Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.365
Filter
1.
bioRxiv ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39005335

ABSTRACT

Src family kinases (SFKs), including Src, Fyn and Yes, play important roles in development and cancer. Despite being first discovered as the Yes-associated protein, the regulation of Yap by SFKs remains poorly understood. Here, through single-cell analysis and genetic lineage tracing, we show that the pan-epithelial ablation of C-terminal Src kinase (Csk) in the lacrimal gland unleashes broad Src signaling but specifically causes extrusion and apoptosis of acinar progenitors at a time when they are shielded by myoepithelial cells from the basement membrane. Csk mutants can be phenocopied by constitutively active Yap and rescued by deleting Yap or Taz, indicating a significant functional overlap between Src and Yap signaling. Although Src-induced tyrosine phosphorylation has long been believed to regulate Yap activity, we find that mutating these tyrosine residues in both Yap and Taz fails to perturb mouse development or alleviate the Csk lacrimal gland phenotype. In contrast, Yap loses Hippo signaling-dependent serine phosphorylation and translocates into the nucleus in Csk mutants. Further chemical genetics studies demonstrate that acute inhibition of Csk enhances Crk/CrkL phosphorylation and Rac1 activity, whereas removing Crk/CrkL or Rac1/Rap1 ameliorates the Csk mutant phenotype. These results show that Src controls Hippo-Yap signaling through the Crk/CrkL-Rac/Rap axis to promote cell extrusion.

2.
Cell Biol Int ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39021301

ABSTRACT

Adriamycin (ADR) is widely used against breast cancer, but subsequent resistance always occurs. YAP, a downstream protein of angiomotin (AMOT), importantly contributes to ADR resistance, whereas the mechanism is largely unknown. MCF-7 cells and MDA-MB-231 cells were used to establish ADR-resistant cell. Then, mRNA and protein expressions of AMOT and YAP expressions were determined. After AMOT transfection alone or in combination with YAP, the sensitivity of the cells to ADR were evaluated in vitro by examining cell proliferation, apoptosis, and cell cycle, as well as in vivo by examining tumor growth. Additionally, the expressions of proteins in YAP pathway were determined in AMOT-overexpressing cells. In the ADR-resistant cells, the expression of AMOT was decreased while YAP was increased, respectively, and the nucleus localization of YAP was increased at the same time. After AMOT overexpression, these were inhibited, whereas the cell sensitivity to ADR was enhanced. However, the AMOT-induced changes were significantly suppressed by YAP knockdown. The consistent results in vivo showed that AMOT enhanced the inhibition of ADR on tumor growth, and inhibited YAP signaling, evidenced by decreased levels of YAP, CycD1, and p-ERK. Our data revealed that decreased AMOT contributed to ADR resistance in breast cancer cells, which was importantly negatively mediated YAP. These observations provide a potential therapy against breast cancer with ADR resistance.

3.
Cancer Biol Med ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38953696

ABSTRACT

OBJECTIVE: Mitochondrial fatty acid oxidation is a metabolic pathway whose dysregulation is recognized as a critical factor in various cancers, because it sustains cancer cell survival, proliferation, and metastasis. The acyl-CoA synthetase long-chain (ACSL) family is known to activate long-chain fatty acids, yet the specific role of ACSL3 in breast cancer has not been determined. METHODS: We assessed the prognostic value of ACSL3 in breast cancer by using data from tumor samples. Gain-of-function and loss-of-function assays were also conducted to determine the roles and downstream regulatory mechanisms of ACSL3 in vitro and in vivo. RESULTS: ACSL3 expression was notably downregulated in breast cancer tissues compared with normal tissues, and this phenotype correlated with improved survival outcomes. Functional experiments revealed that ACSL3 knockdown in breast cancer cells promoted cell proliferation, migration, and epithelial-mesenchymal transition. Mechanistically, ACSL3 was found to inhibit ß-oxidation and the formation of associated byproducts, thereby suppressing malignant behavior in breast cancer. Importantly, ACSL3 was found to interact with YES proto-oncogene 1, a member of the Src family of tyrosine kinases, and to suppress its activation through phosphorylation at Tyr419. The decrease in activated YES1 consequently inhibited YAP1 nuclear colocalization and transcriptional complex formation, and the expression of its downstream genes in breast cancer cell nuclei. CONCLUSIONS: ACSL3 suppresses breast cancer progression by impeding lipid metabolism reprogramming, and inhibiting malignant behaviors through phospho-YES1 mediated inhibition of YAP1 and its downstream pathways. These findings suggest that ACSL3 may serve as a potential biomarker and target for comprehensive therapeutic strategies for breast cancer.

4.
Calcif Tissue Int ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953964

ABSTRACT

Ankle osteoarthritis is a relatively understudied condition and the molecular mechanisms involved in its development are not well understood. This investigation aimed to explore the role and underlying molecular mechanisms of Yes-associated protein (YAP) in rat ankle osteoarthritis. The results demonstrated that YAP expression levels were abnormally increased in the ankle osteoarthritis cartilage model. In addition, knockdown of YAP expression was shown to hinder the imbalance in ECM metabolism induced by IL-1ß in chondrocytes, as demonstrated by the regulation of matrix metalloproteinase (MMP)-3, MMP-9, and MMP-13, a disintegrin, metalloprotease with thrombospondin motifs, aggrecan, and collagen II expression. Additional studies revealed that downregulation of YAP expression markedly inhibited the overexpression of ß-catenin stimulated by IL-1ß. Furthermore, inhibition of the Wnt/ß-catenin signaling pathway reversed the ECM metabolism imbalance caused by YAP overexpression in chondrocytes. It is important to note that the YAP-specific inhibitor verteporfin (VP) significantly delayed the progression of ankle osteoarthritis. In conclusion, the findings highlighted the crucial role of YAP as a regulator in modulating the progression of ankle osteoarthritis via the Wnt/ß-catenin signaling pathway. These findings suggest that pharmacological inhibition of YAP can be an effective and critical therapeutic target for alleviating ankle osteoarthritis.

5.
Theranostics ; 14(9): 3653-3673, 2024.
Article in English | MEDLINE | ID: mdl-38948066

ABSTRACT

Rationale: Recent evidence highlights the pivotal role of mitochondrial dysfunction in mood disorders, but the mechanism involved remains unclear. We studied whether the Hippo/YAP/14-3-3η signaling pathway mediates mitochondrial abnormalities that result in the onset of major depressive disorder (MDD) in a mouse model. Methods: The ROC algorithm was used to identify a subpopulation of mice that were exposed to chronic unpredictable mild stress (CUMS) and exhibited the most prominent depressive phenotype (Dep). Electron microscopy, biochemical assays, quantitative PCR, and immunoblotting were used to evaluate synaptic and mitochondrial changes in the basolateral amygdala (BLA). RNA sequencing was used to explore changes in the Hippo pathway and downstream target genes. In vitro pharmacological inhibition and immunoprecipitation was used to confirm YAP/14-3-3η interaction and its role in neuronal mitochondrial dysfunction. We used virus-mediated gene overexpression and knockout in YAP transgenic mice to verify the regulatory effect of the Hippo/YAP/14-3-3η pathway on depressive-like behavior. Results: Transcriptomic data identified a large number of genes and signaling pathways that were specifically altered from the BLA of Dep mice. Dep mice showed notable synaptic impairment in BLA neurons, as well as mitochondrial damage characterized by abnormal mitochondrial morphology, compromised function, impaired biogenesis, and alterations in mitochondrial marker proteins. The Hippo signaling pathway was activated in Dep mice during CUMS, and the transcriptional regulatory activity of YAP was suppressed by phosphorylation of its Ser127 site. 14-3-3η was identified as an important co-regulatory factor of the Hippo/YAP pathway, as it can respond to chronic stress and regulate cytoplasmic retention of YAP. Importantly, the integrated Hippo/YAP/14-3-3η pathway mediated neuronal mitochondrial dysfunction and depressive behavior in Dep mice. Conclusion: The integrated Hippo/YAP/14-3-3η pathway in the BLA neuron is critical in mediating depressive-like behaviors in mice, suggesting a causal role for this pathway in susceptibility to chronic stress-induced depression. This pathway therefore may present a therapeutic target against mitochondrial dysfunction and synaptic impairment in MDD.


Subject(s)
Basolateral Nuclear Complex , Disease Models, Animal , Hippo Signaling Pathway , Mitochondria , Protein Serine-Threonine Kinases , Signal Transduction , YAP-Signaling Proteins , Animals , Mice , Mitochondria/metabolism , YAP-Signaling Proteins/metabolism , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Male , Stress, Psychological/complications , Stress, Psychological/metabolism , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/pathology , Depression/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Neurons/pathology , Mice, Transgenic
6.
J Bone Miner Metab ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981876

ABSTRACT

INTRODUCTION: Articular cartilage is the major affected tissue during the development of osteoarthritis (OA) in temporomandibular joint (TMJ). The core circadian rhythm molecule Bmal1 regulates chondrocyte proliferation, differentiation and apoptosis; however, its roles in condylar cartilage function and in TMJ OA have not been fully elucidated. MATERIALS AND METHODS: TMJ OA mouse model was induced by unilateral anterior crossbite (UAC) and Bmal1 protein expression in condylar cartilage were examined by western blot analysis. To determine the role of Bmal1 in TMJ OA, we generated cartilage-specific Bmal1 conditional knockout (cKO) mice (Bmal1Agc1CreER mice) and hematoxylin and eosin staining, toluidine blue and Safranin O/fast green, immunohistochemistry, TUNEL assay, real-time PCR analysis and Western blot assay were followed. RESULTS: Bmal1 expression was reduced in condylar cartilage in a TMJ OA mouse model induced by UAC. The Bmal1 cKO mice displayed decreased cartilage matrix synthesis, reduced chondrocyte proliferation, increased chondrocyte hypertrophy and apoptosis as well as the upregulation of YAP expression in TMJ condylar cartilage. CONCLUSIONS: We demonstrated that Bmal1 was essential for TMJ tissue homeostasis and loss-of-function of Bmal1 in chondrocytes leads to the development of TMJ OA.

7.
Glia ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989661

ABSTRACT

Rapid nerve conduction in the peripheral nervous system (PNS) is facilitated by the multilamellar myelin sheath encasing many axons of peripheral nerves. Charcot-Marie-Tooth type 1A (CMT1A), and hereditary neuropathy with liability to pressure palsy (HNPP) are common demyelinating inherited peripheral neuropathies and are caused by mutations in the peripheral myelin protein 22 (PMP22) gene. Duplication of PMP22 leads to its overexpression and causes CMT1A, while its deletion results in PMP22 under expression and causes HNPP. Here, we investigated novel targets for modulating the protein level of PMP22 in HNPP. We found that genetic attenuation of the transcriptional coactivator Yap in Schwann cells reduces p-TAZ levels, increased TAZ activity, and increases PMP22 in peripheral nerves. Based on these findings, we ablated Yap alleles in Schwann cells of the Pmp22-haploinsufficient mouse model of HNPP and identified fewer tomacula on morphological assessment and improved nerve conduction in peripheral nerves. These findings suggest YAP modulation may be a new avenue for treatment of HNPP.

8.
Bone ; 187: 117199, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992453

ABSTRACT

Cementum is a vital component of periodontium, yet its regeneration remains a challenge. Pentraxin 3 (PTX3) is a multifunctional glycoprotein involved in extracellular matrix remodeling and bone metabolism regulation. However, the role of PTX3 in cementum formation and cementoblast differentiation has not been elucidated. In this study, we initially observed an increase in PTX3 expression during cementum formation and cementoblast differentiation. Then, overexpression of PTX3 significantly enhanced the differentiation ability of cementoblasts. While conversely, PTX3 knockdown exerted an inhibitory effect. Moreover, in Ptx3-deficient mice, we found that cementum formation was hampered. Furthermore, we confirmed the presence of PTX3 within the hyaluronan (HA) matrix, thereby activating the ITGB1/FAK/YAP1 signaling pathway. Notably, inhibiting any component of this signaling pathway partially reduced the ability of PTX3 to promote cementoblast differentiation. In conclusion, our study indicated that PTX3 promotes cementum formation and cementoblast differentiation, which is partially dependent on the HA/ITGB1/FAK/YAP1 signaling pathway. This research will contribute to our understanding of cementum regeneration after destruction.

9.
Int J Biol Sci ; 20(9): 3412-3425, 2024.
Article in English | MEDLINE | ID: mdl-38993571

ABSTRACT

Chronic kidney disease (CKD) is linked to greater prevalence and rapid progression of calcific aortic valve disease (CAVD) characterized by valvular leaflet fibrosis and calcification. Fibroblast growth factor 23 (FGF23) level is elevated, and anti-aging protein Klotho is reduced in CKD patients. However, the roles of FGF23 and Klotho in the mechanism of aortic valve fibrosis and calcification remain unclear. We hypothesized that FGF23 mediates CKD-induced CAVD by enhancing aortic valve interstitial cell (AVIC) fibrosis and calcification, while soluble Klotho inhibits FGF23 effect. Methods and Results: In an old mouse model of CKD, kidney damages were accompanied by aortic valve thickening and calcification. FGF23 levels in plasma and aortic valve were increased, while Klotho levels were decreased. Recombinant FGF23 elevated the inflammatory, fibrogenic, and osteogenic activities in AVICs. Neutralizing antibody or shRNA targeting FGF23 suppressed the pathobiological activities in AVICs from valves affected by CAVD. FGF23 exerts its effects on AVICs via FGF receptor (FGFR)/Yes-associated protein (YAP) signaling, and inhibition of FGFR/YAP reduced FGF23's potency in AVICs. Recombinant Klotho downregulated the pathobiological activities in AVICs exposed to FGF23. Incubation of FGF23 with Klotho formed complexes and decreased FGF23's potency. Further, treatment of CKD mice with recombinant Klotho attenuated aortic valve lesions. Conclusion: This study demonstrates that CKD induces FGF23 accumulation, Klotho insufficiency and aortic valve lesions in old mice. FGF23 upregulates the inflammatory, fibrogenic and osteogenic activities in AVICs via the FGFR/YAP signaling pathway. Soluble Klotho suppresses FGF23 effect through molecular interaction and is capable of mitigating CKD-induced CAVD.


Subject(s)
Aortic Valve , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Glucuronidase , Klotho Proteins , Renal Insufficiency, Chronic , Klotho Proteins/metabolism , Fibroblast Growth Factor-23/metabolism , Animals , Renal Insufficiency, Chronic/metabolism , Glucuronidase/metabolism , Fibroblast Growth Factors/metabolism , Mice , Aortic Valve/metabolism , Aortic Valve/pathology , Calcinosis/metabolism , Male , Signal Transduction , Mice, Inbred C57BL , Humans , Aortic Valve Stenosis/metabolism , Disease Models, Animal
10.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38979373

ABSTRACT

Hippo pathway functions as a tumor suppressor pathway by inhibiting the oncogenic potential of pathway effectors YAP/TAZ. However, YAP can also function as a context-dependent tumor suppressor in several types of cancer including clear cell renal cell carcinomas (ccRCC). Here we show that YAP blocks NF-κB signaling in ccRCC to inhibit cancer cell growth. Mechanistically, YAP inhibits the expression of ZHX2, a critical p65 co-factor in ccRCC. Furthermore, YAP competes with ZHX2 for binding to p65. Consequently, elevated nuclear YAP blocks the cooperativity between ZHX2 and p65, leading to diminished NF-κB target gene expression. Pharmacological inhibition of Hippo/MST1/2 blocked NF-κB transcriptional program and suppressed ccRCC cancer cell growth, which can be rescued by ZHX2/p65 overexpression. Our study uncovers a novel crosstalk between the Hippo and NF-κB pathways and its involvement in ccRCC growth inhibition, suggesting that targeting the Hippo pathway may provide a therapeutical opportunity for ccRCC treatment.

11.
EMBO Rep ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009833

ABSTRACT

RAS GTPases bind effectors to convert upstream cues to changes in cellular function. Effectors of classical H/K/NRAS are defined by RBD/RA domains which recognize the GTP-bound conformation of these GTPases, yet the specificity of RBD/RAs for over 160 RAS superfamily proteins remains poorly explored. We have systematically mapped interactions between BRAF and four RASSF effectors, the largest family of RA-containing proteins, with all RAS, RHO and ARF small GTPases. 39 validated complexes reveal plasticity in RASSF binding, while BRAF demonstrates tight specificity for classical H/K/NRAS. Complex between RASSF5 and diverse RAS GTPases at the plasma membrane can activate Hippo signalling and sequester YAP in the cytosol. RASSF8 undergoes liquid-liquid phase separation and resides in YAP-associated membraneless condensates, which also engage several RAS and RHO GTPases. The poorly studied RASSF3 has been identified as a first potential effector of mitochondrial MIRO proteins, and its co-expression with these GTPases impacts mitochondria and peroxisome distribution. These data reveal the complex nature of GTPase-effector interactions and show their systematic elucidation can reveal completely novel and biologically relevant cellular processes.

12.
Mol Carcinog ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016677

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with poor prognosis and inadequate response to treatment, such as gemcitabine (Gem), the first-line chemotherapeutic drug. Understanding the molecular determinants that control drug resistance to Gem is critical to predict potentially responsive patients and improve the benefits of Gem therapy. Emerging evidence suggests that certain developmental pathways, such as Hippo signaling, are aberrated and play important roles in Gem resistance in cancers. Although Hippo signaling has been reported to play a role in chemoresistance in cancers, it has not been clarified which specific target gene(s) functionally mediates the effect. In the present study, we found that YAP serves as a potent barrier for the cellular sensitivity of PDAC cells to Gem. We then identified and characterized laminin subunit beta 3 (LAMB3) as a bona fide target of YAP-TEAD4 to amplify YAP signaling via a feedback loop. Such a YAP-LAMB3 axis is critical to induce epithelial-mesenchymal transition and mediate Gem resistance. Taken together, we uncovered that YAP-LAMB3 axis is an important regulator of Gem, thus providing potential therapeutic targets for overcoming Gem resistance in PDAC.

13.
Free Radic Biol Med ; 222: 456-466, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950659

ABSTRACT

Hepatocellular carcinoma (HCC), the primary form of liver cancer, is the third leading cause of cancer-related death globally. Hernandonine is a natural alkaloid derived from Hernandia nymphaeifolia that has been shown to exert various biological functions. In a previous study, hernandonine was shown to suppress the proliferation of several solid tumor cell lines without affecting normal human cell lines. However, little is known about the effect of hernandonine on HCC. Therefore, this study aimed to investigate the effect and mechanism of hernandonine on HCC in relation to autophagy. We found that hernandonine inhibited HCC cell growth in vitro and in vivo. In addition, hernandonine elicited autophagic cell death and DNA damage in HCC cells. RNA-seq analysis revealed that hernandonine upregulated p53 and Hippo signaling pathway-related genes in HCC cells. Small RNA interference of p53 resulted in hernandonine-induced autophagic cell death attenuation. However, inhibition of YAP sensitized HCC cells to hernandonine by increasing the autophagy induction. This is the first study to illustrate the complex involvement of p53 and YAP in the hernandonine-induced autophagic cell death in human HCC cells. Our findings provide novel evidence for the potential of hernandonine as a therapeutic agent for HCC treatment.

14.
Biochim Biophys Acta Gen Subj ; 1868(9): 130666, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955313

ABSTRACT

BACKGROUND: Diabetic stress acts on the cardiac tissue to induce cardiac hypertrophy and fibrosis. Diabetes induced activated renin angiotensin system (RAS) has been reported to play a critical role in mediating cardiac hypertrophy and fibrosis. Angiotensin converting enzyme (ACE) in producing Angiotensin-II, promotes cardiomyocyte hypertrophy and fibrotic damage. ACE2, a recently discovered molecule structurally homologous to ACE, has been reported to be beneficial in reducing the effect of RAS driven pathologies. METHODS: In vivo diabetic mouse model was used and co-labelling immunostaining assay have been performed to analyse the fibrotic remodeling and involvement of associated target signaling molecules in mouse heart tissue. For in vitro analyses, qPCR and western blot experiments were performed in different groups for RNA and protein expression analyses. RESULTS: Fibrosis markers were observed to be upregulated in the diabetic mouse heart tissue as well as in high glucose treated fibroblast and cardiomyocyte cells. Hyperglycemia induced overexpression of YAP1 leads to increased expression of ß-catenin (CTNNB1) and ACE with downregulated ACE2 expression. The differential expression of ACE/ACE2 promotes TGFB1-SMAD2/3 pathway in the hyperglycemic cardiomyocyte and fibroblast resulting in increased cardiac fibrotic remodeling. CONCLUSION: In the following study, we have reported YAP1 modulates the RAS signaling pathway by inducing ACE and inhibiting ACE2 activity to augment cardiomyocyte hypertrophy and fibrosis in hyperglycemic condition. Furthermore, we have shown that hyperglycemia induced dysregulation of ACE-ACE2 activity by YAP1 promotes cardiac fibrosis through ß-catenin/TGFB1 dependent pathway.

15.
Biol Cell ; : e202400034, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949568

ABSTRACT

BACKGROUND INFORMATION: One of the confounding factors in pancreatic cancer (PC) pathogenesis is hyperglycemia. The molecular mechanism by which high glucose (HG) influences PC severity is poorly understood. Our investigation delved into the impact of lncRNA highly upregulated in liver cancer (HULC) and its interaction with yes-associated protein (YAP) in regulating the fate of pancreatic ductal adenocarcinoma cells (PDAC) under HG-induced conditions. PDAC cells were cultured under normal or HG conditions. We thereafter measured the effect of HG on the viability of PDAC cells, their migration potential and drug resistance properties. The lncRNAs putatively dysregulated in PC and diabetes were shortlisted by bioinformatics analysis followed by wet lab validation of function. RESULTS: HG led to enhanced proliferation and drug refractoriness in PDAC cells. HULC was identified as one of the major deregulated lncRNAs following bioinformatics analysis. HULC was found to regulate the expression of the potent transcriptional regulator - YAP through selective histone modifications at the YAP promoter. siRNA-mediated ablation of HULC resulted in a concurrent decrease in YAP transcriptional activity. Importantly, HULC and YAP were found to co-operatively regulate the cellular homeostatic process autophagy, thus inculcating drug resistance and proliferative potential in PDAC cells. Moreover, inhibition of autophagy or YAP led to a decrease in HULC levels, suggesting the existence of an inter-regulatory feedback loop. CONCLUSIONS: We observed that HG triggers aggressive properties in PDAC cells. Mechanistically, up-regulation of lncRNA HULC resulted in activation of YAP and differential regulation of autophagy coupled to increased proliferation of PDAC cells. SIGNIFICANCE: Inhibition of HULC and YAP may represent a novel therapeutic strategy for PDAC. Furthermore, this study portrays the intricate molecular interplay between HULC, YAP and autophagy in PDAC pathogenesis.

16.
J Biol Chem ; : 107512, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960037

ABSTRACT

The Hippo-YAP signaling pathway plays a central role in many biological processes such as regulating cell fate, organ size and tissue growth, and its key components are spatiotemporally expressed and post-translationally modified during these processes. Neddylation is a post-translational modification that involves the covalent attachment of NEDD8 to target proteins by NEDD8-specific E1-E2-E3 enzymes. Whether neddylation is involved in Hippo-YAP signaling remains poorly understood. Here, we provide evidence supporting the critical role of NEDD8 in facilitating the Hippo-YAP signaling pathway by mediating neddylation of the transcriptional coactivator Yes-associated protein 1 (YAP1). Overexpression of NEDD8 induces YAP1 neddylation and enhances YAP1 transactivity, but inhibition of neddylation suppresses YAP1 transactivity and attenuates YAP1 nuclear accumulation. Furthermore, inhibition of YAP1 signaling promotes MLN4924-induced GCs apoptosis and disruption of nedd8 in zebrafish results in downregulation of yap1-activated genes and upregulation of yap1-repressed genes. Further assays show that the xiap ligase promotes nedd8 conjugates to yap1 and that yap1 neddylation. In addition, we identify lysine 159 as a major neddylation site on YAP1. These findings reveal a novel mechanism for neddylation in the regulation of Hippo-YAP signaling.

17.
Br J Pharmacol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978400

ABSTRACT

BACKGROUND AND PURPOSE: This study investigated the involvement of discoidin domain receptor (DDR) in dry eye and assessed the potential of specific DDR inhibitors as a therapeutic strategy for dry eye by exploring the underlying mechanism. EXPERIMENTAL APPROACH: Dry eye was induced in Wistar rats by applying 0.2% benzalkonium chloride (BAC), after which rats were treated topically for 7 days with DDR1-IN-1, a selective inhibitor of DDR1. Clinical manifestations of dry eye were assessed on Day-7 post-treatment. Histological evaluation of corneal damage was performed using haematoxylin and eosin (H&E) staining. In vitro, immortalized human corneal epithelial cells (HCECs) exposed to hyperosmotic stress (HS) were treated with varying doses of DDR1-IN-1 for 24 h. The levels of lipid peroxidation in dry eye corneas or HS-stimulated HCECs were assessed. Protein levels of DDR1/DDR2 and related pathways were detected by western blotting. The cellular distribution of acyl-CoA synthetase long chain family member 4 (ACSL4) and Yes-associated protein (YAP) was evaluated using immunohistochemistry or immunofluorescent staining. KEY RESULTS: In dry eye corneas, only DDR1 expression was significantly up-regulated compared with normal controls. DDR1-IN-1 treatment significantly alleviated dry eye symptoms in vivo. The treatment remarkably reduced lipid hydroperoxide (LPO) levels and suppressed the expression of ferroptosis markers, particularly ACSL4. Overexpression or reactivation of YAP diminished the protective effects of DDR1-IN-1, indicating the involvement of the Hippo/YAP pathway in DDR1-targeted therapeutic effects. CONCLUSIONS AND IMPLICATIONS: This study confirms the significance of DDR1 in dry eye and highlights the potential of selective DDR1 inhibitor(s) for dry eye treatment.

18.
Int Immunopharmacol ; 138: 112614, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972212

ABSTRACT

Intestinal stem cells (ISCs) play a crucial role in maintaining the equilibrium and regenerative potential of intestinal tissue, thereby ensuring tissue homeostasis and promoting effective tissue regeneration following injury. It has been proven that targeting Toll-like receptors (TLRs) can help prevent radiation-induced damage to the intestine. In this study, we established an intestinal injury model using IR and evaluated the effects of CL429 on ISC regeneration both in vivo and in vitro. Following radiation exposure, mice treated with CL429 showed a significant increase in survival rates (100% survival in the treated group compared to 54.54% in the control group). CL429 also showed remarkable efficacy in inhibiting radiation-induced intestinal damage and promoting ISC proliferation and regeneration. In addition, CL429 protected intestinal organoids against IR-induced injury. Mechanistically, RNA sequencing and Western blot analysis revealed the activation of the Wnt and Hippo signaling pathways by CL429. Specifically, we observed a significant upregulation of YAP1, a key transcription factor in the Hippo pathway, upon CL429 stimulation. Furthermore, knockdown of YAP1 significantly attenuated the radioprotective effect of CL429 on intestinal organoids, indicating that CL429-mediated intestinal radioprotection is dependent on YAP1. In addition, we investigated the relationship between TLR2 and YAP1 using TLR2 knockout mice, and our results showed that TLR2 knockout abolished the activation of CL429 on YAP1. Taken together, our study provides evidence supporting the role of CL429 in promoting ISC regeneration through activation of TLR2-YAP1. And further investigation of the interaction between TLRs and other signaling pathways may enhance our understanding of ISC regeneration after injury.

19.
J Exp Clin Cancer Res ; 43(1): 200, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030638

ABSTRACT

BACKGROUND: The progression of non-small cell lung cancer (NSCLC) is significantly influenced by circular RNAs (circRNAs), especially in tumor hypoxia microenvironment. However, the precise functions and underlying mechanisms of dysregulated circRNAs in NSCLC remain largely unexplored. METHODS: Differentially expressed circRNAs in NSCLC tissues were identified through high-throughput RNA sequencing. The characteristics of circ_0007386 were rigorously confirmed via Sanger sequencing, RNase R treatment and actinomycin D treatment. The effects of circ_0007386 on proliferation and apoptosis were investigated using CCK8, cloning formation assays, TUNEL staining, and flow cytometry assays in vitro. In vivo, xenograft tumor models were used to evaluate its impact on proliferation. Mechanistically, the regulatory relationships of circ_0007386, miR-383-5p and CIRBP were examined through dual luciferase reporter assays and rescue experiments. Additionally, we detected the binding of EIF4A3 to CRIM1 pre-mRNA by RNA immunoprecipitation and the interaction between YAP1 and EIF4A3 under hypoxic conditions by co-immunoprecipitation. RESULTS: Our investigation revealed a novel circRNA, designated as circ_0007386, that was upregulated in NSCLC tissues and cell lines. Circ_0007386 modulated proliferation and apoptosis in NSCLC both in vitro and in vivo. Functionally, circ_0007386 acted as a sponge for miR-383-5p, targeting CIRBP, which influenced NSCLC cell proliferation and apoptosis via the PI3K/AKT signaling pathway. Furthermore, under hypoxic conditions, the interaction between YAP1 and EIF4A3 was enhanced, leading to the displacement of EIF4A4 from binding to CRIM1 pre-mRNA. This facilitated the back-splicing of CRIM1 pre-mRNA, increasing the formation of circ_0007386. The circ_0007386/miR-383-5p/CIRBP axis was significantly associated with the clinical features and prognosis of NSCLC patients. CONCLUSIONS: Circ_0007386, regulated by YAP1-EIF4A3 interaction under hypoxia conditions, plays an oncogenic role in NSCLC progression via the miR-383-5p/CIRBP axis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Disease Progression , Eukaryotic Initiation Factor-4A , Lung Neoplasms , RNA, Circular , YAP-Signaling Proteins , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , RNA, Circular/genetics , RNA, Circular/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Animals , YAP-Signaling Proteins/metabolism , Mice , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Female , Cell Line, Tumor , Cell Proliferation , RNA Precursors/metabolism , RNA Precursors/genetics , Male , RNA Splicing , Apoptosis , MicroRNAs/genetics , MicroRNAs/metabolism , Mice, Nude , Gene Expression Regulation, Neoplastic , DEAD-box RNA Helicases
20.
Acta Pharm Sin B ; 14(7): 2992-3008, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027236

ABSTRACT

Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is widely prescribed for hyperlipidemia management. Recent studies also showed that it has therapeutic potential in various liver diseases. However, its effects on hepatomegaly and liver regeneration and the involved mechanisms remain unclear. Here, the study showed that fenofibrate significantly promoted liver enlargement and regeneration post-partial hepatectomy in mice, which was dependent on hepatocyte-expressed PPARα. Yes-associated protein (YAP) is pivotal in manipulating liver growth and regeneration. We further identified that fenofibrate activated YAP signaling by suppressing its K48-linked ubiquitination, promoting its K63-linked ubiquitination, and enhancing the interaction and transcriptional activity of the YAP-TEAD complex. Pharmacological inhibition of YAP-TEAD interaction using verteporfin or suppression of YAP using AAV Yap shRNA in mice significantly attenuated fenofibrate-induced hepatomegaly. Other factors, such as MYC, KRT23, RAS, and RHOA, might also participate in fenofibrate-promoted hepatomegaly and liver regeneration. These studies demonstrate that fenofibrate-promoted liver enlargement and regeneration are PPARα-dependent and partially through activating the YAP signaling, with clinical implications of fenofibrate as a novel therapeutic agent for promoting liver regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...