Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters











Publication year range
1.
J Colloid Interface Sci ; 679(Pt A): 307-315, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39366260

ABSTRACT

HYPOTHESIS: Sphingomyelin (SPM), a crucial phospholipid in the myelin sheath, plays a vital role in insulating nerve fibers. We hypothesize that iron ions selectively bind to the phosphatidylcholine (PC) template within the SPM membrane under near-physiological conditions, resulting in disruptions to membrane organization. These interactions could potentially contribute to the degradation of the myelin sheath, thereby playing a role in the development of neurodegenerative diseases. EXPERIMENTS: We utilized synchrotron-based X-ray spectroscopy and diffraction techniques to study the interaction of iron ions with a bovine spinal-cord SPM monolayer (ML) at the liquid-vapor interface under physiological conditions. The SPM ML serves as a model system, representing localized patches of lipids within a more complex membrane structure. The experiments assessed iron binding to the SPM membrane both in the presence of salts and with additional evaluation of the effects of various ion species on membrane behavior. Grazing incidence X-ray diffraction was employed to analyze the impact of iron binding on the structural integrity of the SPM membrane. FINDINGS: Our results demonstrate that iron ions in dilute solution selectively bind to the PC template of the SPM membrane exclusively at near-physiological salt concentrations (e.g., NaCl, KCl, KI, or CaCl2) and are pH-dependent. In-significant binding was detected in the absence of these salts or at near-neutral pH with salts. The surface adsorption of iron ions is correlated with salt concentration, reaching saturation at physiological levels. In contrast, multivalent ions such as La3+ and Ca2+ do not bind to SPM under similar conditions. Notably, iron binding to the SPM membrane disrupts its in-plane organization, suggesting that these interactions may compromise membrane integrity and contribute to myelin sheath damage associated with neurological disorders.

2.
ACS Appl Mater Interfaces ; 16(39): 52130-52143, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39298291

ABSTRACT

SiOx electrodes are promising for high-energy-density lithium-ion batteries (LIBs) due to their ability to mitigate volume expansion-induced degradation. Here, we investigate the surface dynamics of SiOx thin-film electrodes cycled in different carbonate-based electrolytes using a combination of ex situ X-ray photoelectron spectroscopy (XPS) and operando synchrotron X-ray reflectivity analyses. The thin-film geometry allows us to probe the depth-dependent chemical composition and electron density from surface to current collector through the solid electrolyte interphase (SEI), the active material, and the thickness evolution during cycling. Results reveal that SiOx lithiation initiates below 0.4 V vs Li+/Li and indicate a close relationship between SEI formation and SiOx electrode lithiation, likely due to the high resistivity of SiOx. We find similar chemical compositions for the SEI in FEC-containing and FEC-free electrolytes but observe a reduced thickness in the former case. In both cases, the SEI thickness decreases during delithiation due to the removal or dissolution of some carbonate species. These findings give insights into the (de)lithiation of SiOx, in particular, during the formation stage, and the effect of the presence of FEC in the electrolyte on the evolution of the SEI during cycling.

3.
Biochem Biophys Res Commun ; 737: 150533, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39142138

ABSTRACT

Enzyme-mediated lipid oxidation is an important regulatory event in cell signaling, with oxidized lipids being potent signaling molecules that can illicit dramatic changes in cell behavior. For example, peroxidation of an arachidonoyl poly-unsaturated fatty acid by the human enzyme 15-lipoxygenase-2 (15-LOX-2) has been associated with formation of atherosclerotic plaques. Previous work on synthetically oxidized membranes has shown that oxidized lipid tails will change their conformation to facilitate interactions between the peroxide group and the lipid headgroups. However, this phenomenon has not been directly observed for a lipid membrane that has undergone enzyme-catalyzed oxidation. In this study, we report on the structure of a model lipid membrane before and after oxidation by 15-LOX-2. A model lipid membrane monolayer at the air-liquid interface was constructed from 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (SAPC) in a Langmuir trough, and X-ray reflectivity measurements were conducted to determine the electron density profile of the system. Exposure to 15-LOX-2 caused a dramatic change in the SAPC structure, namely a blurred distinction between the lipid tail/head layers and shortening of the average lipid tail length by ∼3 Å. The electron density profile of the oxidized SAPC monolayer is similar to that of a synthetically oxidized substrate mimic. Overall, this reported observation of an enzymatically-oxidized membrane structure in situ is helping to bridge a gap in the literature between structural studies on synthetically oxidized membranes and cellular studies aiming to understand physiological responses.

4.
J Appl Crystallogr ; 57(Pt 3): 714-727, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846761

ABSTRACT

The capillary wave model of a liquid surface predicts both the X-ray specular reflection and the diffuse scattering around it. A quantitative method is presented to obtain the X-ray reflectivity (XRR) from a liquid surface through the diffuse scattering data around the specular reflection measured using a grazing incidence X-ray off-specular scattering (GIXOS) geometry at a fixed horizontal offset angle with respect to the plane of incidence. With this approach the entire Qz -dependent reflectivity profile can be obtained at a single, fixed incident angle. This permits a much faster acquisition of the profile than with conventional reflectometry, where the incident angle must be scanned point by point to obtain a Qz -dependent profile. The XRR derived from the GIXOS-measured diffuse scattering, referred to in this paper as pseudo-reflectivity, provides a larger Qz range compared with the reflectivity measured by conventional reflectometry. Transforming the GIXOS-measured diffuse scattering profile to pseudo-XRR opens up the GIXOS method to widely available specular XRR analysis software tools. Here the GIXOS-derived pseudo-XRR is compared with the XRR measured by specular reflectometry from two simple vapor-liquid interfaces at different surface tension, and from a hexadecyltri-methyl-ammonium bromide monolayer on a water surface. For the simple liquids, excellent agreement (beyond 11 orders of magnitude in signal) is found between the two methods, supporting the approach of using GIXOS-measured diffuse scattering to derive reflectivities. Pseudo-XRR obtained at different horizontal offset angles with respect to the plane of incidence yields indistinguishable results, and this supports the robustness of the GIXOS-XRR approach. The pseudo-XRR method can be extended to soft thin films on a liquid surface, and criteria are established for the applicability of the approach.

5.
ACS Appl Mater Interfaces ; 16(17): 22665-22675, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647102

ABSTRACT

Multilayer neutron optics require precise control of interface morphology for optimal performance. In this work, we investigate the effects of different growth conditions on the interface morphology of Ni/Ti-based multilayers, with a focus on incorporating low-neutron-absorbing 11B4C and using different ion assistance schemes. Grazing-incidence small-angle X-ray scattering was used to probe the structural and morphological details of buried interfaces, revealing that the layers become more strongly correlated and the interfaces form mounds with increasing amounts of 11B4C. Applying high flux ion assistance during growth can reduce mound formation but lead to interface mixing, while a high flux modulated ion assistance scheme with an initial buffer layer grown at low ion energy and the top layer at higher ion energy prevents intermixing. The optimal condition was found to be adding 26.0 atom % 11B4C combined with high flux modulated ion assistance. A multilayer with a period of 48.2 Å and 100 periods was grown under these conditions, and coupled fitting to neutron and X-ray reflectivity data revealed an average interface width of only 2.7 Å, a significant improvement over the current state-of-the-art commercial Ni/Ti multilayers. Overall, our study demonstrates that the addition of 11B4C and the use of high flux modulated ion assistance during growth can significantly improve the interface morphology of Ni/Ti multilayers, leading to improved neutron optics performance.

6.
J Appl Crystallogr ; 57(Pt 2): 555-566, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38596735

ABSTRACT

This work introduces X-Ray Calc (XRC), an open-source software package designed to simulate X-ray reflectivity (XRR) and address the inverse problem of reconstructing film structures on the basis of measured XRR curves. XRC features a user-friendly graphical interface that facilitates interactive simulation and reconstruction. The software employs a recursive approach based on the Fresnel equations to calculate XRR and incorporates specialized tools for modeling periodic multilayer structures. This article presents the latest version of the X-Ray Calc software (XRC3), with notable improvements. These enhancements encompass an automatic fitting capability for XRR curves utilizing a modified flight particle swarm optimization algorithm. A novel cost function was also developed specifically for fitting XRR curves of periodic structures. Furthermore, the overall user experience has been enhanced by developing a new single-window interface.

7.
J Appl Crystallogr ; 57(Pt 2): 481-491, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38596732

ABSTRACT

The strong metal-support interaction (SMSI) is a phenomenon observed in supported metal catalyst systems in which reducible metal oxide supports can form overlayers over the surface of active metal nanoparticles (NPs) under a hydrogen (H2) environment at elevated temperatures. SMSI has been shown to affect catalyst performance in many reactions by changing the type and number of active sites on the catalyst surface. Laboratory methods for the analysis of SMSI at the nanoparticle-ensemble level are lacking and mostly based on indirect evidence, such as gas chemisorption. Here, we demonstrate the possibility to detect and characterize SMSIs in Co/TiOx model catalysts using the laboratory X-ray standing wave (XSW) technique for a large ensemble of NPs at the bulk scale. We designed a thermally stable MoNx/SiNx periodic multilayer to retain XSW generation after reduction with H2 gas at 600°C. The model catalyst system was synthesized here by deposition of a thin TiOx layer on top of the periodic multilayer, followed by Co NP deposition via spare ablation. A partial encapsulation of Co NPs by TiOx was identified by analyzing the change in Ti atomic distribution. This novel methodological approach can be extended to observe surface restructuring of model catalysts in situ at high temperature (up to 1000°C) and pressure (≤3 mbar), and can also be relevant for fundamental studies in the thermal stability of membranes, as well as metallurgy.

8.
J Appl Crystallogr ; 57(Pt 2): 258-265, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38596733

ABSTRACT

The maximum range of perpendicular momentum transfer (q z) has been tripled for X-ray scattering from liquid surfaces when using a double-crystal deflector setup to tilt the incident X-ray beam. This is achieved by employing a higher-energy X-ray beam to access Miller indices of reflecting crystal atomic planes that are three times higher than usual. The deviation from the exact Bragg angle condition induced by misalignment between the X-ray beam axis and the main rotation axis of the double-crystal deflector is calculated, and a fast and straightforward procedure to align them is deduced. An experimental method of measuring scattering intensity along the q z direction on liquid surfaces up to q z = 7 Å-1 is presented, with liquid copper serving as a reference system for benchmarking purposes.

9.
J Colloid Interface Sci ; 658: 639-647, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38134672

ABSTRACT

Whilst bottlebrush polymers have been studied in aqueous media for their conjectured role in biolubrication, surface forces and friction mediated by bottlebrush polymers in non-polar media have not been previously reported. Here, small-angle neutron scattering (SANS) showed that a diblock bottlebrush copolymer (oligoethyleneglycol acrylate/ethylhexyl acrylate; OEGA/EHA) formed spherical core-shell aggregates in n-dodecane (a model oil) in the polymer concentration range 0.1-2.0 wt%, with a radius of gyration Rg âˆ¼ 7 nm, comprising 40-65 polymer molecules per aggregate. The surface force apparatus (SFA) measurements revealed purely repulsive forces between surfaces bearing inhomogeneous polymer layers of thickness L âˆ¼ 13-23 nm, attributed to adsorption of a mixture of polymer chains and surface-deformed micelles. Despite the surface inhomogeneity, the polymer layers could mediate effective lubrication, demonstrating superlubricity with the friction coefficient as low as µ ∼ 0.003. The analysis of velocity-dependence of friction using the Eyring model shed light on the mechanism of the frictional process. That is, the friction mediation was consistent with the presence of nanoscopic surface aggregates, with possible contributions from a gel-like network formed by the polymer chains on the surface. These unprecedented results, correlating self-assembled polymer micelle structure with the surface forces and friction the polymer layers mediate, highlight the potential of polymers with the diblock bottlebrush architecture widespread in biological living systems, in tailoring desired surface interactions in non-polar media.

10.
ACS Chem Neurosci ; 14(22): 4026-4038, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37906715

ABSTRACT

Many neurodegenerative diseases involve amyloidogenic proteins forming surface-bound aggregates on anionic membranes, and the peptide amyloid ß (Aß) in Alzheimer's disease is one prominent example of this. Curcumin is a small polyphenolic molecule that provides an interesting opportunity to understand the fundamental mechanisms of membrane-mediated aggregation because it embeds into membranes to alter their structure while also altering Aß aggregation in an aqueous environment. The purpose of this work was to understand interactions among curcumin, ß-sheet-rich Aß fibrillar oligomers (FO), and a model anionic membrane. From a combination of liquid surface X-ray scattering experiments and molecular dynamics simulations, we found that curcumin embedded into an anionic 1,2-dimyristoyl-sn-glycero-3-phosphorylglycerol (DMPG) membrane to rest between the lipid headgroups and the tails, causing disorder and membrane thinning. FO accumulation on the membrane was reduced by ∼66% in the presence of curcumin, likely influenced by membrane thinning. Simulation results suggested curcumin clusters near exposed phenylalanine residues on a membrane-embedded FO structure. Altogether, curcumin inhibited FO interactions with a DMPG membrane, likely through a combination of altered membrane structure and interactions with the FO surface. This work elucidates the mechanism of curcumin as a small molecule that inhibits amyloidogenesis through a combination of both membrane and protein interactions.


Subject(s)
Alzheimer Disease , Curcumin , Humans , Amyloid beta-Peptides/metabolism , Curcumin/pharmacology , Curcumin/chemistry , Alzheimer Disease/metabolism , Molecular Dynamics Simulation , Amyloid/metabolism
11.
Chemphyschem ; 24(22): e202300545, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37632699

ABSTRACT

Classical electric double layer (EDL) models have been widely used to describe ion distributions at charged solid-water interfaces in dilute electrolytes. However, the chemistry of EDLs remains poorly constrained at high ionic strength where ion-ion correlations control non-classical behavior such as overcharging, i. e., the accumulation of counter-ions in amounts exceeding the substrate's surface charge. Here, we provide direct experimental observations of correlated cation and anion distributions adsorbed at the muscovite (001)-aqueous electrolyte interface as a function of dissolved RbBr concentration ([RbBr]=0.01-5.8 M) using resonant anomalous X-ray reflectivity. Our results show alternating cation-anion layers in the EDL when [RbBr]≳100 mM, whose spatial extension (i. e., ~20 Šfrom the surface) far exceeds the dimension of the classical Stern layer. Comparison to RbCl and RbI electrolytes indicates that these behaviors are sensitive to the choice of co-ion. This new in-depth molecular-scale understanding of the EDL structure during transition from classical to non-classical regimes supports the development of realistic EDL models for technologies operating at high salinity such as water purification applications or modern electrochemical storage.

12.
J Phys Condens Matter ; 35(34)2023 May 30.
Article in English | MEDLINE | ID: mdl-37164025

ABSTRACT

Investigations of single and bilayers of bismuth are one of the most thrusting areas of research in contemporary condensed matter physics and material sciences. This is because such ultrathin layers of bismuth host interesting exotic electronic properties, which are important from both fundamental science and future application perspectives. In the past, many inorganic processes for the synthesis of single and bi-layers of bismuth were reported using physical and chemical vapor deposition techniques. The ultrathin films deposited are found to interact electronically with the substrates due to their proximity to the substrate surface. We introduce a new and easy organic channel for the synthesis of the bismuth multi-bilayers in ambient conditions. Bismuth stearate multi-bilayer thin films are deposited on the hydrophobic silicon and hydrophilic glass substrates using the Langmuir-Blodgett technique. Optical absorption spectroscopy measurements in the infrared region provided information on various bond structures present in those bismuth stearate thin films. Specular x-ray reflectivity (XRR) experiments and their analysis of such thin films unambiguously show the highly periodic stacking of bismuth bilayers along the surface-normal directions within the multilayer film structure. Model-based microstructural analysis of the XRR data further shows that each bilayer of bismuth is well separated (3.5 nm) from other bismuth bilayers by hydrocarbon chains. At these separations,the electronic states of the bismuth bilayers are expected to be non-interacting with each other. The morphology of the surface obtained from field emission scanning electron microscopy supports the XRR analysis. A bandgap of 3.2 eV was obtained for such bismuth stearate thin films from the optical spectroscopy measurements in the UV-visible range. The large separations between the bismuth-bilayers and between the substrate and the bismuth bilayers are expected to minimize the electronic interactions between them.

13.
ACS Appl Mater Interfaces ; 15(10): 13753-13760, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36877864

ABSTRACT

Molybdenum nitride (MoNx) was perceived as carrier-selective contacts (CSCs) for crystalline silicon (c-Si) solar cells due to having proper work functions and excellent conductivities. However, the poor passivation and non-Ohmic contact at the c-Si/MoNx interface endow an inferior hole selectivity. Here, the surface, interface, and bulk structures of MoNx films are systematically investigated by X-ray scattering, surface spectroscopy, and electron microscope analysis to reveal the carrier-selective features. Surface layers with the composition of MoO2.51N0.21 form upon air exposure, which induces the overestimated work function and explains the origin of inferior hole selectivities. The c-Si/MoNx interface is confirmed to adopt long-term stability, providing guidance for designing stable CSCs. A detailed evolution of the scattering length density, domain sizes, and crystallinity in the bulk phase is presented to elucidate its superior conductivity. These multiscale structural investigations offer a clear structure-function correlation of MoNx films, providing key inspiration for developing excellent CSCs for c-Si solar cells.

14.
J Colloid Interface Sci ; 630(Pt B): 28-36, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36327730

ABSTRACT

HYPOTHESIS: Langmuir-Blodgett (LB) technique allows the deposition of gold nanoparticles and nanoclusters (atomically precise nanoparticles below 2 nm in diameter) onto solid substrates with an unprecedented degree of control and high transfer ratios. Nanoclusters are expected to follow the crinkle folding mechanism, which promotes the formation of trilayers of nanoparticles but kinetically disfavors the formation of the fourth layer. EXPERIMENTS: LB films of Au38(SC2H4Ph)24 nanocluster were prepared at a range of surface pressures in the bilayer/trilayer regime and their internal structure was analyzed with X-ray Reflectivity (XRR) and Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS). Bimodal atomic force microscopy (AFM) imaging was used to quantify the elastic modulus, which can be correlated with the topography at the same point on the surface. FINDINGS: Nanocluster bilayers and trilayers exhibited the elastic moduli of ca. 1.2 GPa and 0.9 GPa respectively. Films transferred in the 20-25 mN/m surface pressure regime displayed a particular propensity to form highly vertically organized trilayers. Further compression resulted in disorganization of the layers. Crucially, the use of two cantilevers of contrasting stiffness for bimodal AFM measurements has demonstrated a new approach to quantify the mechanical properties of ultrathin films without the use of deconvolution algorithms to remove the substrate contribution.


Subject(s)
Gold , Metal Nanoparticles , Microscopy, Atomic Force , X-Rays , Elastic Modulus
15.
Environ Sci Technol ; 57(1): 266-276, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36562683

ABSTRACT

Interactions of heavy metals with charged mineral surfaces control their mobility in the environment. Here, we investigate the adsorption of Y(III) onto the orthoclase (001) basal plane, the former as a representative of rare earth elements and an analogue of trivalent actinides and the latter as a representative of naturally abundant K-feldspar minerals. We apply in situ high-resolution X-ray reflectivity to determine the sorption capacity and molecular distribution of adsorbed Y species as a function of the Y3+ concentration, [Y3+], at pH 7 and 5. With [Y3+] ≥ 1 mM at pH 7, we observe an inner-sphere (IS) sorption complex at a distance of ∼1.5 Å from the surface and an outer-sphere (OS) complex at 3-4 Å. Based on the adsorption height of the IS complex, a bidentate, binuclear binding mode, in which Y3+ binds to two terminal oxygens, is proposed. In contrast, mostly OS sorption is observed at pH 5. The observed maximum Y coverage is ∼1.3 Y3+/AUC (AUC: area of the unit cell = 111.4 Å2) for all the investigated pH values and Y concentrations, which is in the expected range based on the estimated surface charge of orthoclase (001).


Subject(s)
Metals, Heavy , Silicates , X-Rays , Minerals , Adsorption
16.
ACS Appl Mater Interfaces ; 14(51): 57133-57143, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36533427

ABSTRACT

Graphene oxide (GO) membranes are excellent candidates for a range of separation applications, including rare earth segregation and radionuclide decontamination. Understanding nanoscale water and ion behavior near interfacial GO is critical for groundbreaking membrane advances, including improved selectivity and permeability. We experimentally examine the impact of solution conditions on water and lanthanide interactions with interfacial GO films and connect these results to GO membrane performance. The investigation of the confined films at the air-water interface with a combination of surface-specific spectroscopy and X-ray scattering techniques allows us to understand water and ion behaviors separately. Sum frequency generation spectroscopy reveals a dramatic change in interfacial water organization because of graphene oxide film deprotonation. Interfacial X-ray fluorescence measurements show a 17× increase in adsorbed lanthanide to the GO film from subphase pH 3 to pH 9. Liquid surface X-ray reflectivity data show an additional 2.7 e- per Å2 for GO films at pH 9 versus pH 3 as well. These results are connected to GO membrane performance, which show increased selectivity and decreased flux for membranes filtering pH 9 solutions. We posit insoluble lanthanide hydroxides form at higher pHs. Taken together, these results highlight the importance of interfacial experiments on model GO systems.

17.
Adv Sci (Weinh) ; 9(36): e2204684, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36351774

ABSTRACT

Liquid metal catalysts have recently attracted attention for synthesizing high-quality 2D materials facilitated via the catalysts' perfectly smooth surface. However, the microscopic catalytic processes occurring at the surface are still largely unclear because liquid metals escape the accessibility of traditional experimental and computational surface science approaches. Hence, numerous controversies are found regarding different applications, with graphene (Gr) growth on liquid copper (Cu) as a prominent prototype. In this work, novel in situ and in silico techniques are employed to achieve an atomic-level characterization of the graphene adsorption height above liquid Cu, reaching quantitative agreement within 0.1 Å between experiment and theory. The results are obtained via in situ synchrotron X-ray reflectivity (XRR) measurements over wide-range q-vectors and large-scale molecular dynamics simulations based on efficient machine-learning (ML) potentials trained to first-principles density functional theory (DFT) data. The computational insight is demonstrated to be robust against inherent DFT errors and reveals the nature of graphene binding to be highly comparable at liquid Cu and solid Cu(111). Transporting the predictive first-principles quality via ML potentials to the scales required for liquid metal catalysis thus provides a powerful approach to reach microscopic understanding, analogous to the established computational approaches for catalysis at solid surfaces.

18.
J Appl Crystallogr ; 55(Pt 5): 1305-1313, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36249496

ABSTRACT

An approach is presented for analysis of real-time X-ray reflectivity (XRR) process data not just as a function of the magnitude of the reciprocal-space vector q, as is commonly done, but as a function of both q and time. The real-space structures extracted from the XRR curves are restricted to be solutions of a physics-informed growth model and use state-of-the-art convolutional neural networks (CNNs) and differential evolution fitting to co-refine multiple time-dependent XRR curves R(q, t) of a thin film growth experiment. Thereby it becomes possible to correctly analyze XRR data with a fidelity corresponding to standard fits of individual XRR curves, even if they are sparsely sampled, with a sevenfold reduction of XRR data points, or if the data are noisy due to a 200-fold reduction in counting times. The approach of using a CNN analysis and of including prior information through a kinetic model is not limited to growth studies but can be easily extended to other kinetic X-ray or neutron reflectivity data to enable faster measurements with less beam damage.

19.
Adv Sci (Weinh) ; 9(24): e2200379, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35780500

ABSTRACT

A comprehensive study of the optical properties of CsPbBr3 perovskite multiple quantum wells (MQW) with organic barrier layers is presented. Quantum confinement is observed by a blue-shift in absorption and emission spectra with decreasing well width and agrees well with simulations of the confinement energies. A large increase of emission intensity with thinner layers is observed, with a photoluminescence quantum yield up to 32 times higher than that of bulk layers. Amplified spontaneous emission (ASE) measurements show very low thresholds down to 7.3 µJ cm-2 for a perovskite thickness of 8.7 nm, significantly lower than previously observed for CsPbBr3 thin-films. With their increased photoluminescence efficiency and low ASE thresholds, MQW structures with CsPbBr3 are excellent candidates for high-efficiency perovskite-based LEDs and lasers.

20.
Nanomaterials (Basel) ; 12(13)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35808121

ABSTRACT

Bent-core mesogens (BCMs) are a class of thermotropic liquid crystals featuring several unconventional properties. However, the interpretation and technological exploitation of their unique behavior have been hampered by the difficulty of controlling their anchoring at surfaces. To tackle this issue, we report the nanoscale structural characterization of BCM films prepared using the Langmuir-Blodgett technique. Even though BCMs are quite different from typical amphiphilic molecules, we demonstrate that stable molecular films form over water, which can then be transferred onto silicon substrates. The combination of Brewster angle microscopy, atomic force microscopy, and X-ray reflectivity measurements shows that the molecules, once transferred onto a solid substrate, form a bilayer structure with a bottom layer of flat molecules and an upper layer of upright molecules. These results suggest that Langmuir-Blodgett films of BCMs can provide a useful means to control the alignment of this class of liquid crystals.

SELECTION OF CITATIONS
SEARCH DETAIL