Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 787
Filter
1.
Meat Sci ; 216: 109586, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38972104

ABSTRACT

Realizing the market value of grassland resources is of great significance to finding a balance between ecological protection and economic development. As a unique livestock animal that is native to the Qinghai-Xizang Plateau, the yak plays an important role in maintaining ecosystem stability, ensuring the livelihoods of herdsmen, promoting socio-economic development, and preserving ethnic cultural traditions. However, given its small market share, little is known about the factors that drive Chinese consumer preferences for yak meat. This study aimed to investigate consumer preferences for yak meat by means of an online survey involving a sample of 2999 respondents from five cities in China. The best-worst scaling method was employed to measure the relative importance of different attributes of yak meat by using a purchasing scenario. The results indicated that quality-safety certification, freshness, and production sustainability were regarded as the most preferred attributes, whereas animal welfare, brand, and the purchasing channel were found to be the least preferred. In addition, significant heterogeneity was detected in consumer preferences. Consumers were divided into three classes, namely 'Price Sensitive Consumers,' 'Environmentally Friendly Consumers,' and 'Yak Meat Inclined Consumers,' respectively. Our findings might be helpful for policymakers and yak meat producers to develop targeted strategies to facilitate the sale of yak meat and then restore degraded grasslands.

2.
Meat Sci ; 216: 109570, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38908105

ABSTRACT

The work aimed to study the effect of four drying methods, namely constant temperature hot air drying (HD), microwave drying (MD), hot air microwave drying (HMD), and gradient hot air drying (GHD), on quality characteristics of dried yak meat. The analyses of physicochemical, textural, flavor, and sensory characteristics were carried out based on these four drying methods. The results revealed that microwave dried yak jerky exhibited better color and received the highest sensory score. Hardness of samples were affected by the drying methods, which showed significant differences. There were 21 free amino acids (FAAs) detected in dried yak samples. The samples treated by microwave drying showed the highest total free amino acid content (73.30 mg/100 g) and the EUC value was significantly higher than other methods, indicating the sample displayed greater flavor. A total of 153 volatile compounds were identified in dried yak meat samples, primarily including aldehydes, ketones, and esters. Moreover, the sensory evaluation indicated that the drying methods could significantly affect on color, flavor, and overall acceptability of different samples. Microwave drying samples scored higher than other drying methods. Overall, considering aspects of quality, time savings, and energy efficiency, microwave drying of yak jerky emerges as a more satisfactory option. This study could provide important theoretical support for the application of drying methods to improve the quality of yak jerky and enhance production efficiency.

3.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38832496

ABSTRACT

Subei yak is an essential local yak in the Gansu Province, which genetic resource has recently been discovered. It is a meat-milk dual-purpose variety with high fecundity and relatively stable population genetic structure. However, its population genetic structure and genetic diversity are yet to be reported. Therefore, this study aimed to identify molecular markers of Subei yak genome by whole-genome resequencing, and to analyze the population structure and genetic diversity of Subei yak. This study screened 12,079,496 single nucleotide polymorphism (SNP) molecular markers in the 20 Subei yaks genome using whole-genome resequencing technology. Of these SNPs, 32.09% were located in the intronic region of the genome. Principal component analysis, phylogenetic analysis, and population structure analysis revealed that the Subei yak belonged to an independent group in the domestic yak population. A selective clearance analysis was carried out on Subei yak and other domestic yaks, and the genes under positive selection were annotated. The functional enrichment analysis showed that Subei yak possessed prominent selection characteristics in terms of external environment perception, hypoxia adaptation, and muscle development. Furthermore, Subei yak showed excellent muscle fat deposition and meat quality traits. Thus, this study will serve as a reference for discovering population structure, genetic evolution, and other unique traits of Subei yak and for expanding the genetic variation catalog of yaks.


Subei yak is an important local yak genetic resource newly discovered in Gansu Province. In this study, the molecular markers of Subei yak genome were identified by whole-genome resequencing. Principal component analysis, phylogenetic analysis, and population structure analysis showed that Subei yak belonged to an independent group in the domestic yak population. In addition, functional enrichment analysis showed that Subei yaks had prominent selection characteristics in external environment perception, hypoxia adaptation, and muscle development.


Subject(s)
Polymorphism, Single Nucleotide , Whole Genome Sequencing , Animals , Cattle/genetics , Whole Genome Sequencing/veterinary , Genome , Phylogeny , Genetic Variation , Meat/analysis
4.
Front Vet Sci ; 11: 1393136, 2024.
Article in English | MEDLINE | ID: mdl-38919156

ABSTRACT

Introduction: Grassland-livestock balance is an important principle of sustainable development of grassland livestock production and grassland ecosystem health. Grassland degradation becomes more serious at global scales and especially at the area that is sensitive to climate change and human activities. Decreases in pasture biomass and shifts in plant community composition in degraded grasslands can largely affect grazing behaviors of livestock. Up to date, however, it is unclear that whether livestock behaviors change across spatial and temporal scales and what key factors are to shape observed behavioral patterns of livestock. Methods: Here, yak behaviors including grazing, rumination and walking on the eastern Qinghai-Tibetan Plateau (QTP) were monitored by a continuous visual observation, to investigate temporal and spatial variations of grazing behavior of yaks (Bos grunniens); based on the data from public database in the past 18 years, a meta-analysis was conducted to examine the main factors that affect grazing behaviors and intake of yaks. Results: We showed that grazing behaviors of yaks differed significantly within hours, among hours of each day and among days as well as across different observation sites. Intake rate of yaks was higher in the morning than in the afternoon, but walking speed showed an inverse trend compared with intake rate. Resting, altitude, the mean annual precipitation (MAP), the mean annual temperature (MAT), forage ash, yak age and season were the main predictors for yak intake, and forage and yak individual characteristics had direct effects on grazing behaviors and intake of yaks. Discussion: The findings confirm that grazing behaviors of yaks can vary even at small temporal scales and regional scales, which is closely related to the shift in forage quality and biomass caused by environmental changes. The study suggests that multiple factors can be responsible for the variation in livestock behaviors and shifts in behavioral patterns may consequently lead to positive or negative feedback to grassland ecosystems through plant-animal interactions.

5.
Food Chem ; 457: 140028, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38917561

ABSTRACT

The gold standard of milk is human milk, not cow milk. The present study expects to explored the comprehensive nutritional value of different kinds of milk and the differences between them through multi-omics analysis and found functional components that are more similar to human milk. This study employed untargeted LC-MS/MS metabolomics, untargeted LC-MS/MS lipidomics, and 4D label-free proteomics analysis techniques. The findings revealed substantial disparities in metabolites, lipids, and proteins among the five types of milk. Notably, pig milk exhibited a remarkable abundance of N-acetylneuraminic acid (Neu5Ac) and specific polar lipids. Yak milk stood out with significantly elevated levels of creatine and lipoprotein lipase (LPL) compared to other species. Buffalo milk boasted the highest concentrations of L-isoleucine, echinocystic acid, and alkaline phosphatase, tissue-nonspecific isozyme (ALPL). The concentrations of iminostilbene and osteopontin (OPN) were higher in cow milk.

6.
Foods ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928854

ABSTRACT

Yak milk, known as the "liquid gold", is a nutritious food with extensive consumption. Compared with cow milk, yak milk contains higher levels of nutrients such as dry matter, milk fat, and milk protein, which demonstrates great potential for exploitation and utilization. Protein kinase cGMP-dependent 1 (PRKG1) is an important functional molecule in the cGMP signaling pathway, and its significant influence on milk fatty acids has been discovered. The aim of this study is to explore the correlation between single nucleotide polymorphisms (SNPs) in the PRKG1 gene and the quality traits of Gannan yak milk in order to identify candidate molecular markers for Gannan yak breeding. In this study, genotyping was performed on 172 healthy, 4-5-year-old lactating Gannan yaks with similar body types, naturally grazed, and two to three parity. Three SNPs (g.404195C>T, g.404213C>T, and g.760138T>C) were detected in the PRKG1 gene of Gannan yaks, which were uniformly distributed in the yak population. Linkage disequilibrium analysis was conducted, revealing complete linkage disequilibrium between g.404195C>T and g.404213C>T. After conducting a correlation analysis between SNPs in the PRKG1 gene and milk quality in Gannan yaks, we found that PRKG1 SNPs significantly increased the content of casein, protein, and SNFs in yak milk. Among them, the TT homozygous genotype at the PRKG1 g.404195C>T loci exhibited higher casein and protein contents compared to the CC and CT genotypes (p < 0.05). The SNP g.760138T>C locus was associated with casein, protein, SNFs, and TS traits (p < 0.05). The CC genotype had higher casein and protein contents than the TT and TA genotypes (p < 0.05). However, there were no significant differences in milk fat, lactose, and acidity among the three genotypes (p > 0.05). In summary, PRKG1 gene polymorphism can serve as a candidate molecular marker for improving milk quality in Gannan yaks.

7.
Animals (Basel) ; 14(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38929369

ABSTRACT

This study investigated the effects of the dietary protein level and rumen-protected methionine and lysine (RPML) on the growth performance, rumen fermentation, and serum indexes of yaks. Thirty-six male yaks were randomly assigned to a two by three factorial experiment with two protein levels, 15.05% and 16.51%, and three RPML levels: 0% RPML; 0.05% RPMet and 0.15% RPLys; and 0.1% RPMet and 0.3% RPLys. The trial lasted for sixty days. The results showed that the low-protein diet increased the DMI and feed conversion ratio of yaks. The diet supplemented with RPML increased the activities of IGF1 and INS and nutrient digestibility. The high-protein diet decreased the rumen butyrate concentration and increased the rumen isovalerate concentration. The low-protein diet supplemented with RPML increased the rumen pH and the concentrations of total volatile fatty acids, butyrate and NH3-N; the high-protein diet supplemented with a high level of RPML decreased the rumen pH and the concentrations of isobutyrate, isovalerate, propionate and NH3-N. The low-protein diet supplemented with RPML increased the total antioxidant capacity and glutathione peroxidase activity, along with the concentrations of malondialdehyde and amino acids such as aspartic acid, lysine, cysteine, etc. In conclusion, a low-protein diet supplemented with RPML is beneficial for rumen and body health, physiological response, and metabolic status in yaks.

8.
Animals (Basel) ; 14(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38929423

ABSTRACT

3-nitropropionic acid (3NPA) has been proposed as an useful modifier to mitigate ruminal enteric methane emissions. However, few studies investigated the effects of 3NPA on ruminal fermentation characteristics of grazing ruminants in vitro. Rumen fluid from grazing yak and cattle were collected and incubated with additions of 0, 8, and 16 mM 3NPA. The total gas production, CH4 production, and dry matter digestibility significantly decreased with increasing 3NPA doses in both ruminant species (p < 0.05) and methane production decreased to almost 100% in cattle at 8 mM NPA but not yak, while H2 accumulation showed an opposite trend. The total fatty acid (TVFA) production, acetate concentration, and propionate concentration in cattle decreased as 3NPA doses increased at 12 and 24 h incubation. For yak, the H2 accumulation reached its apex at 8 mM NPA (p < 0.05). The TVFA in yak decreased significantly with increasing 3NPA doses at 12 and 72 h incubation. Moreover, the acetate concentration and propionate concentration in yak decreased as 3NPA doses increased at 12 and 24 h incubation. Overall, these findings demonstrated that 3NPA could be used as a strategy to mitigate methane emissions; although, it negatively affected the dry matter degradability in vitro.

9.
Microorganisms ; 12(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38930503

ABSTRACT

The yak (Poephagus grunniens) has evolved unique adaptations to survive the harsh environment of the Qinghai-Tibetan Plateau, while their gut microorganisms play a crucial role in maintaining the health of the animal. Gut microbes spread through the animal population not only by horizontal transmission but also vertically, which enhances microbial stability and inheritance between generations of the population. Homogenization of gut microbes in different animal species occurs in the same habitat, promoting interspecies coexistence. Using the yak as a model animal, this paper discusses the adaptive strategies under extreme environments, and how the gut microbes of the yak circulate throughout the Tibetan Plateau system, which not only affects other plateau animals such as plateau pikas, but can also have a profound impact on the health of people. By examining the relationships between yaks and their gut microbiota, this review offers new insights into the adaptation of yaks and their ecological niche on the Qinghai-Tibetan plateau.

10.
Sci Rep ; 14(1): 13010, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844489

ABSTRACT

Studies on Bdellovibrio and like organisms (BALOs), obligate predatory bacteria, have highlighted the possibility of regulating bacteria and biofilms; however, yak-derived BALOs are yet to be reported. We aimed to characterize the BALOs isolated and identified from yak (Bos grunniens) feces and examine application potential. BALOs were isolated from healthy yak fecal samples, with Escherichia coli (ATCC 25922) as prey using the double-layer agar method, identified by transmission electron microscopy (TEM), and the specific 16S rDNA sequencing analysis. Sequencing of the 16S rDNA gene indicated that this isolate was 91% similar to the Bdellovibrio sp. NC01 reference strain and was named YBD-1. Proportion of YBD-1 lysed bacteria is 12/13. The YBD-1 showed best growth at 25-40°C, 0-0.25% (w/v) NaCl, and pH 6.5-7.5. YBD-1 significantly reduced the planktonic cells and biofilms of E.coli in co-culture compared to the E.coli group. Additionally, SEM analysis indicated that YBD-1 significantly reduced biofilm formation in E. coli. Furthermore, quantitative Real Time-polymerase chain reaction (qRT-PCR) showed that the expression of the virulence genes fim and iroN and the genes pgaABC involved in biofilm formation went down significantly. We concluded that YBD-1 may have the potential to control bacterial growth and biofilm-associated bacterial illnesses.


Subject(s)
Bdellovibrio , Biofilms , Escherichia coli , Feces , Animals , Feces/microbiology , Cattle , Biofilms/growth & development , Escherichia coli/genetics , Escherichia coli/isolation & purification , Bdellovibrio/genetics , Bdellovibrio/isolation & purification , Bdellovibrio/physiology , RNA, Ribosomal, 16S/genetics , Phylogeny
11.
Foods ; 13(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38890842

ABSTRACT

A single-nucleotide polymorphism (SNP) is a genome-level trait that arises from a variation in a single nucleotide, leading to diversity in DNA sequences. SNP screening is commonly used to provide candidate genes for yak breeding efforts. Integrin Subunit Alpha 9 (ITGA9) is an integrin protein. It plays an important role in cell adhesion, signalling, and other processes. The aim of this study was to discuss the association between genetic polymorphisms in the ITGA9 gene and milk quality traits and to identify potential molecular marker loci for yak breeding quality. We genotyped 162 yaks using an Illumina Yak cGPS 7K liquid chip and identified the presence of polymorphisms at nine SNP loci in the ITGA9 gene of yaks. The results showed that the mutant genotypes in the loci g.285,808T>A, g.306,600T>C, and g.315,413C>T were positively correlated with the contents of casein, protein, total solids (TS), and solid nonfat (SNF) in yak milk. In other loci, heterozygous genotypes had a positive correlation with nutrient content in yak milk. Then, two ITGA9 haplotype blocks were constructed based on linkage disequilibrium, which facilitated a more accurate screening of ITGA9 as a candidate gene for yak milk quality improvement. In conclusion, we identified SNPs and haplotype blocks related to yak milk quality traits and provided genetic resources for marker-assisted selection in yak breeding.

12.
Animals (Basel) ; 14(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891617

ABSTRACT

Despite the crucial role of the gut microbiota in different physiological processes occurring in the animal body, reports regarding the gut microbiota of animals residing in different environmental conditions like high altitude and different climate settings are limited. The Qinghai-Tibetan Plateau is renowned for its extreme climatic conditions that provide an ideal environment for exploring the effects of high altitude and temperature on the microbiota of animals. Yaks have unique oxygen delivery systems and genes related to hypoxic response. Damxung, Nyêmo, and Linzhou counties in Tibet have variable altitudes and temperatures that offer distinct settings for studying yak adaptation to elevated terrains. The results of our study suggest that amplicon sequencing of V3-V4 and internal transcribed spacer 2 (ITS2) regions yielded 13,683 bacterial and 1912 fungal amplicon sequence variants (ASVs). Alpha and beta diversity indicated distinct microbial structures. Dominant bacterial phyla were Firmicutes, Bacteroidota, and Actinobacteriota. Genera UCG-005, Christensenellaceae_R-7_group, and Rikenellaceae_RC9_gut_group were dominant in confined yaks living in Damxung county (DXS) and yaks living in Linzhou county (LZS), whereas UCG-005 prevailed in confined yaks living in Nyêmo county (NMS). The linear discriminant analysis effect size (LEfSe) analysis highlighted genus-level differences. Meta-stat analysis revealed significant shifts in bacterial and fungal community composition in yaks at different high altitudes and temperatures. Bacterial taxonomic analysis revealed that two phyla and 32 genera differed significantly (p < 0.05). Fungal taxonomic analysis revealed that three phyla and four genera differed significantly (p < 0.05). Functional predictions indicated altered metabolic functions, especially in the digestive system of yaks living in NMS. This study reveals significant shifts in yak gut microbiota in response to varying environmental factors, such as altitude and temperature, shedding light on previously unexplored aspects of yak physiology in extreme environments.

13.
J Agric Food Chem ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850252

ABSTRACT

Protein lysine lactylation, a recently discovered post-translational modification (PTM), is prevalent across tissues and cells of diverse species, serving as a regulator of glycolytic flux and biological metabolism. The yak (Bos grunniens), a species that has inhabited the Qinghai-Tibetan Plateau for millennia, has evolved intricate adaptive mechanisms to cope with the region's unique geographical and climatic conditions, exhibiting remarkable energy utilization and metabolic efficiency. Nonetheless, the specific landscape of lysine lactylation in yaks remains poorly understood. Herein, we present the first comprehensive lactylome profile of the yak, effectively identifying 421, 308, and 650 lactylated proteins in the heart, muscles, and liver, respectively. These lactylated proteins are involved in glycolysis/gluconeogenesis, the tricarboxylic acid cycle, oxidative phosphorylation, and metabolic process encompassing carbohydrates, lipids, and proteins during both anaerobic and aerobic glucose bio-oxidation, implying their crucial role in material and energy metabolism, as well as in maintaining homeostasis in yaks.

14.
J Sci Food Agric ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828699

ABSTRACT

BACKGROUND: The global prevalence of iron deficiency has posed significant public health risks. Animal-derived collagen peptides have been recognized for their potent metal ion-chelating capabilities, which can greatly enhance the bioavailability of iron. Yak skins, typically discarded during production and processing, serve as a valuable resource. Based on yak skin collagen peptide (YSP), we have developed a novel iron-chelating peptide: yak skin collagen iron-chelating peptide (YSP-Fe). RESULTS: The maximum level of iron chelation of YSP-Fe achieved was 42.72 ± 0.65 mg g-1. Structural analysis indicated that YSP-Fe was primarily formed from amino, carboxyl and carbonyl groups combined with ferrous ions. Through examination of the amino acid composition, molecular docking and peptide sequence identification, it was determined that Gly, Asp and Arg played crucial roles in the chelation of ferrous ions by YSP. Furthermore, YSP-Fe was more stable in simulated gastrointestinal digestion compared to FeSO4. CONCLUSION: YSP-Fe demonstrated dual benefits of iron supplementation and antioxidant effects. These significant findings provide a foundation for the development of novel iron supplements and the effective utilization of yak skin as a valuable resource. © 2024 Society of Chemical Industry.

15.
Genomics ; 116(4): 110872, 2024 07.
Article in English | MEDLINE | ID: mdl-38849017

ABSTRACT

Cattle-yak is a hybrid offspring resulting from the crossbreeding of yak and cattle, and it exhibits substantial heterosis in production performance. However, male sterility in cattle-yak remains a concern. Reports suggest that noncoding RNAs are involved in the regulation of spermatogenesis. Therefore, in this study, we comprehensively compared testicular transcription profiles among cattle, yak, and cattle-yak. Numerous differentially expressed genes (DEGs), differentially expressed circRNAs (DECs), and differentially expressed miRNAs (DEMs) were identified in the intersection of two comparison groups, namely cattle versus cattle-yak and yak versus cattle-yak, with the number of DEGs, DECs, and DEMs being 4968, 360, and 59, respectively. The DEGs in cattle-yaks, cattle, and yaks were mainly associated with spermatogenesis, male gamete generation, and sexual reproduction. Concurrently, GO and KEGG analyses indicated that DEC host genes and DEM source genes were involved in the regulation of spermatogenesis. The construction of a potential competing endogenous RNA network revealed that some differentially expressed noncoding RNAs may be involved in regulating the expression of genes related to testicular spermatogenesis, including miR-423-5p, miR-449b, miR-34b/c, and miR-15b, as well as previously unreported miR-6123 and miR-1306, along with various miRNA-circRNA interaction pairs. This study serves as a valuable reference for further investigations into the mechanisms underlying male sterility in cattle-yaks.


Subject(s)
Gene Regulatory Networks , MicroRNAs , RNA, Circular , RNA, Messenger , Testis , Cattle/genetics , Cattle/metabolism , Animals , Male , Testis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spermatogenesis/genetics , Transcriptome , RNA, Competitive Endogenous
16.
Front Vet Sci ; 11: 1362502, 2024.
Article in English | MEDLINE | ID: mdl-38721150

ABSTRACT

The yak, a unique species of cattle found exclusively on the western plateau of China, is a valuable source of livelihood for local residents. However, their low fecundity restricts the expansion of yak farming, whereas regional factors limit studies on yak breeding. Granulosa cells (GCs), which provide essential steroid hormones and growth factors for oocytes, have been the focus of many studies on the mechanisms of follicular growth and atresia. This study aimed to establish an immortalized cell line model that could serve as a tool for future studies on the mechanisms of ovarian follicle development in yaks. First, we isolated primary yak granulosa cells (yGCs) and evaluated their replicative senescence after continuous in vitro subculturing. Subsequently, an immortalized culture method for primary yGC was explored, and a new cell line model was established to study the mechanism of follicular development in vitro. We used a mammalian gene expression lentivirus vector to transfer the simian virus 40 large T antigen (SV40T) into primary yGC to obtain an immortalized cell line. The immortalized yGCs were morphologically identical to the primary yGCs, and cell proliferation and growth were normal within a limited number of generations. Follicle-stimulating hormone receptor (FSHR), a specific marker for GCs, was positively expressed in immortalized yGCs. Furthermore, the immortalized yGCs retained the ability of GCs to synthesize estradiol and progesterone and expressed genes related to steroid synthesis. The establishment of immortalized yGC opens up a myriad of possibilities for advancing our understanding of yak reproductive biology and improving yak breeding strategies.

17.
Se Pu ; 42(5): 465-473, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736390

ABSTRACT

A method based on gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) coupled with one-step QuEChERS technique was developed for the simultaneous determination of 15 N-nitrosamines in air-dried yak meat. The hydration volume, extraction solvent, extracting salt, and cleaning material were optimized according to the characteristics of the N-nitrosamines and sample matrix. The optimized conditions were as follows: 10 mL of purified water for sample hydration, acetonitrile as the extraction solvent for the sample after hydration, 4.0 g of anhydrous MgSO4 and 1.0 g of NaCl as extracting salts, 500 mg of MgSO4+25 mg of C18+50 mg of PSA as cleaning materials. Favorable recoveries of the 15 N-nitrosamines were obtained when the extraction solution was incompletely dried. Thus, the final extract was dried to below 0.5 mL under a mild nitrogen stream and then redissolved to 0.5 mL with acetonitrile. After filtration, 200 µL of the sample was transferred to an autosampler vial for GC-MS/MS analysis. The 15 N-nitrosamines were determined using GC-MS/MS on a DB-HeavyWAX column (30 m×0.25 mm×0.25 µm) with an electron impact ion source in multiple-reaction monitoring (MRM) mode, and quantified using an external standard method. Under the optimized experimental conditions, the results showed that the calibration curves exhibited good linearities for the 15 N-nitrosamines, with correlation coefficients (r2) greater than 0.9990. The limits of detection (LODs) and the limits of quantification (LOQs) ranged from 0.05 to 0.20 µg/kg and from 0.10 to 0.50 µg/kg, respectively. At spiked levels of 1LOQ, 2LOQ, and 10LOQ, the average recoveries were 79.4%-102.1%, 80.6%-109.5%, and 83.0%-110.6%, respectively, and the relative standard deviations were in the range of 0.8%-16.0%. The low matrix effects of the 15 N-nitrosamines indicated the high sensitivity of the proposed method. The method was applied to detect representative commercial air-dried yak meat samples obtained using different processing techniques. Seven N-nitrosamines, including N-nitrosodimethylamine, N-nitrosodiisobutylamine, N-nitrosodibutylamine, N-methyl-N-phenylnitrous amide, N-ethyl-N-nitrosoaniline, N-nitrosopyrrolidine, and N-nitrosodiphenylamine were detected in all samples. The average contents of the seven N-nitrosamines was 0.08-20.18 µg/kg. The detection rates and average contents of the N-nitrosamines in cooked air-dried yak meat samples were higher than those in traditional raw air-dried yak meat samples. Compared with the manual QuEChERS method, the one-step QuEChERS method developed integrated the extraction and clean-up procedures into one single run, and the detection efficiency was considerably improved. The developed method is simple, rapid, highly sensitive, and insusceptible to human errors. Thus, it is useful for the determination of N-nitrosamines in air-dried yak meat and can be extended to the qualitative and quantitative analysis of N-nitrosamines in other meat products. It also provides method support and a data reference for the general determination of N-nitrosamines, which is of great significance for food safety.


Subject(s)
Food Contamination , Gas Chromatography-Mass Spectrometry , Meat , Nitrosamines , Animals , Nitrosamines/analysis , Gas Chromatography-Mass Spectrometry/methods , Cattle , Food Contamination/analysis , Meat/analysis
18.
Animals (Basel) ; 14(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791618

ABSTRACT

The yak is a unique species of livestock found in the Qinghai-Tibet Plateau and its surrounding areas. Due to factors such as late sexual maturity and a low rate of estrus, its reproductive efficiency is relatively low. The process of estrus synchronization in yaks plays a crucial role in enhancing their reproductive success and ensuring the continuation of their species. In order to clarify the characteristics of the serum metabolites of yak estrus synchronization, the yaks with inactive ovaries were compared with the estrus synchronization yaks. In this study, yaks were divided into the inactive ovaries group (IO), gonarelin-induced yak estrus group (GnRH), and chloprostenol sodium-induced yak estrus group (PGF). After the completion of the estrus synchronization treatment, blood samples were collected from the jugular veins of the non-estrus yaks in the control group and the yaks with obvious estrus characteristics in the GnRH and PGF groups. Metabolites were detected by ultra-high performance liquid chromatography-mass spectrometry, and differential metabolites were screened by multivariate statistical analysis. The results showed that a total of 70 significant differential metabolites were screened and identified in the GnRH vs. IO group, and 77 significant differential metabolites were screened and identified in the PGF vs. IO group. Compared with non-estrus yaks, 36 common significant differential metabolites were screened out after the induction of yak estrus by gonarelin (GnRH) and cloprostenol sodium (PGF), which were significantly enriched in signaling pathways such as the beta oxidation of very long chain fatty acids, bile acid biosynthesis, oxidation of branched chain fatty acids, steroidogenesis, steroid biosynthesis, and arginine and proline metabolism. This study analyzed the effects of gonadotropin releasing hormone (GnRH) and prostaglandin F (PGF) on the reproductive performance of yaks treated with estrus synchronization, which provides a theoretical basis for the optimization and application of yak estrus synchronization technology and promotes the healthy development of the yak industry.

19.
Animals (Basel) ; 14(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791628

ABSTRACT

Aberrant expression of the heat shock proteins and factors was revealed to be closely associated with male reproduction. Heat shock factor 2 (HSF2) is a transcription factor that is involved in the regulation of diverse developmental pathways. However, the role and the corresponding molecular mechanism of HSF2 in male cattle-yak sterility are still poorly understood. Therefore, the aim of this study was to obtain the sequence and the biological information of the cattle-yak HSF2 gene and to investigate the spatiotemporal expression profiles of the locus during the development of cattle-yak testes. Additionally, the differential expression was analyzed between the cattle-yak and the yak, and the methylation of corresponding promoter regions was compared. Our results showed an additional 54 bp fragment and a missense mutation (lysine to glutamic acid) were presented in the cattle-yak HSF2 gene, which correlated with enriched expression in testicular tissue. In addition, the expression of the HSF2 gene showed dynamic changes during the growth of the testes, reaching a peak in adulthood. The IHC indicated that HSF2 protein was primarily located in spermatocytes (PS), spermatogonia (SP), and Sertoli cells (SC) in cattle-yak testes, compared with the corresponding cells of cattle and the yak. Furthermore, bisulfite-sequencing PCR (BSP) revealed that the methylated CpG sites in the promoter region of the cattle-yak HSF2 were more numerous than in the yak counterpart, which suggests hypermethylation of this region in the cattle-yak. Taken together, the low expression abundance and hypermethylation of HSF2 may underpin the obstruction of spermatogenesis, which leads to male cattle-yak infertility. Our study provided a basic guideline for the HSF2 gene in male reproduction and a new insight into the mechanisms of male cattle-yak sterility.

20.
Biomimetics (Basel) ; 9(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786470

ABSTRACT

In recent years, legged robots have been more and more widely used on non-structured terrain, and their foot structure has an important impact on the robot's motion performance and stability. The structural characteristics of the yak foot sole with a high outer edge and low middle, which has excellent soil fixation ability and is an excellent bionic prototype, can improve the friction between the foot and the ground. At the same time, the foot hooves can effectively alleviate the larger impact load when contacting with the ground, which is an excellent anti-slip buffer mechanism. The bionic foot end design was carried out based on the morphology of the yak sole; the bionic foot design was carried out based on the biological anatomy observation of yak foot skeletal muscles. The virtual models of the bionic foot end and the bionic foot were established and simulated using Solidworks 2022 and Abaqus 2023, and the anti-slip performance on different ground surfaces and the influence of each parameter of the bionic foot on the cushioning effect were investigated. The results show that (1) the curved shape of the yak sole has a good anti-slip performance on both soil ground and rocky ground, and the anti-slip performance is better on soil ground; (2) the curved shape of the yak sole has a larger maximum static friction than the traditional foot, and the anti-slip performance is stronger under the same pressure conditions; (3) the finger pillow-hoof ball structure of the bionic foot has the greatest influence on the buffering effect, and the buffering effect of the bionic foot is best when the tip of the bionic foot touches the ground first.

SELECTION OF CITATIONS
SEARCH DETAIL
...