Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
FEMS Microbiol Ecol ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142411

ABSTRACT

Manglicolous yeasts are those that inhabit mangroves. Being adapted to survive extreme environmental variations, these yeasts possess traits that are desirable in terms of bioprospecting potential. Yeasts have been successfully isolated from different microhabitats within the mangrove ecosystem, including vegetation, water, sediments, and invertebrates. They have been found to be most abundant in sediments and water. Manglicolous yeasts are highly diverse unlike previously assumed. Yeasts belonging to the phyla Ascomycetes are more common in mangrove ecosystems than Basidiomycetes. Candida, Cryptococcus, Debaryomyces, Geotrichum, Kluyveromyces, Rhodotorula, Saccharomyces, and Pichia were some of the dominant yeast genera which are cosmopolitan in distribution. New species yeasts such as Vishniacozyma changhuana and V.taiwanica are also known from mangroves. A compilation of isolation and identification methods employed for manglicolous yeast culture is provided in this review. Culture-independent approaches to understanding yeast diversities have also been introduced. The bioprospecting potentials of manglicolous yeasts have been highlighted these include enzymes, xylitol, biofuel, single-cell oil, anti-cancer agents, antimicrobials, and biosurfactants. Manglicolous yeast also finds application as biocontrol agents, bio-remediators, single-cell proteins, food and feed, and immunostimulants. Our knowledge of the diversity and economical prospects of manglicolous yeasts is limited and likely to remain so as mangroves are disappearing fast. Therefore, this review is an attempt to give insight into these aspects.

2.
Bioresour Technol ; 370: 128573, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36603754

ABSTRACT

Oleaginous yeasts-derived microbial lipids provide a promising alternative feedstock for the biodiesel industry. However, hyperosmotic stress caused by high sugar concentration during fermentation significantly prevents high cell density and productivity. Isolation of new robust osmophilic oleaginous species from specific environment possibly resolves this issue to some extent. In this study, the cultivable yeast composition of honeycombs was investigated. Totally, 11 species of honeycomb-associated cultivable yeast were identified and characterized. Among them, an osmophilic yeast strain, designated as Rhodotorula toruloides C23 was featured with excellent lipogenic and carotenogenic capacity and remarkable cell growth using glucose, xylose or glycerol as feedstock, with simultaneous production of 24.41 g/L of lipids and 15.50 mg/L of carotenoids from 120 g/L glucose in 6.7-L fermentation. Comparative transcriptomic analysis showed that C23 had evolved a dedicated molecular regulation mechanism to maintain their high simultaneous accumulation of intracellular lipids and carotenoids and cell growth under high sugar concentration.


Subject(s)
Lipids , Rhodotorula , Yeasts , Rhodotorula/genetics , Carotenoids , Glucose
3.
Yeast ; 40(2): 84-101, 2023 02.
Article in English | MEDLINE | ID: mdl-36582015

ABSTRACT

This study investigated the diversity of yeast species associated with rotting wood in Brazilian Amazonian rainforests. A total of 569 yeast strains were isolated from rotting wood samples collected in three Amazonian areas (Universidade Federal do Amazonas-Universidade Federal do Amazonas [UFAM], Piquiá, and Carú) in the municipality of Itacoatiara, Amazon state. The samples were cultured in yeast nitrogen base (YNB)-d-xylose, YNB-xylan, and sugarcane bagasse and corncob hemicellulosic hydrolysates (undiluted and diluted 1:2 and 1:5). Sugiyamaella was the most prevalent genus identified in this work, followed by Kazachstania. The most frequently isolated yeast species were Schwanniomyces polymorphus, Scheffersomyces amazonensis, and Wickerhamomyces sp., respectively. The alpha diversity analyses showed that the dryland forest of UFAM was the most diverse area, while the floodplain forest of Carú was the least. Additionally, the difference in diversity between UFAM and Carú was the highest among the comparisons. Thirty candidates for new yeast species were obtained, representing 36% of the species identified and totaling 101 isolates. Among them were species belonging to the clades Spathaspora, Scheffersomyces, and Sugiyamaella, which are recognized as genera with natural xylose-fermenting yeasts that are often studied for biotechnological and ecological purposes. The results of this work showed that rotting wood collected from the Amazonian rainforest is a tremendous source of diverse yeasts, including candidates for new species.


Subject(s)
Saccharum , Wood , Cellulose , Rainforest , Brazil , Phylogeny , Yeasts
4.
J Dairy Res ; 89(4): 440-448, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36416070

ABSTRACT

Anbaris is a raw goat milk product naturally fermented in terracotta jars. The aim of this research paper was to follow the dynamics underlying an artisanal production to understand the concomitant evolution of the microbial populations in relation to the chemical changes occurring within the product, make sure of the sanitary conditions prevailing during the production and uncover for the first time its culturable yeast populations. Throughout the fermentation process, Anbaris was endowed with high acidity and included high microbial populations counts of LAB and yeasts that were rapidly installed within the product and maintained as regular new milk additions were made, contributing to lipolytic and proteolytic activities. Salt content varied according to the arbitrary salt additions made during the process but was high in the end product while protein and fat contents varied inversely to moisture. Frequent additions of Enterobacteriaceae and Coliforms contaminated milk samples seemingly fueled a contamination of the product during its manufacturing and in the final fresh Anbaris. Seven species of culturable yeasts, Pichia kudriavzevii, Kluyveromyces marxianus, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, Debaryomyces hansenii, Candida parapsilosis and Kazachstania exigua were found during the production. The first two dominated the process in terms of frequency of occurrence and abundance at the different stages and might be signature species of the product. The same lineage of K. marxianus isolates was maintained throughout the fermentation and sample specific patterns were observed. Strains of this species exhibited low diversity within our product, and more globally in the Lebanese dairy products we studied.


Subject(s)
Cheese , Milk , Animals , Lebanon , Yeasts , Saccharomyces cerevisiae , Fermentation , Goats , Food Microbiology
5.
Foods ; 11(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36360060

ABSTRACT

Microbial populations in spontaneous winemaking contribute to the distinctiveness and quality of the wines. In this study, molecular methods were applied to 484 isolated yeasts to survey the diversity of the Saccharomyces cerevisiae population in spontaneous fermentations of organic Verdejo grapes. Identification was carried out at strain level for samples from different vineyards correct.and stages of the winemaking process over the course of two vintages, establishing 54 different strains. The number of isolates belonging to each strain was not homogeneous, as two predominant strains represented more than half of the isolates independent of vineyard or vintage. Regarding the richness and abundance, differences among the stages of fermentation were confirmed, finding the highest diversity values in racked must and in the end of fermentation stages. Dissimilarity in S. cerevisiae communities was found among vineyards and vintages, distinguishing representative groups of isolates for each of the populations analysed. These results highlight the effect of vineyard and vintage on yeast communities as well as the presence of singular strains in populations of yeasts. Oenologically relevant enzymatic activities, ß-lyase, protease and ß-glucanase, were detected in 83.9%, 96.8% and 38.7% of the isolates, respectively, which may be of interest for potential future studies.

6.
J Fungi (Basel) ; 8(8)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36012846

ABSTRACT

The Qaidam Basin is the highest and one of the largest and driest deserts on Earth. It is considered a mars analog area in China. In contrast to numerous studies concerning its geology, geophysical, and chemistry, relatively few studies have reported microbial diversity and distribution in this area. Here, we investigated culturable yeast diversity in the northeast Qaidam Basin. A total of 194 yeast strains were isolated, and 12 genera and 21 species were identified, among which 19 were basidiomycetous yeasts. Naganishia albida, N. adeliensis, and Filobasidium magnum were the three most dominant species and were distributed in thirteen samples from eight locations. Five new species (Filobasidium chaidanensis, Kondoa globosum, Symmetrospora salmoneus, Teunia nitrariae, and Vishniacozyma pseudodimennae) were found and described based on ITS and D1D2 gene loci together with phenotypic characteristics and physiochemical analysis. Representative strains from each species were chosen for the salt-tolerant test, in which species showed different responses to different levels of NaCl concentrations. Further, the strain from soil can adapt well to the higher salt stress compared to those from plants or lichens. Our study represents the first report of the yeast diversity in the Qaidam Basin, including five new species, and also provides further information on the halotolerance of yeasts from the saline environment in mars analog.

7.
J Fungi (Basel) ; 8(7)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35887443

ABSTRACT

Exploration of yeast diversity for the sustainable production of biofuels, in particular biodiesel, is gaining momentum in recent years. However, sustainable, and economically viable bioprocesses require yeast strains exhibiting: (i) high tolerance to multiple bioprocess-related stresses, including the various chemical inhibitors present in hydrolysates from lignocellulosic biomass and residues; (ii) the ability to efficiently consume all the major carbon sources present; (iii) the capacity to produce lipids with adequate composition in high yields. More than 160 non-conventional (non-Saccharomyces) yeast species are described as oleaginous, but only a smaller group are relatively well characterised, including Lipomyces starkeyi, Yarrowia lipolytica, Rhodotorula toruloides, Rhodotorula glutinis, Cutaneotrichosporonoleaginosus and Cutaneotrichosporon cutaneum. This article provides an overview of lipid production by oleaginous yeasts focusing on yeast diversity, metabolism, and other microbiological issues related to the toxicity and tolerance to multiple challenging stresses limiting bioprocess performance. This is essential knowledge to better understand and guide the rational improvement of yeast performance either by genetic manipulation or by exploring yeast physiology and optimal process conditions. Examples gathered from the literature showing the potential of different oleaginous yeasts/process conditions to produce oils for biodiesel from agro-forestry and industrial organic residues are provided.

8.
Microorganisms ; 10(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35889174

ABSTRACT

Diversity of regional yeast can be influenced by geography, grape cultivars and the use of SO2, but at single vineyard scale in China, the impact of these factors on yeast population, particularly Saccharomyces cerevisiae, is not well studied. Here, we characterised yeast species and dynamics during spontaneous fermentations with/without SO2 using eight typical grape cultivars from Yuma vineyard in Ningxia wine region of China. Results show that distribution and abundance of yeast species varied by grape varieties, fermentation stage and SO2 treatment. A number of 290 S. cerevisiae isolates were further classified into 33 genotypes by Interdelta fingerprinting. A prevailing role of grape varieties in shaping the genetic divergence of S. cerevisiae in Yuma vineyard was observed, as compared to the impacts of fermentation stage and SO2 treatment. Pre-selected S. cerevisiae strains were subjected to vinification with Cabernet Sauvignon and Chardonnay. All strains completed fermentations but the physiochemical parameters and volatile profiles of wines were strain-specific. Some indigenous S. cerevisiae yielded more desirable aroma compounds compared to the commercial strains, among which NX16 and NX18 outcompeted others, therefore having potential for use as starters. This study provides comprehensive analysis on yeast diversity at vineyard scale in Ningxia. Information on the vinification using indigenous S. cerevisiae is of great value for improving Ningxia wine regionality.

9.
FEMS Yeast Res ; 22(1)2022 08 29.
Article in English | MEDLINE | ID: mdl-35862862

ABSTRACT

Wine fermentations are dominated by Saccharomyces yeast. However, dozens of non-Saccharomyces yeast genera can be found in grape musts and in the early and intermediate stages of wine fermentation, where they co-exist with S. cerevisiae. The diversity of non-Saccharomyces species is determinant for the sensorial attributes of the resulting wines, both directly (by producing aroma impact compounds) and indirectly (modulating the performance of Saccharomyces). Many research groups worldwide are exploring the great diversity of wine yeasts to exploit their metabolic potential to improve wine flavor or to prevent wine spoilage. In this work, we share a new data set from a wide ITS amplicon survey of 272 wine samples, and we perform a preliminary exploration to build a catalogue of 242 fungal and yeast genera detectable in wine samples, estimating global figures of their prevalence and relative abundance patterns across wine samples. Thus, our mycobiome survey provides a broad measure of the yeast diversity potentially found in wine fermentations; we hope that the wine yeast research community finds it useful, and we also want to encourage further discussion on the advantages and limitations that meta-taxonomic studies may have in wine research and industry.


Subject(s)
Saccharomyces , Vitis , Wine , Fermentation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Vitis/microbiology , Wine/microbiology , Yeasts/metabolism
10.
Microb Cell Fact ; 21(1): 70, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35468837

ABSTRACT

BACKGROUND: The yeast genus Komagataella currently consists of seven methylotrophic species isolated from tree environments. Well-characterized strains of K. phaffii and K. pastoris are important hosts for biotechnological applications, but the potential of other species from the genus remains largely unexplored. In this study, we characterized 25 natural isolates from all seven described Komagataella species to identify interesting traits and provide a comprehensive overview of the genotypic and phenotypic diversity available within this genus. RESULTS: Growth tests on different carbon sources and in the presence of stressors at two different temperatures allowed us to identify strains with differences in tolerance to high pH, high temperature, and growth on xylose. As Komagataella species are generally not considered xylose-utilizing yeasts, xylose assimilation was characterized in detail. Growth assays, enzyme activity measurements and 13C labeling confirmed the ability of K. phaffii to utilize D-xylose via the oxidoreductase pathway. In addition, we performed long-read whole-genome sequencing to generate genome assemblies of all Komagataella species type strains and additional K. phaffii and K. pastoris isolates for comparative analysis. All sequenced genomes have a similar size and share 83-99% average sequence identity. Genome structure analysis showed that K. pastoris and K. ulmi share the same rearrangements in difference to K. phaffii, while the genome structure of K. kurtzmanii is similar to K. phaffii. The genomes of the other, more distant species showed a larger number of structural differences. Moreover, we used the newly assembled genomes to identify putative orthologs of important xylose-related genes in the different Komagataella species. CONCLUSIONS: By characterizing the phenotypes of 25 natural Komagataella isolates, we could identify strains with improved growth on different relevant carbon sources and stress conditions. Our data on the phenotypic and genotypic diversity will provide the basis for the use of so-far neglected Komagataella strains with interesting characteristics and the elucidation of the genetic determinants of improved growth and stress tolerance for targeted strain improvement.


Subject(s)
Saccharomycetales , Xylose , Carbon/metabolism , Phenotype , Pichia/metabolism , Saccharomycetales/genetics , Xylose/metabolism , Yeasts
11.
Yeast ; 39(1-2): 25-39, 2022 01.
Article in English | MEDLINE | ID: mdl-34473375

ABSTRACT

Insects interact with a wide variety of yeasts, often providing a suitable substrate for their growth. Some yeast-insect interactions are tractable models for understanding the relationships between the symbionts. Attine ants are prominent insects in the Neotropics and have performed an ancient fungiculture of mutualistic basidiomycete fungi for more than 55-65 million years. Yeasts gain access to this sophisticated mutualism, prompting diversity, ecological, and biotechnological studies in this environment. We review half a century research in this field, surveying for recurrent yeast taxa and their putative ecological roles in this environment. We found that previous studies mainly covered the yeast diversity from a small fraction of attine ants, being Saccharomycetales, Tremellales, and Trichosporonales as the most frequent yeast or yeast-like orders found. Apiotrichum, Aureobasidium, Candida, Cutaneotrichosporon, Debaryomyces, Meyerozyma, Papiliotrema, Rhodotorula, Trichomonascus, and Trichosporon are the most frequent recovered genera. On the other hand, studies of yeasts' ecological roles on attine ant-fungus mutualism only tapped the tip of the iceberg. Previous established hypotheses in the literature cover the production of lignocellulosic enzymes, chemical detoxification, and fungus garden protection. Some of these roles have parallels in biotechnological processes. In conclusion, the attine ant environment has a hidden potential for studying yeast biodiversity, ecology, and biotechnology, which has been particularly unexplored considering the vast diversity of fungus-growing ants.


Subject(s)
Ants , Animals , Ants/microbiology , Biotechnology , Fungi , Phylogeny , Symbiosis , Yeasts
12.
BMC Microbiol ; 21(1): 170, 2021 06 06.
Article in English | MEDLINE | ID: mdl-34090353

ABSTRACT

BACKGROUND: The unique climatic conditions of the Xinjiang region nurture rich melon and fruit resources, the melon and fruit sugar sources provide sufficient nutrients for the survival of yeast, and the diverse habitats accompanied by extreme climatic conditions promote the production of yeast diversity and strain resources. However, the relationship between yeast species and their relationship with environmental factors in the soil of Xinjiang specialty cash crop Hami melon is not clear. Here, we aimed to characterize the diversity, community structure, and relationship between yeast species and environmental factors in Hami melon orchards soils in different regions of Xinjiang, China. RESULTS: Based on Illumina MiSeq high-throughput sequencing analysis of the D1 domain of the LSU rRNA genes, the community richness of yeast in the soil of Northern Xinjiang was higher than in the Southern and Eastern Xinjiang, but the community diversity was significantly lower in the Northern Xinjiang than in the Southern and Eastern Xinjiang. A total of 86 OTUs were classified into 59 genera and 86 species. Most OTUs (90.4%) belonged to the Basidiomycota; only a few (9.6%) belonged to Ascomycota. The most dominant species in the Southern, Eastern and Northern Xinjiang were Filobasidium magnum (17.90%), Solicoccozyma aeria (35.83%) and Filobasidium magnum (75.36%), respectively. Principal coordinates analysis (PCoA) showed that the yeast community composition in the soils of the three regions were obviously different, with the Southern and Eastern Xinjiang having more similar yeast community. Redundancy analysis (RDA) showed that soil factors such as conductivity (CO), total phosphorus (TP) and Total potassium (TK) and climate factors such as average annual precipitation (PRCP), relative humidity (RH) and net solar radiation intensity (SWGNT) were significantly correlated with yeast communities (P < 0.05). CONCLUSION: There are abundant yeast resources in the rhizosphere soil of Hami melon orchard in Xinjiang, and there are obvious differences in the diversity and community structure of yeast in the three regions of Xinjiang. Differences in climatic factors related to precipitation, humidity and solar radiation intensity and soil factors related to conductivity, total phosphorus and total potassium are key factors driving yeast diversity and community structure.


Subject(s)
Cucurbitaceae/growth & development , Soil Microbiology , Yeasts/isolation & purification , China , Cucurbitaceae/metabolism , High-Throughput Nucleotide Sequencing , Microbiota , Phosphorus/analysis , Phosphorus/metabolism , Rhizosphere , Soil/chemistry , Yeasts/classification , Yeasts/genetics
13.
Antonie Van Leeuwenhoek ; 114(6): 751-764, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33738647

ABSTRACT

The leaf-cutter ant Acromyrmex balzani is responsible for causing important losses in reforestation areas, crops, and pastures, and is frequently found in the Brazilian savanna (Cerrado). So far, there is no information regarding the yeast communities that occur in their nests. Here, we evaluated the diversity, composition, and structure of yeast communities in both fungus gardens (FG) and external refuse dump (RD) of this ant species (Palmas, Tocantins, northern Brazil). A total of 720 yeasts were isolated, comprising 52 species distributed in 29 genera. The RDs have significantly richer and more diverse yeast communities than the fungus gardens, regardless of the season and the level of preservation in the area. The isolates produced a wide range of carbon polymer-degrading enzymes and were able to assimilate carbon-sources present in plant materials. We observed a different proportion of enzyme-producers and carbon-assimilation found in external refuse dump and fungus gardens from preserved and disturbed areas, suggesting that this interaction may vary depending on the environmental conditions. A. balzani nests in the savanna biome are a hotspot of yeast species with ecological, clinical, and biotechnological implications.


Subject(s)
Ants , Animals , Ecosystem , Fungi , Grassland , Symbiosis
14.
Chemosphere ; 274: 129718, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33529952

ABSTRACT

South African surface waters are subject to various forms of pollution. Recent findings in aquatic systems suggest an association exists between yeast diversity, chemical pollutants and land coverage, which are important water quality determinants. Yeast abundance and diversity, as well as antifungal agents in two river systems in South Africa, were investigated and related to the existing land coverage. Yeast abundance and diversity were determined from environmental DNA by quantitative polymerase chain reaction and next-generation sequencing, respectively, of the 26S ribosomal ribonucleic acid (rRNA) gene. Antifungal agents were qualitatively and/or quantitatively detected by ultra-high-pressure liquid chromatography-mass spectrometry. Analyses of 2 031 714 high-quality 26S rRNA sequences yielded 5554 amplicon sequence variants (ASVs)/species. ASV richness and Shannon-Wiener index of diversity reflected the southward flow of the river with higher values observed downstream compared to the upstream. Fluconazole concentrations were quantifiable in only two samples; 178 and 271 ng L-1. Taxonomically, at least 20 yeast species were detected, including the dominant Candida tropicalis, Cryptococcus spp. as well as the lesser dominant Bensingtonia bomiensis, Fereydounia khargensis, Hericium erinaceus, Kondoa changbaiensi, Pseudozyma spp. and Sphacelotheca pamparum. The two dominant species are known opportunistic pathogens which had antifungal resistant traits in previous studies from the same rivers and therefore is a public health threat. The present study provides further evidence that yeasts should be included as part of water quality parameters, especially in developing countries where much of the population are economically disadvantaged, and also immunocompromised due to age and disease.


Subject(s)
Antifungal Agents , Antifungal Agents/toxicity , Basidiomycota , South Africa
15.
J Appl Microbiol ; 130(3): 650-664, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32726883

ABSTRACT

AIMS: This study aims to identify the yeast species and strains which entitled an unstudied area of Spain and evaluate the yeast species diversity richness and the genetic variety. METHODS AND RESULTS: A total of 702 yeasts were isolated from different environments in a central Spanish region (La Mancha) with diverse sources of origin (food, animals, flowers and environmental sources) during spring season. Thanks to the analysis carried out by the PCR-RFLP technique and sequencing, 35 species were identified. A neighbour-joining phylogenetic tree was created based on D1/D2 sequences. Moreover 330 strains were determined by PCR-RAPD and their profiles were analysed using the bioinformatics programme BioNumerics 7·6. The Simpson's index (D) and the genetic diversity percentage were calculated with the aim of studying the richness of the species in each environment and the genetic variety in each species. CONCLUSIONS: This study has permitted to know that the majority of the species found was Diutina rugosa while the most ubiquitous was Rhodotorula mucilaginosa which expose the dispersion capability of this species. The diversity parameters has revealed that the highest species richness was associated to environmental samples and the highest genetic variety was presented in those species with better dispersion capability or a smaller number of isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: This study permits to better understand the yeast communities in La Mancha region which gives a value the microbial potential of this region.


Subject(s)
Yeasts/isolation & purification , Biodiversity , Genetic Variation , Phylogeny , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Random Amplified Polymorphic DNA Technique , Rhodotorula/isolation & purification , Saccharomycetales/isolation & purification , Spain , Yeasts/classification , Yeasts/genetics
16.
Food Microbiol ; 92: 103553, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32950147

ABSTRACT

Fino wine is one of the most important Sherry wines and it is obtained through a complex and dynamic biological aging system. In this study, wine and veil of flor samples from fifty-two barrels with different aging levels and distributed in three different wineries from the Jerez-Xèrés-Sherry winemaking area have been analyzed during two years. Some of the wine compounds most deeply involved in flor yeast metabolism were analyzed to take into account the blending effect of this system. On the other hand, veil of flor was analyzed by molecular methods, finding five different species: S. cerevisiae, W. anomalus, P. membranaefaciens, P. kudriavzevii and P. manshurica, being the first time that the three last species have been reported in this biological aging system. Since S. cerevisiae was the vast majority of the isolates, its intraspecies variability was also analyzed by the simultaneous amplification of three microsatellite loci, obtaining nine different S. cerevisiae genotypes, also differentiated according to their physiological properties. Biodiversity analysis showed there were significant differences between the three wineries in the three aging scales, although the overall diversity was relatively low. Moreover, variations in the relative frequency of the different S. cerevisiae genotypes were found to be seasonal-dependent.


Subject(s)
Biodiversity , Wine/microbiology , Yeasts/isolation & purification , Yeasts/metabolism , Food Handling , Food Microbiology , Fruit/chemistry , Fruit/metabolism , Fruit/microbiology , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/isolation & purification , Vitis/chemistry , Vitis/metabolism , Vitis/microbiology , Wine/analysis , Yeasts/classification , Yeasts/genetics
17.
BMC Microbiol ; 20(1): 85, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32276583

ABSTRACT

BACKGROUND: Koumiss is a naturally fermented mare's milk. Over recent decades, numerous studies have revealed the diversity of lactic acid bacteria in koumiss. However, there is limited information available regarding its secondary major component yeast profile. RESULTS: A total of 119 bacterial and 36 yeast species were identified among the 14 koumiss samples. The dominant bacterial species in koumiss were Lactobacillus helveticus, Lactobacillus kefiranofaciens, Lactococcus lactis, Lactococcus raffinolactis, and Citrobacter freundii. The main yeast species were Dekkera anomala, Kazachstania unispora, Meyerozyma caribbica, Pichia sp.BZ159, Kluyveromyces marxianus, and uncultured Guehomyces. The bacterial and yeast Shannon diversity of the Xilinhaote-urban group were higher than those of the Xilingol-rural group. The most dominant organic acids were lactic, acetic, tartaric, and malic acids. Lactic acid bacteria species were mostly responsible for the accumulation of those organic acids, although Kazachstania unispora, Dekkera anomala, and Meyerozyma caribbica may also have contributed. Redundancy analysis suggested that both bacteria and yeast respond to koumiss flavor, such as Lactobacillus helveticus and Dekkera anomala are associated with sourness, astringency, bitterness, and aftertaste, whereas Lactococcus lactis and Kazachstania unispora are associated with umami. CONCLUSIONS: Our results suggest that differences were observed in koumiss microbiota of Xilinhaote-urban and Xilingol-rural samples. The biodiversity of the former was higher than the latter group. Positive or negative correlations between bacteria and yeast species and taste also were found.


Subject(s)
Acids/analysis , Bacteria/classification , Koumiss/microbiology , Yeasts/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , Fermentation , Koumiss/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Taste , Yeasts/genetics , Yeasts/isolation & purification
18.
J Sci Food Agric ; 100(9): 3630-3638, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32201947

ABSTRACT

BACKGROUND: As one of the origin centers of domesticated plants in the world, Ethiopia is rich in diversified fermented foods and beverages, in which yeasts are usually among the essential functional microorganisms. This study aims to investigate yeast species diversity and distribution in indigenous fermented products in Ethiopia using conventional isolation and molecular identification methods. RESULT: Yeast cell counts in 221 samples of various Ethiopian traditional fermented products, including fermented staple foods, alcoholic beverages, dairy products, and condiments, were compared using the typical dilution plating method. A total of 475 yeast isolates were recovered from these samples and 41 yeast species belonging to 25 genera were identified from yeast isolates using the sequence analysis of the D1/D2 domain of the large subunit of rRNA gene. Candida humilis, Wickerhamomyces anomalus, Meyerozyma guilliermondii, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most dominant species that were widely distributed among the majority of the fermented products analyzed in the current study. CONCLUSION: Significant variations were encountered both in yeast cell counts, diversity, and distribution of yeast species among different types of fermented products and even among different samples of the same types of fermented products. It calls for a more extensive and systematic microbiological study of Ethiopian indigenous fermented foods, beverages and other related products that can be helpful for standardization and large-scale production of these foods in Ethiopia. © 2020 Society of Chemical Industry.


Subject(s)
Beverages/microbiology , Fermented Foods/microbiology , Yeasts/isolation & purification , Biodiversity , Ethiopia , Fermentation , Food Microbiology , Phylogeny , Yeasts/classification , Yeasts/genetics
19.
J Agric Food Chem ; 68(47): 13302-13309, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32172562

ABSTRACT

To study the contribution of yeasts to the formation of terpene derivatives during winemaking, a dispersive liquid-liquid microextraction gas chromatography mass spectrometry method was developed for the quantitation of terpenes in white wines, synthetic wine, and a fermented synthetic medium. A mixture of acetone (disperser solvent) and dichloromethane (extraction solvent) was added to 5 mL of sample. The proposed method showed no matrix effect, good linearity in the enological range (from 10 to 200 µg/L), good recovery, and satisfactory inter- and intraday reproducibilities (below 20 and 15% of the relative standard deviation). This sample preparation technique is very interesting for high-throughput studies and economic and environmental reasons because it is fast and easy to operate with high enrichment and consumes a low volume of organic solvents. This method was applied to explore the capacities of 40 yeast strains to produce terpene compounds during fermentation of Chardonnay and Ugni Blanc musts as well as in a synthetic medium. Interestingly, most of the studied compounds were detected and quantified in the resulting wines. This study shows that yeast strains can intrinsically produce terpene derivatives under enological conditions and also highlights the differences between the de novo biosynthesis of terpenes and their precursor-linked production.


Subject(s)
Liquid Phase Microextraction/methods , Terpenes/chemistry , Terpenes/isolation & purification , Wine/analysis , Fermentation , Fruit/metabolism , Fruit/microbiology , Gas Chromatography-Mass Spectrometry , Terpenes/metabolism , Vitis/chemistry , Vitis/microbiology , Yeasts/metabolism
20.
Antonie Van Leeuwenhoek ; 113(1): 55-69, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31432290

ABSTRACT

Khanthuli peat swamp forest (PSF) is one of a few fertile peat swamp forests that remain in Thailand. It is composed of primary PSF and some areas which have been degraded to secondary PSF due to drought, wildfires and land conversion, which have resulted in a decrease in peat layers and change in the species of the plant community. In this study, diversity of yeasts in peat from both primary and secondary PSF areas of the Khanthuli PSF was determined based on culture-dependent approaches, using dilution plate and enrichment techniques. A total of 66 yeast isolates were identified by the analysis of sequence similarity of the D1/D2 region of the large subunit rRNA gene or the combined analysis of sequence of the D1/D2 region and internal transcribed spacer region and confirmed by phylogenetic analysis of the D1/D2 region to belong to 22 known yeast species and six potential new species in the genera Candida (Kurtzmaniella, Lodderomyces, Ogataea, Pichia and Yamadazyma clades), Clavispora, Cyberlindnera, Galactomyces, Hanseniaspora, Metschnikowia, Saturnispora, Schwanniomyces, Cryptotrichosporon, Pichia, Curvibasidium, Papiliotrema, Rhodotorula, and Saitozyma. The most prevalent yeasts in the primary PSF were Cyberlindnera subsufficiens and Galactomyces candidus, while Saitozyma podzolica was the most frequently found in peat from the secondary PSF. Common yeast species in both, primary and secondary PSF, were Cy. subsufficiens, G. candidus and Rhodotorula mucilaginosa.


Subject(s)
Forests , Soil Microbiology , Soil , Wetlands , Basidiomycota/classification , Basidiomycota/genetics , Biodiversity , Candida/classification , Candida/genetics , Candida glabrata/classification , Candida glabrata/genetics , Candida glabrata/immunology , Candidiasis/classification , Candidiasis/genetics , Cryptococcus/classification , Cryptococcus/genetics , DNA, Fungal/genetics , Metschnikowia/classification , Metschnikowia/genetics , Pichia/classification , Pichia/genetics , Saccharomyces/classification , Saccharomyces/genetics , Thailand , Torulaspora/classification , Torulaspora/genetics , Yarrowia/classification , Yarrowia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...