ABSTRACT
Improving antigen presentation is crucial for the success of immunization strategies. Yeasts are classically used as biofactories to produce recombinant proteins and are efficient vehicles for antigen delivery, in addition to their adjuvant properties. Despite the absence of epidemic outbreaks, several vaccine approaches continue to be developed for Zika virus infection. The development of these prophylactic strategies is fundamental given the severity of clinical manifestations, mainly due to viral neurotropism. The present study aimed to evaluate in vivo the immune response induced by P. pastoris recombinant strains displaying epitopes of the envelope (ENV) and NS1 ZIKV proteins. Intramuscular immunization with heat-attenuated yeast enhanced the secretion of IL-6, TNF-α, and IFN-γ, in addition to the activation of CD4+ and CD8+ T cells, in BALB/c mice. P. pastoris displaying ENV epitopes induced a more robust immune response, increasing immunoglobulin production, especially IgG isotypes. Both proposed vaccines showed the potential to induce immune responses without adverse effects, confirming the safety of administering P. pastoris as a vaccine vehicle. Here, we demonstrated, for the first time, the evaluation of a vaccine against ZIKV based on a multiepitope construct using yeast as a delivery system and reinforcing the applicability of P. pastoris as a whole-cell vaccine.
ABSTRACT
Removal of CD4 T cell epitopes from therapeutic antibody sequences is expected to mitigate their potential immunogenicity, but its application is complicated by the location of their T cell epitopes, which mainly overlap with complementarity-determining regions. We therefore evaluated the flexibility of antibody sequences to reduce the predicted affinity of corresponding peptides for HLA II molecules and to maintain antibody binding to its target in order to guide antibody engineering for mitigation of predicted immunogenicity. Permissive substitutions to reduce affinity of peptides for HLA II molecules were identified by establishing a heatmap of HLA class II binding using T-cell epitope prediction tools, while permissive substitutions preserving binding to the target were identified by means of deep mutational scanning and yeast surface display. Combinatorial libraries were then designed to identify active clones. Applied to adalimumab, an anti-TNFα human antibody, this approach identified 200 mutants with a lower HLA binding score than adalimumab. Three mutants were produced as full-length antibodies and showed a higher affinity for TNFα and neutralization ability than adalimumab. This study also sheds light on the permissiveness of antibody sequences with regard to functionality and predicted T cell epitope content.
ABSTRACT
This work aimed the application of a new biocatalyst for biodiesel production from residual agro-industrial fatty acids. A recombinant Pichia pastoris displaying lipase from Rhizomucor miehei (RML) on the cell surface, using the PIR-1 anchor system, were prepared using glycerol as the carbon source. The biocatalyst, named RML-PIR1 showed optimum temperature of 45 °C (74.0 U/L). The stability tests resulted in t1/2 of 3.49 and 2.15 h at 40 and 45 °C, respectively. RML-PIR1 was applied in esterification reactions using industrial co-products as substrates, palm fatty acid distillate (PFAD) and soybean fatty acid distillate (SFAD). The highest productivity was observed for SFAD after 48 h presenting 79.1% of conversion using only 10% of biocatalyst and free-solvent system. This is about ca. eight times higher than commercial free RML in the same conditions. The stabilizing agents study revealed that the treatment using glutaraldehyde (GA) and poly(ethylene glycol) (PEG) enabled increased stability and reuse of biocatalyst. It was observed by SEM analysis that the treatment modified the cell morphology. RML-PIR1-GA presented 87.9% of the initial activity after 6 reuses, whilst the activity of unmodified RML-PIR decreased by 40% after the first use. These results were superior to those obtained in the literature, making this new biocatalyst promising for biotechnological applications, such as the production of biofuels on a large scale.
Subject(s)
Agriculture , Biofuels/microbiology , Industrial Waste , Lipase/metabolism , Rhizomucor/enzymology , Saccharomycetales/metabolism , Biocatalysis , Esterification , Substrate Specificity , TemperatureABSTRACT
OBJECTIVES: Develop a Cell Surface Display system in Saccharomyces cerevisiae, based on the construction of an expression cassette for pYES2 plasmid. RESULTS: The construction of an expression cassette containing the α-factor signal peptide and the C-terminal portion of the α-agglutinin protein was made and its sequence inserted into a plasmid named pYES2/gDαAgglutinin. The construction allows surface display of bovine herpesvirus type 5 (BoHV-5) glycoprotein D (gD) on S. cerevisiae BY4741 strain. Recombinant protein expression was confirmed by dot blot, and indirect immunofluorescence using monoclonal anti-histidine antibodies and polyclonal antibodies from mice experimentally vaccinated with a recombinant gD. CONCLUSIONS: These results demonstrate that the approach and plasmid used represent not only an effective system for immobilizing proteins on the yeast cell surface, as well as a platform for immunobiologicals development.
Subject(s)
Cell Surface Display Techniques/methods , Plasmids/genetics , Recombinant Fusion Proteins , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Animals , Mice , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolismABSTRACT
The severe consequences of ZIKV infection and its emergence and re-emergence in several countries have boosted vaccines' development. Yeasts such as Pichia pastoris has been widely employed as antigen carriers for immunization against infectious agents. Components of the yeast cell wall have immunostimulatory properties, and recombinant antigens can be anchored to the cell surface to enhance the presentation to the immune system. Here we aimed at producing and anchoring ZIKV proteins in the P. pastoris surface as a vaccine approach. Expression cassettes were designed with epitopes of the Envelope and NS1 proteins. Immunofluorescence microscopy confirmed the anchoring of recombinant proteins. Yeasts' ability to stimulate immune cells was evaluated in vitro by incubation with lymphocytes and monocytes isolated from mouse spleen. P. pastoris expressing EnvNS1 epitopes promoted increased levels of IL-6, IL-10, and TNF-α cytokines and an increase in the number of CD4+, CD8+, and CD16+ lymphocytes, similarly to ZIKV. This profile is indicative of the activation of immunological cells and suggests an immunogenic potential of the proposed yeast vaccines against ZIKV, reinforcing the possibility of P. pastoris as adjuvant and carrier of antigens.
Subject(s)
Zika Virus Infection , Zika Virus , Animals , Epitopes , Mice , Pichia/genetics , Recombinant Proteins/genetics , SaccharomycetalesABSTRACT
Viral infections pose intense burdens to healthcare systems and global economies. The correct diagnosis of viral diseases represents a crucial step towards effective treatments and control. Biosensors have been successfully implemented as accessible and accurate detection tests for some of the most important viruses. While most biosensors are based on physical or chemical interactions of cell-free components, the complexity of living microorganisms holds a poorly explored potential for viral detection in the face of the advances of synthetic biology. Indeed, cell-based biosensors have been praised for their versatility and economic attractiveness, however, yeast platforms for viral disease diagnostics are still limited to indirect antibody recognition. Here we propose a novel strategy for viral detection in Saccharomyces cerevisiae, which combines the transductive properties of G Protein-Coupled Receptors (GPCRs) with the Yeast Surface Display (YSD) of specific enzymes enrolled in the viral recognition process. The GPCR/YSD complex might allow for active virus detection through a modulated signal activated by a GPCR agonist, whose concentration correlates to the viral titer. Additionally, we explore this methodology in a case study for the detection of highly pathogenic coronaviruses that share the same cell receptor upon infection (i.e. the Angiotensin-Converting Enzyme 2, ACE2), as a conceptual example of the potential of the GPCR/YSD strategy for the diagnosis of COVID-19.