Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
Int Med Case Rep J ; 17: 565-571, 2024.
Article in English | MEDLINE | ID: mdl-38836069

ABSTRACT

Introduction: A class of disorders known as inborn errors of immunity (IEI) is defined by a compromised or missing immune response, which increases the vulnerability to infections, immunological dysregulation, and cancer. Severe combined immunodeficiencies (SCIDs), affecting both T and B-cell function are rare but often severe diseases. In this report, we describe a 10-month-old SCID patient from Sudan with disseminated BCG infection. Case Presentation: A 10-month-old boy whose parents were first degree relatives, presented with a six-month history of repeated chest infections and fever. Physical examination revealed a very ill-looking boy with respiratory distress dependent on oxygen, had slight abdominal distention and hepatomegaly. Investigations revealed positive polymerase chain reaction (PCR) for M. tuberculosis complex infection and low CD4+ and CD8+ cells. Genetic testing showed compound heterozygosity in trans for two variants in the Zeta-chain Associated Protein Kinase 70 (ZAP70) gene associated with autosomal recessive SCID. The patient was started on BCG-related infection treatment, intravenous immunoglobulin (IVIG) replacement and trimethoprim/sulfamethoxazole prophylaxis with an excellent response and the patient responded well to the treatment. Conclusion: SCIDs are rare, and early management is crucial. In this case, a diagnosis of ZAP70 deficiency was based on next-generation sequencing and inhouse bioinformatic computational analysis of the ZAP70 gene, highlighting the importance of genetic testing in the workup of immunodeficiencies in low resource settings.

2.
North Clin Istanb ; 11(2): 167-170, 2024.
Article in English | MEDLINE | ID: mdl-38757100

ABSTRACT

Zeta associated protein (ZAP) 70 deficiency is a rare disease. ZAP70 deficiency results in an autosomal recessive form of severe combined immunodeficiency (SCID) that is characterized by a selective absence of CD8 T cells. The diagnosis should be suspected in patients presenting with a severe combined immunodeficiency phenotype and selective deficiency of CD8 T cells. Sequencing of the ZAP70 gene can confirm the diagnosis. We wanted to emphasize that immunodeficiencies should also be remembered in the differential diagnosis by presenting a 5-month-old patient who applied to our clinic with complaints of skin rash and cough, was given respiratory support with mechanical ventilation for a long time, and was diagnosed with ZAP70 deficiency.

3.
Biochem Genet ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802691

ABSTRACT

Follicular lymphoma (FL), the most common type of indolent lymphoma, originates from germinal center B cells within the lymphoid follicle. However, the underlying mechanisms of this disease remain unclear. This study aimed to identify the potential hub genes for FL and evaluate their functional roles in clinical applications. Microarray data and clinical characteristics of patients with FL were obtained from the Gene Expression Omnibus database. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were employed to explore hub genes for FL. Functional enrichment analysis was performed to investigate the potential roles of these hub genes in FL. Mendelian randomization (MR) analysis was performed to verify the causal effect of the top genes on FL risk. In addition, gene set enrichment analysis (GSEA) and immune cell analysis were performed to elucidate the involved mechanisms of the crucial genes in FL. A total of 1363 differentially expressed genes and 157 central genes were identified by differential expression analysis and WGCNA, respectively, resulting in 117 overlapping genes considered as hub genes for FL. Functional enrichment analysis revealed significant correlations between immune-related pathways and FL. MR analysis revealed a significant association only between zeta chain of T-cell receptor-associated protein kinase 70 (ZAP70) and FL risk, with no significance observed for the other top genes. GSEA and immune cell analysis suggested that ZAP70 may be involved in the development and progression of FL through immune-related pathways. By integrating bioinformatics and MR analyses, ZAP70 was successfully identified and validated as a promising FL biomarker. Functional investigations indicated a significant correlation between immune-related pathways and FL. These findings have important implications for the identification of targets for the diagnosis and treatment of FL and provide valuable insights into the molecular mechanisms underlying FL.

4.
J Clin Immunol ; 44(1): 27, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38129328

ABSTRACT

Zeta-chain associated protein kinase 70 kDa (ZAP70) combined immunodeficiency (CID) is an autosomal recessive severe immunodeficiency that is characterized by abnormal T-cell receptor signaling. Children with the disorder typically present during the first year of life with diarrhea, failure to thrive, and recurrent bacterial, viral, or opportunistic infections. To date, the only potential cure is hematopoietic stem cell transplant (HSCT). The majority of described mutations causing disease occur in the homozygous state, though heterozygotes are reported without a clear understanding as to how the individual mutations interact to cause disease. This case describes an infant with novel ZAP-70 deficiency mutations involving the SH2 and kinase domains cured with allogeneic HSCT utilizing a reduced-intensity conditioning regimen and graft manipulation. We then were able to further elucidate the molecular signaling alterations imparted by these mutations that lead to altered immune function. In order to examine the effect of these novel compound ZAP70 heterozygous mutations on T cells, Jurkat CD4+ T cells were transfected with either wild type, or with individual ZAP70 R37G and A507T mutant constructs. Downstream TCR signaling events and protein localization results link these novel mutations to the expected immunological outcome as seen in the patient's primary cells. This study further characterizes mutations in the ZAP70 gene as combined immunodeficiency and the clinical phenotype.


Subject(s)
Immunologic Deficiency Syndromes , Severe Combined Immunodeficiency , Child , Humans , Infant , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/therapy , Mutation , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy , Signal Transduction , T-Lymphocytes/metabolism , ZAP-70 Protein-Tyrosine Kinase/genetics
5.
J Mol Model ; 29(12): 371, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37953318

ABSTRACT

CONTEXT: ZAP-70 (zeta-chain-associated protein of 70 kDa), serving as a critical regulator for T cell antigen receptor signaling, represents an attractive therapeutic target for autoimmunity disease. How the mechanistical mechanism of ZAP-70 to a human autoimmune syndrome-associated R192W mutation remains unclear. The results indicated that the R192W mutation of ZAP-70 clearly affected the conformational flexibility of the N-terminal ITAM-Y2P. Structural analysis unveiled that the R192W mutation of ZAP-70 caused the exposure of the N-terminal ITAM-Y2P to the solvent. MM-GBSA binding free energy calculations exhibited that the R192W mutation decreased the binding affinity of ITAM-Y2P to the ZAP-70 mutant. Residue-based free energy decomposition further revealed that the protein-peptide interaction networks involving electrostatic interactions provide significant contributions for complex formation. The energy unfavorable residues include Arg43, Arg192, Tyr240, and Lys244 from ZAP-70 and Asn301, Leu303, pY304, and pY315 from ITAM-Y2P in the R192W mutant. Our obtained results may help the understanding of the deactivation mechanism of ZAP-70 induced by the R192W mutation. METHODS: In the work, multiple replica molecular dynamics simulations and molecular mechanics-generalized Born surface area (MM-GBSA) method were performed to reveal the doubly phosphorylated ITAMs (ITAM-Y2P)-mediated deactivation mechanism of ZAP-70 induced by the R192W mutation.


Subject(s)
ZAP-70 Protein-Tyrosine Kinase , src Homology Domains , Humans , Amino Acid Sequence , Molecular Dynamics Simulation , Mutation , Protein Binding , Receptors, Antigen, T-Cell/chemistry , src Homology Domains/genetics , ZAP-70 Protein-Tyrosine Kinase/genetics
7.
Biology (Basel) ; 12(9)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37759563

ABSTRACT

Specific antigen recognition is one of the immune system's features that allows it to mount intense yet controlled responses to an infinity of potential threats. T cells play a relevant role in the host defense and the clearance of pathogens by means of the specific recognition of peptide antigens presented by antigen-presenting cells (APCs), and, to do so, they are equipped with a clonally distributed antigen receptor called the T-cell receptor (TCR). Upon the specific engagement of the TCR, multiple intracellular signals are triggered, which lead to the activation, proliferation and differentiation of T lymphocytes into effector cells. In addition, this signaling cascade also operates during T-cell development, allowing for the generation of cells that can be helpful in the defense against threats, as well as preventing the generation of autoreactive cells. Early TCR signals include phosphorylation events in which the tyrosine kinases Lck and ZAP70 are involved. The sequential activation of these kinases leads to the phosphorylation of the transmembrane adaptor LAT, which constitutes a signaling hub for the generation of a signalosome, finally resulting in T-cell activation. These early signals play a relevant role in triggering the development, activation, proliferation and apoptosis of T cells, and the negative regulation of these signals is key to avoid aberrant processes that could generate inappropriate cellular responses and disease. In this review, we will examine and discuss the roles of the tyrosine kinases Lck and ZAP70 and the membrane adaptor LAT in these cellular processes.

8.
Immunity ; 56(9): 2054-2069.e10, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37597518

ABSTRACT

Ligation of retinoic acid receptor alpha (RARα) by RA promotes varied transcriptional programs associated with immune activation and tolerance, but genetic deletion approaches suggest the impact of RARα on TCR signaling. Here, we examined whether RARα would exert roles beyond transcriptional regulation. Specific deletion of the nuclear isoform of RARα revealed an RARα isoform in the cytoplasm of T cells. Extranuclear RARα was rapidly phosphorylated upon TCR stimulation and recruited to the TCR signalosome. RA interfered with extranuclear RARα signaling, causing suboptimal TCR activation while enhancing FOXP3+ regulatory T cell conversion. TCR activation induced the expression of CRABP2, which translocates RA to the nucleus. Deletion of Crabp2 led to increased RA in the cytoplasm and interfered with signalosome-RARα, resulting in impaired anti-pathogen immunity and suppressed autoimmune disease. Our findings underscore the significance of subcellular RA/RARα signaling in T cells and identify extranuclear RARα as a component of the TCR signalosome and a determinant of immune responses.


Subject(s)
Autoimmune Diseases , Lymphocyte Activation , Humans , Retinoic Acid Receptor alpha/genetics , Cell Membrane , Receptors, Antigen, T-Cell
9.
J Biomol Struct Dyn ; : 1-10, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37505058

ABSTRACT

Zeta chain-associated protein kinase 70 (ZAP-70) is a non-receptor tyrosine kinase that interacts with the activated T-cell receptor to transduce downstream signals, and thus plays an important role in the adaptive immune system. The biphosphorylated immunotyrosine-based activation motifs (ITAM-Y2P) binds to the N-SH2 and C-SH2 domains of ZAP-70 to promote the activation of ZAP-70. The present study explores molecular mechanisms of allosteric inactivation of ZAP-70 induced by the hot spot W165C mutation through atomically detailed molecular dynamics simulation approaches. We report microsecond-length simulations of two states of the tandem SH2 domains of ZAP-70 in complex with the ITAM-Y2P motif, including the wild-type and W165C mutant. Extensive analysis of local flexibility and dynamical correlated motions show that W165C mutation changes coupled motions of protein domains and community networks. The binding affinities of the ITAM-Y2P motif to the wild-type and W165C mutant of ZAP-70 are predicted using binding free energy calculations. The results suggest that the driving force to decrease the binding affinity in the W165C mutant derives from the difference in the protein-protein electrostatic interactions. Moreover, the per-residue free energy decomposition unravels that the contributions from residues in the phosphorylated Tyr315 (pY315) binding site, in particular pY315 of ITAM-Y2P, and Arg43, Tyr240 of ZAP-70, are the key determinants for the loss of binding affinity. This study may insights into our understanding of the pathological mechanism of ZAP-70.Communicated by Ramaswamy H. Sarma.

10.
Int J Mol Sci ; 24(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298079

ABSTRACT

The two members of the UBASH3/STS/TULA protein family have been shown to critically regulate key biological functions, including immunity and hemostasis, in mammalian biological systems. Negative regulation of signaling through immune receptor tyrosine-based activation motif (ITAM)- and hemITAM-bearing receptors mediated by Syk-family protein tyrosine kinases appears to be a major molecular mechanism of the down-regulatory effect of TULA-family proteins, which possess protein tyrosine phosphatase (PTP) activity. However, these proteins are likely to carry out some PTP-independent functions as well. Whereas the effects of TULA-family proteins overlap, their characteristics and their individual contributions to cellular regulation also demonstrate clearly distinct features. Protein structure, enzymatic activity, molecular mechanisms of regulation, and biological functions of TULA-family proteins are discussed in this review. In particular, the usefulness of the comparative analysis of TULA proteins in various metazoan taxa, for identifying potential roles of TULA-family proteins outside of their functions already established in mammalian systems, is examined.


Subject(s)
Phthiraptera , Animals , Female , Mice , Phthiraptera/metabolism , Chickens/metabolism , Protein-Tyrosine Kinases/metabolism , Protein Tyrosine Phosphatases/metabolism , Signal Transduction , Syk Kinase/metabolism , Phosphorylation/physiology , Mammals/metabolism
11.
Front Immunol ; 14: 1155883, 2023.
Article in English | MEDLINE | ID: mdl-37313400

ABSTRACT

Introduction: ZAP-70, a protein tyrosine kinase recruited to the T cell receptor (TCR), initiates a TCR signaling cascade upon antigen stimulation. Mutations in the ZAP70 gene cause a combined immunodeficiency characterized by low or absent CD8+ T cells and nonfunctional CD4+ T cells. Most deleterious missense ZAP70 mutations in patients are located in the kinase domain but the impact of mutations in the SH2 domains, regulating ZAP-70 recruitment to the TCR, are not well understood. Methods: Genetic analyses were performed on four patients with CD8 lymphopenia and a high resolution melting screening for ZAP70 mutations was developed. The impact of SH2 domain mutations was evaluated by biochemical and functional analyses as well as by protein modeling. Results and discussion: Genetic characterization of an infant who presented with pneumocystis pneumonia, mycobacterial infection, and an absence of CD8 T cells revealed a novel homozygous mutation in the C-terminal SH2 domain (SH2-C) of the ZAP70 gene (c.C343T, p.R170C). A distantly related second patient was found to be compound heterozygous for the R170C variant and a 13bp deletion in the ZAP70 kinase domain. While the R170C mutant was highly expressed, there was an absence of TCR-induced proliferation, associated with significantly attenuated TCR-induced ZAP-70 phosphorylation and a lack of binding of ZAP-70 to TCR-ζ. Moreover, a homozygous ZAP-70 R192W variant was identified in 2 siblings with combined immunodeficiency and CD8 lymphopenia, confirming the pathogenicity of this mutation. Structural modeling of this region revealed the critical nature of the arginines at positions 170 and 192, in concert with R190, forming a binding pocket for the phosphorylated TCR-ζ chain. Deleterious mutations in the SH2-C domain result in attenuated ZAP-70 function and clinical manifestations of immunodeficiency.


Subject(s)
Lymphopenia , Primary Immunodeficiency Diseases , Infant , Humans , src Homology Domains/genetics , Protein-Tyrosine Kinases , Arginine , Lymphopenia/genetics , ZAP-70 Protein-Tyrosine Kinase/genetics
12.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37239929

ABSTRACT

Thirteen benzylethoxyaryl ureas have been synthesized and biologically evaluated as multitarget inhibitors of VEGFR-2 and PD-L1 proteins to overcome resistance phenomena offered by cancer. The antiproliferative activity of these molecules on several tumor cell lines (HT-29 and A549), on the endothelial cell line HMEC-1, on immune cells (Jurkat T) and on the non-tumor cell line HEK-293 has been determined. Selective indexes (SI) have been also determined and compounds bearing p-substituted phenyl urea unit together with a diaryl carbamate exhibited high SI values. Further studies on these selected compounds to determine their potential as small molecule immune potentiators (SMIPs) and as antitumor agents have been performed. From these studies, we have concluded that the designed ureas have good tumor antiangiogenic properties, exhibit good inhibition of CD11b expression, and regulate pathways involved in CD8 T-cell activity. These properties suggest that these compounds could be potentially useful in the development of new cancer immune treatments.


Subject(s)
Neoplasms , Urea , Humans , Urea/pharmacology , HEK293 Cells , Cell Proliferation , Neoplasms/drug therapy , Immunomodulation , Cell Line, Tumor
13.
Cells ; 12(9)2023 05 02.
Article in English | MEDLINE | ID: mdl-37174695

ABSTRACT

In chronic lymphocytic leukemia (CLL), an elevated glycosyltransferase UGT2B17 expression (UGT2B17HI) identifies a subgroup of patients with shorter survival and poor drug response. We uncovered a mechanism, possibly independent of its enzymatic function, characterized by an enhanced expression and signaling of the proximal effectors of the pro-survival B cell receptor (BCR) pathway and elevated Bruton tyrosine kinase (BTK) phosphorylation in B-CLL cells from UGT2B17HI patients. A prominent feature of B-CLL cells is the strong correlation of UGT2B17 expression with the adverse marker ZAP70 encoding a tyrosine kinase that promotes B-CLL cell survival. Their combined high expression levels in the treatment of naïve patients further defined a prognostic group with the highest risk of poor survival. In leukemic cells, UGT2B17 knockout and repression of ZAP70 reduced proliferation, suggesting that the function of UGT2B17 might involve ZAP70. Mechanistically, UGT2B17 interacted with several kinases of the BCR pathway, including ZAP70, SYK, and BTK, revealing a potential therapeutic vulnerability. The dual SYK and JAK/STAT6 inhibitor cerdulatinib most effectively compromised the proliferative advantage conferred by UGT2B17 compared to the selective BTK inhibitor ibrutinib. Findings point to an oncogenic role for UGT2B17 as a novel constituent of BCR signalosome also connected with microenvironmental signaling.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Protein-Tyrosine Kinases/metabolism , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , Phosphorylation , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Minor Histocompatibility Antigens/metabolism
14.
Cell Metab ; 35(6): 961-978.e10, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37178684

ABSTRACT

Metabolic alterations in the microenvironment significantly modulate tumor immunosensitivity, but the underlying mechanisms remain obscure. Here, we report that tumors depleted of fumarate hydratase (FH) exhibit inhibition of functional CD8+ T cell activation, expansion, and efficacy, with enhanced malignant proliferative capacity. Mechanistically, FH depletion in tumor cells accumulates fumarate in the tumor interstitial fluid, and increased fumarate can directly succinate ZAP70 at C96 and C102 and abrogate its activity in infiltrating CD8+ T cells, resulting in suppressed CD8+ T cell activation and anti-tumor immune responses in vitro and in vivo. Additionally, fumarate depletion by increasing FH expression strongly enhances the anti-tumor efficacy of anti-CD19 CAR T cells. Thus, these findings demonstrate a role for fumarate in controlling TCR signaling and suggest that fumarate accumulation in the tumor microenvironment (TME) is a metabolic barrier to CD8+ T cell anti-tumor function. And potentially, fumarate depletion could be an important strategy for tumor immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Fumarates/pharmacology , Fumarates/metabolism , Tumor Microenvironment , Neoplasms/metabolism , Signal Transduction
15.
BMC Pediatr ; 23(1): 195, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37101133

ABSTRACT

Zeta(ζ)-Chain Associated Protein Kinase 70 kDa (ZAP-70) deficiency is a rare autosomal recessive primary immunodeficiency disease. Little is known about this disease. In this study, we report two patients to extend the range of clinical phenotypes and immunophenotypes associated with ZAP-70 mutations. We describe the clinical, genetic, and immunological phenotypes of two patients with ZAP-70 deficiency in China, and the data are also compared with the literature. Case 1 presented with leaky severe combined immunodeficiency with low to the absence of CD8 + T cells, while case 2 suffered from a recurrent respiratory infection and had a past medical history of non-EBV-associated Hodgkin's lymphoma. Sequencing revealed novel compound heterozygous mutations in ZAP-70 of these patients. Case 2 is the second ZAP-70 patient presenting a normal CD8 + T cell number. These two cases have been treated with hematopoietic stem cell transplantation. Selective CD8 + T cell loss is an essential feature of the immunophenotype of ZAP-70 deficiency patients, but there are exceptions. Hematopoietic stem cell transplantation can provide excellent long-term immune function and resolution of clinical problems.


Subject(s)
CD8-Positive T-Lymphocytes , Humans , China , Mutation , Phenotype
16.
Indian J Pathol Microbiol ; 66(2): 291-294, 2023.
Article in English | MEDLINE | ID: mdl-37077070

ABSTRACT

Background: Chronic lymphocytic leukemia (CLL) is prognosticated using the Rai and the Binet's staging. In the past few years, new parameters have been considered for prognostication. One such marker that has been a subject of speculation and found useful by some western studies is zeta-associated protein 70 (ZAP-70). Aim: To investigate the prevalence of ZAP-70 and find out its association with other prognostic markers like Rai and Binet's stage and CD38 in Indian CLL patients. Materials and Methods: Twenty-nine newly diagnosed cases of CLL were selected over 1 year. Immunophenotyping was done and expression of CD38 and ZAP-70 was evaluated on gated CLL cells. Statistical Analysis: Qualitative data were expressed as frequency and percentage. Differences between groups were evaluated using Student's t-test for quantitative data and Chi-square test/Fisher's exact t-test for qualitative variables. A P value less than 0.05 was considered significant. Results and Conclusion: We found a lower prevalence rate of ZAP-70 (2/29, 6.89%) with no association with any of the conventional poor prognostic factors. A large number of our CLL patients fall into the good prognostic group (22/29, ZAP 70-/CD38-) with a least number in the poor prognostic group (2/29, ZAP-70 + CD38+). Also, no association was found between ZAP-70 and CD38. The findings of the present study suggest that the majority of CLL patients in India have a good prognosis, may not require treatment, and have good overall survival. Geographical variations, genetic makeup, and natural history of the CLL could be the cause of such differences from western literature.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , ZAP-70 Protein-Tyrosine Kinase , Humans , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/metabolism , India/epidemiology , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Prognosis , ZAP-70 Protein-Tyrosine Kinase/genetics , ZAP-70 Protein-Tyrosine Kinase/metabolism
17.
Clin Immunol ; 247: 109236, 2023 02.
Article in English | MEDLINE | ID: mdl-36669607

ABSTRACT

Activated zeta-chain-associated protein kinase 70 (ZAP70) phosphorylates the TCRαß:CD3:zeta complex to diversify and amplify TCR signaling. Patients with ZAP70 mutations can present with phenotypes of immune dysregulation as well as infection. We identified the first Taiwanese boy with the [Asp521Asn] ZAP70 mutation who presented with recurrent pneumonia, inflammatory bowel disease-like diarrhea, transient hematuria and autoimmune hepatitis. He had isolated CD8 lymphopenia, eosinophilia, hypogammaglobulinemia, and impaired lymphocyte proliferation. Downstream CD3/CD28 signaling, phosphorylation of AKT, ZAP70 and Ca2+ influx were decreased in [Asp521Asn] ZAP70 lymphocytes. Immunophenotyping analysis revealed expansion of transitional B and CD21-low B cells, Th2-skewing T follicular helper cells, but lower Treg cells. The Asp521Asn-ZAP70 hindered TCR-CD3 downstream phosphorylation and disturbed lymphocyte subgroup "profiles" leading to autoimmunity/autoinflammation. Further large-scale studies are warranted to clarify this lymphocyte disturbance. The prognosis significantly depends on hematopoietic stem cell transplantation, but not the genotype, the presence of opportunistic infections or immune dysregulation.


Subject(s)
Receptors, Antigen, T-Cell, alpha-beta , Signal Transduction , Male , Animals , ZAP-70 Protein-Tyrosine Kinase/genetics , Mutation , Phosphorylation , Receptors, Antigen, T-Cell, alpha-beta/genetics , T-Lymphocytes, Regulatory/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
19.
Cell Mol Life Sci ; 80(1): 7, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36495335

ABSTRACT

The ZAP70 protein tyrosine kinase (PTK) couples stimulated T cell antigen receptors (TCRs) to their downstream signal transduction pathways and is sine qua non for T cell activation and differentiation. TCR engagement leads to activation-induced post-translational modifications of ZAP70, predominantly by kinases, which modulate its conformation, leading to activation of its catalytic domain. Here, we demonstrate that ZAP70 in TCR/CD3-activated mouse spleen and thymus cells, as well as human Jurkat T cells, is regulated by the peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin A (CypA) and that this regulation is abrogated by cyclosporin A (CsA), a CypA inhibitor. We found that TCR crosslinking promoted a rapid and transient, Lck-dependent association of CypA with the interdomain B region, at the ZAP70 regulatory domain. CsA inhibited CypA binding to ZAP70 and prevented the colocalization of CypA and ZAP70 at the cell membrane. In addition, imaging analyses of antigen-specific T cells stimulated by MHC-restricted antigen-fed antigen-presenting cells revealed the recruitment of ZAP70-bound CypA to the immunological synapse. Enzymatically active CypA downregulated the catalytic activity of ZAP70 in vitro, an effect that was reversed by CsA in TCR/CD3-activated normal T cells but not in CypA-deficient T cells, and further confirmed in vivo by FRET-based studies. We suggest that CypA plays a role in determining the activity of ZAP70 in TCR-engaged T cells and impact on T cell activation by intervening with the activity of multiple downstream effector molecules.


Subject(s)
Cyclophilin A , T-Lymphocytes , Mice , Animals , Humans , Cyclophilin A/genetics , Receptors, Antigen, T-Cell/metabolism , Lymphocyte Activation , Thymus Gland/metabolism , ZAP-70 Protein-Tyrosine Kinase/genetics , ZAP-70 Protein-Tyrosine Kinase/metabolism
20.
World J Urol ; 40(11): 2817-2824, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36205741

ABSTRACT

BACKGROUND: While immunotherapy has shown potent efficacy in clinical practices, patient selection to receive checkpoint blockade is still challenging in prostate cancer (PCa). LAT and ZAP70 functions in lymphocyte activation and plays a critical role in T cell receptor (TCR) signal transduction. However, PCa genomic and clinical data regarding the role of LAT and ZAP70 are limited. We aim to identify and characterize LAT/ZAP70 defined subtypes of PCa. METHODS: We elaborated the TCGA PCa data and metastatic castration-resistant prostate cancer (mCRPC) RNA-seq data bioinformatic analysis and systematically elucidated the role of intra-tumoral expressed LAT and ZAP70 in the progression-free survival and immunotherapeutic-related signals. LAT/ZAP70-associated immune infiltration was evaluated using bioinformatic tools. Immunohistochemical staining of serial sections was used to confirm the expression and distribution of LAT, ZAP70 and androgen receptor (AR) in PCa tissues. RESULTS: Specifically, LAT and ZAP70 revealed increased expressions in PCa when compared to normal tissues and positively associated with intra-tumoral immune cells infiltration. LAT/ZAP70 defined immune-high early-stage PCa revealed higher TP53 mutation frequency and poor prognosis. Transcriptome analysis indicated immune-related signals and CTLA4 expression were highly enhanced in immune-high PCa parallel with higher protein level of MYC and lower AR expression. In mCRPC, LAT/ZAP70 defined immune-high patients also revealed upregulated immune related signals, higher CTLA4 expression and DNA repair deficiency. CONCLUSION: LAT/ZAP70 defined immune-high PCa linked to immune infiltration and predicts poor prognosis. Immune-high PCa may receive effective response from immune checkpoint inhibitor parallel with systemic treatment.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , CTLA-4 Antigen , Prostatic Neoplasms/pathology , Receptors, Androgen , Signal Transduction , ZAP-70 Protein-Tyrosine Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...