nanocrystalline Fe3O4 cores, composed by an admixture of amorphous phase (a-AsS), nanocrystalline-amorphous zirconia as products of contamination in the wet-milling mode, and surfactant.

8.
Pharm Res ; 41(3): 595-607, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383934

ABSTRACT

PURPOSE: Wet granulation (WG) is one of the most versatile processes to improve blend properties for processing. However, due to its need for moisture and heat, it is often considered not amenable to active pharmaceutical ingredients (APIs) prone to forming hydrates. Despite this claim, little literature exists evaluating the extent to which polymorphic form conversions occur for such API when processed with WG. This work sets out to explore two common WG methods, high-shear (HSG) and fluid-bed (FBG), and two drying processes, tray-drying (TD) and fluid-bed drying (FBD), and evaluate the risk they pose to hydrate form conversion. METHODS: The progression of anhydrous to hydrate form conversion of two model compounds with vastly different solubilities, fexofenadine hydrochloride and carbamazepine, was monitored throughout the various processes using powder X-ray diffraction. The resultant granules were characterized using thermogravimetric analysis, differential scanning calorimetry, BET adsorption, and sieve analysis. RESULTS: FBG and FBD processing resulted in the preservation of the original form of both APIs, while HSG+TD resulted in the complete conversion of the API. The FBD of fexofenadine and carbamazepine granules prepared with HSG resulted in partial and complete re-conversion back to the original anhydrous forms, respectively. CONCLUSION: The drying process is a critical factor in anhydrous form conservation. FBG and FBD yielded better preservation of the initial anhydrous forms. HSG could be an acceptable granulation method for API susceptible to hydrate formation if the API solubility is low. Selecting an FBG+FBD process minimizes API hydrate formation and preserves the original anhydrous form.


Subject(s)
Chemistry, Pharmaceutical , Hot Temperature , Chemistry, Pharmaceutical/methods , X-Ray Diffraction , Desiccation , Solubility , Carbamazepine
9.
Eur J Pharm Biopharm ; 195: 114173, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145856

ABSTRACT

Studies of the interactions between paracetamol, chosen as model active ingredient, and PEG 1500, a pharmaceutical carrier, are conducted in the solid state. Solid dispersions of PEG 1500 and paracetamol were prepared in different mass ratios. Two temperature cycles are then applied and the characterization is carried out by DSC and X-ray powder diffraction. Following this, a phase diagram is established for each cycle. On second heating, the metastable Form II of paracetamol is obtained within the PEG-based matrix. However, on the second heating, for paracetamol contents higher than 65%, Form I or form II is obtained randomly.


Subject(s)
Acetaminophen , Solubility , X-Ray Diffraction , Temperature , Calorimetry, Differential Scanning
10.
Nanomaterials (Basel) ; 13(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38063705

ABSTRACT

The phase composition and comparison of iron-based catalysts used for the synthesis of carbon nanotubes were investigated. This work reflects typical catalyst conditions and their evolution during the growth of carbon nanotubes. The preparation of carbon nanotubes was carried out by chemical vapour deposition at temperatures between 800 and 1100 °C. Ferrocene or zero-valent iron nanoparticles were used as "catalysts", and toluene, ferrocene and the ferrocene-toluene solution played the role of carbon precursors, respectively. The phase composition of the prepared product was studied by Mössbauer spectroscopy and X-ray powder diffraction. Mössbauer analysis was particularly useful for samples with a low content of the nanoparticle form of the catalyst. The composition of the prepared samples differed depending on the synthesis temperature, catalyst and precursor. Phase analysis revealed the presence of α-Fe and Fe3C in all samples. In addition, γ-Fe and iron oxides were identified under certain conditions. Scanning and transmission electron microscopy confirmed the carbon nanotube/nanofibre-like morphology and the presence of iron species.

11.
Int J Pharm X ; 6: 100221, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38146324

ABSTRACT

Synchrotron radiation offers a host of advanced properties, surpassing conventional laboratory sources with its high brightness, tunable phonon energy, photon beam coherence for advanced X-ray imaging, and a structured time profile, ideal for capturing dynamic atomic and molecular processes. However, these benefits come at the cost of operational complexity and expenses. Three decades ago, synchrotron radiation facilities, while technically open to all scientists, primarily served a limited community. Despite substantial accessibility improvements over the past two decades, synchrotron measurements still do not qualify as routine analyses. The intrinsic complexity of synchrotron science means experiments are pursued only when no alternatives suffice. In recent years, strides have been made in technology transfer offices, intermediate synchrotron-based analytical service companies, and the development of high-throughput synchrotron systems at various facilities, reshaping the perception of synchrotron science. This article investigates the practical application of synchrotron X-Ray Powder Diffraction (s-XRPD) techniques in pharmaceutical analysis. By utilizing concrete examples, we demonstrate how high-throughput systems have the potential to revolutionize s-XRPD applications in the pharmaceutical industry, rapidly generating XRPD patterns of comparable or superior quality to those obtained in state-of-the-art laboratory XRPD, all in less than 5 s. Additional cases featuring well-established pharmaceutical active ingredients (API) and excipients substantiate the concept of high throughput in pharmaceuticals, affirming data quality through structural refinements aligned with literature-derived unit cell parameters. Synchrotron data need not always be state-of-the-art to compete with lab-XRPD data. The key lies in ensuring user-friendliness, reproducibility, accessibility, cost-effectiveness, and the streamlined efforts associated with synchrotron instrumentation to remain highly competitive with their laboratory counterparts.

12.
ADMET DMPK ; 11(3): 373-385, 2023.
Article in English | MEDLINE | ID: mdl-37829323

ABSTRACT

Background and purpose: Physicochemical properties of an amorphous solid dispersion (ASD) comprising an experimental grade of hydroxypropyl methylcellulose acetate succinate (HPMCAS-MX) with lower glass transition temperature have been previously investigated. This study aimed to evaluate applicability of HPMCAS-MX to hot-melt extrusion (HME) and dissolution-permeation performance of prepared ASDs using MicroFLUX. Review approach: A physical mixture of indomethacin (IMC) and HPMCAS-MX or -MG (a commercial grade with higher transition temperature) at 20:80 weight ratio was hot-melt extruded to prepare an ASD (IMC-MX and IMC-MG, respectively). The dissolution-permeation performance and the stability of the ASDs were measured. Key results: A torque reduction at 120 °C implied that IMC-MX transformed into an amorphous state at this temperature, but IMC-MG required around 170 °C. This result was supported by Raman mapping of the the HME samples. IMC-MG and IMC-MX remained in an amorphous state at 40 °C for three months. The initial dissolution rate and solubility of the ASDs were higher than that of crystalline IMC. The apparent permeability of IMC from IMC-MX and IMC-MG was comparable but was approximately two-fold higher than that from crystalline IMC. Conclusion: HPMCAS-MX enabled HME process at a lower temperature and improved the dissolution-permeation performance of indomethacin.

13.
Materials (Basel) ; 16(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687508

ABSTRACT

The structural and physical properties of the new titanium- and niobium-rich type-A high-entropy alloy (HEA) superconductor Nb0.34Ti0.33Zr0.14Ta0.11Hf0.08 (in at.%) were studied by X-ray powder diffraction, energy dispersive X-ray spectroscopy, magnetization, electrical resistivity, and specific heat measurements. In addition, electronic structure calculations were performed using two complementary methods: the Korringa-Kohn-Rostoker Coherent Potential Approximation (KKR-CPA) and the Projector Augmented Wave (PAW) within Density Functional Theory (DFT). The results obtained indicate that the alloy exhibits type II superconductivity with a critical temperature close to 7.5 K, an intermediate electron-phonon coupling, and an upper critical field of 12.2(1) T. This finding indicates that Nb0.34Ti0.33Zr0.14Ta0.11Hf0.08 has one of the highest upper critical fields among all known HEA superconductors.

14.
J Pharm Sci ; 112(12): 3120-3130, 2023 12.
Article in English | MEDLINE | ID: mdl-37451318

ABSTRACT

Though ferulic acid presents great hypoglycemic potential, it possesses limited aqueous solubility, and low oral bioavailability. When associated with metformin, the first-choice drug in Type 2 diabetes treatment, FA demonstrates synergistic hypoglycemic effects, however, it also causes certain undesirable dose-related effects. This study aimed to develop a new ferulic acid - metformin multicomponent system, and incorporate it into a solid dosage form with improved biopharmaceutical parameters. A novel metformin: ferulate (1:1) salt (MFS) was produced, which was properly characterized using differing analytical techniques, including single crystal analysis. Also during the course of the study, a new polymorph of the metformin free base was observed. The MFS was obtained using solvent evaporation methods, which achieved high yields in reproducible process, as well as a 740-fold increase in ferulic acid aqueous solubility. The MFS tablets developed met quality control requirements for this dosage form, as well as revealing excellent performance in vitro dissolution tests, presenting dissolution efficiency values of 95.4 ± 0.5%. Additionally, physicochemical instability was not observed in a study at 40 °C for 3 months for both MFS powder and its tablet form. The MFS product developed is a promising candidate for further Type 2 diabetes clinical study.


Subject(s)
Biological Products , Coumaric Acids , Diabetes Mellitus, Type 2 , Metformin , Humans , Metformin/chemistry , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/chemistry , Solubility , Tablets , Sodium Chloride
15.
Pharmaceutics ; 15(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37513973

ABSTRACT

(1) Background: Amorphous drug systems are an intensively studied approach to overcome the insufficient bioavailability of poorly soluble drugs. Here, paper tablets were studied, which were made from cellulose-based paper matrices loaded with norfloxacin. Moreover, wet granulation was introduced as an additional processing step for improving the flowability of the solids, which is necessary when considering production on an industrial scale. (2) Methods: The possible impact of the wet granulation on the crystallinity of norfloxacin was studied by examining granulated and non-granulated samples. Crystallinity investigations were performed using X-ray powder diffraction (XRD) and terahertz time-domain spectroscopy (THz TDS). (3) Results: THz TDS allowed for a more straightforward crystallinity assessment than XRD. Moreover, using THz TDS, it was possible to detect minor changes in the crystallinity of the API after the granulation, whereas this was not possible with the XRD analysis. (4) Conclusions: THz TDS results indicate a partial crystallization of norfloxacin due to the wet granulation. Depending on the formulation, THz TDS can serve as a beneficial and advantageous tool to determine the crystallinity of an API.

16.
Materials (Basel) ; 16(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37374653

ABSTRACT

The ordered Ca3TaGa3Si2O14 and disordered La3Ga5SiO14 crystals of the lantangallium silicate family were grown via the Czochralski method. The independent coefficients of thermal expansion of crystals αc and αa were determined using X-ray powder diffraction based on the analysis of X-ray diffraction spectra measured in the temperature range of 25~1000 °C. It is shown that, in the temperature range of 25~800 °C, the thermal expansion coefficients are linear. At temperatures above 800 °C, there is a nonlinear character of the thermal expansion coefficients, associated with a decrease in the Ga content in the crystal lattice.

17.
Materials (Basel) ; 16(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37176307

ABSTRACT

The present study aims at the integration of the "oxalic conversion" route into "green chemistry" for the synthesis of copper oxide nanoparticles (CuO-NPs) with controllable structural, morphological, and magnetic properties. Two oxalate-containing precursors (H2C2O4.2H2O and (NH4)2C2O4.H2O) and different volume ratios of a mixed water/glycerol solvent were tested. First, the copper oxalates were synthesized and then subjected to thermal decomposition in air at 400 °C to produce the CuO powders. The purity of the samples was confirmed by X-ray powder diffraction (XRPD), and the crystallite sizes were calculated using the Scherrer method. The transmission electron microscopy (TEM) images revealed oval-shaped CuO-NPs, and the scanning electron microscopy (SEM) showed that morphological features of copper oxalate precursors and their corresponding oxides were affected by the glycerol (V/V) ratio as well as the type of C2O42- starting material. The magnetic properties of CuO-NPs were determined by measuring the temperature-dependent magnetization and the hysteresis curves at 5 and 300 K. The obtained results indicate the simultaneous coexistence of dominant antiferromagnetic and weak ferromagnetic behavior.

18.
J Pharm Sci ; 112(9): 2516-2523, 2023 09.
Article in English | MEDLINE | ID: mdl-37100203

ABSTRACT

This study aimed to investigate the crystal forms of an originally designed Y5 receptor antagonist of neuropeptide Y. Polymorphic screening was performed via solvent evaporation and slurry conversion using various solvents. The obtained crystal forms α, ß, and γ were characterized by X-ray powder diffraction analysis. Thermal analysis determined that forms α, ß, and γ were hemihydrate, metastable and stable forms, respectively; the hemihydrate and the stable forms were candidates. To arrange the particle size, forms α and γ were subjected to jet milling. However, form γ could not be milled because of powder stiction to the apparatus, whereas form α could be. To investigate this mechanism, single-crystal X-ray diffraction analysis was performed. The crystal structure of form γ was characterized by two-dimensional hydrogen bonding between neighboring molecules. This revealed that the functional groups forming hydrogen bonds were exposed on the cleavage plane of form γ. The three-dimensional hydrogen-bonding network with water stabilized the hemihydrate form, α. These results indicate that the hydrogen bondable groups exposed on the cleavage plane of form γ should result in stiction of the powder and adherence to the apparatus. It was concluded that crystal conversion is a method to overcome the milling issue.


Subject(s)
Neuropeptide Y , X-Ray Diffraction , Powders , Crystallography, X-Ray , Solvents
19.
Acta Crystallogr D Struct Biol ; 79(Pt 5): 374-386, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37039669

ABSTRACT

The polymorphism of human insulin upon pH variation was characterized via X-ray powder diffraction, employing a crystallization protocol previously established for co-crystallization with phenolic derivatives. Two distinct rhombohedral (R3) polymorphs and one cubic (I213) polymorph were identified with increasing pH, corresponding to the T6, T3R3f and T2 conformations of insulin, respectively. The structure of the cubic T2 polymorph was determined via multi-profile stereochemically restrained Rietveld refinement at 2.7 Šresolution. This constitutes the first cubic insulin structure to be determined from crystals grown in the presence of zinc ions, although no zinc binding was observed. The differences of the polycrystalline variant from other cubic insulin structures, as well as the nature of the pH-driven phase transitions, are discussed in detail.


Subject(s)
Insulin, Regular, Human , Insulin , Humans , Insulin/chemistry , X-Ray Diffraction , Phenols , Crystallization
20.
Materials (Basel) ; 16(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36984248

ABSTRACT

A single crystalline layered semiconductor In1.2Ga0.8S3 phase was grown, and by intercalating p-aminopyridine (NH2-C5H4N or p-AP) molecules into this crystal, a new intercalation compound, In1.2Ga0.8S3·0.5(NH2-C5H4N), was synthesized. Further, by substituting p-AP molecules with p-ethylenediamine (NH2-CH2-CH2-NH2 or p-EDA) in this intercalation compound, another new intercalated compound-In1.2Ga0.8S3·0.5(NH2-CH2-CH2-NH2) was synthesized. It was found that the single crystallinity of the initial In1.2Ga0.8S3 samples was retained after their intercalation despite a strong deterioration in quality. The thermal peculiarities of both the intercalation and deintercalation of the title crystal were determined. Furthermore, the unit cell parameters of the intercalation compounds were determined from X-ray diffraction data (XRD). It was found that increasing the c parameter corresponded to the dimension of the intercalated molecule. In addition to the intercalation phases' experimental characterization, the lattice dynamical properties and the electronic and bonding features of the stoichiometric GaInS3 were calculated using the Density Functional Theory within the Generalized Gradient Approximations (DFT-GGA). Nine Raman-active modes were observed and identified for this compound. The electronic gap was found to be an indirect one and the topological analysis of the electron density revealed that the interlayer bonding is rather weak, thus enabling the intercalation of organic molecules.

SELECTION OF CITATIONS
SEARCH DETAIL