Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 311
Filter
1.
Epigenetics ; 19(1): 2374988, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39003776

ABSTRACT

Early detection is crucial for increasing the survival rate of gastric cancer (GC). We aimed to identify a methylated cell-free DNA (cfDNA) marker panel for detecting GC. The differentially methylated CpGs (DMCs) were selected from datasets of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The selected DMCs were validated and further selected in tissue samples (40 gastric cancer and 36 healthy white blood cell samples) and in a quarter sample volume of plasma samples (37 gastric cancer, 12 benign gastric disease, and 43 healthy individuals). The marker combination selected was then evaluated in a normal sample volume of plasma samples (35 gastric cancer, 39 control diseases, and 40 healthy individuals) using real-time methylation-specific PCR (MSP). The analysis of the results compared methods based on 2-ΔΔCt values and Ct values. In the results, 30 DMCs were selected through bioinformatics methods, and then 5 were selected for biological validation. The marker combination of two fragments of IRF4 (IRF4-1 and IRF4-2) and one of ZEB2 was selected due to its good performance. The Ct-based method was selected for its good results and practical advantages. The assay, IRF4-1 and IRF4-2 in one fluorescence channel and ZEB2 in another, obtained 74.3% sensitivity for the GC group at any stage, at 92.4% specificity. In conclusion, the panel of IRF4 and ZEB2 in plasma cfDNA demonstrates good diagnostic performance and application potential in clinical settings.


Subject(s)
Biomarkers, Tumor , Cell-Free Nucleic Acids , DNA Methylation , Interferon Regulatory Factors , Stomach Neoplasms , Zinc Finger E-box Binding Homeobox 2 , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/blood , Stomach Neoplasms/diagnosis , Interferon Regulatory Factors/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Female , Male , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/metabolism , Cell-Free Nucleic Acids/genetics , Middle Aged , Aged , Adult
2.
Adv Exp Med Biol ; 1441: 467-480, 2024.
Article in English | MEDLINE | ID: mdl-38884726

ABSTRACT

Although atrial septal defects (ASD) can be subdivided based on their anatomical location, an essential aspect of human genetics and genetic counseling is distinguishing between isolated and familiar cases without extracardiac features and syndromic cases with the co-occurrence of extracardiac abnormalities, such as developmental delay. Isolated or familial cases tend to show genetic alterations in genes related to important cardiac transcription factors and genes encoding for sarcomeric proteins. By contrast, the spectrum of genes with genetic alterations observed in syndromic cases is diverse. Currently, it points to different pathways and gene networks relevant to the dysregulation of cardiomyogenesis and ASD pathogenesis. Therefore, this chapter reflects the current knowledge and highlights stable associations observed in human genetics studies. It gives an overview of the different types of genetic alterations in these subtypes, including common associations based on genome-wide association studies (GWAS), and it highlights the most frequently observed syndromes associated with ASD pathogenesis.


Subject(s)
Genome-Wide Association Study , Heart Septal Defects, Atrial , Humans , Heart Septal Defects, Atrial/genetics , Genetic Predisposition to Disease/genetics , Mutation
3.
Biochem Genet ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869664

ABSTRACT

Circular RNA (circRNA) has been reported to regulate the development of bladder cancer (BCa). However, the role of circ_0000758 in BCa progression is unknown. Circ_0000758 and miR-1236-3p expression, as well as ZEB2 mRNA expression were determined by qRT-PCR. BCa cell biological functions were determined by MTT assay, EdU assay, flow cytometry, wound healing assay and tube formation assay. Protein expression was detected by western blot analysis. RNA pull-down assay and dual-luciferase reporter assay were used to confirm RNA interaction. Xenograft mice models were constructed to assess the effect of circ_0000758 on BCa tumor growth. Circ_0000758 had increased expression in BCa tissues and cells. Circ_0000758 silencing could inhibit BCa cell growth, migration, angiogenesis in vitro, and tumor growth in vivo. Circ_0000758 served as a molecular sponge for miR-1236-3p, and miR-1236-3p inhibitor reversed circ_0000758 knockdown-mediated the inhibition effect on BCa cell progression. ZEB2 was targeted by miR-1236-3p, and its overexpression also revoked the suppressive effect of miR-1236-3p on BCa cell growth, migration, and angiogenesis. Besides, circ_0000758 knockdown also restrained BCa tumor growth. Circ_0000758 might promote BCa cell growth, migration, and angiogenesis by regulating the miR-1236-3p/ZEB2 axis.

4.
Arch Biochem Biophys ; 758: 110073, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914217

ABSTRACT

BACKGROUND: The ERN1 (endoplasmic reticulum to nucleus signaling 1) pathway plays an important role in the regulation of gene expression in glioblastoma, but molecular mechanism has not yet been fully elucidated. The aim of this study was to evaluate the relative relevance of ERN1 activity as a kinase in comparison to its endoribonuclease activity in the regulation of homeobox gene expression. METHODS: Two sublines of U87MG glioblastoma cells with different ways of ERN1 inhibition were used: dnERN1 (overexpressed transgene without protein kinase and endoribonuclease) and dnrERN1 (overexpressed transgene with mutation in endoribonuclease). ERN1 suppression was also done using siRNA for ERN1. Silencing of XBP1 mRNA by specific siRNA was used for suppression of ERN1 endoribonuclease function mediated by XBP1s. The expression levels of homeobox genes and microRNAs were evaluated by qPCR. RESULTS: The expression of TGIF1 and ZEB2 genes was downregulated in both types of glioblastoma cells with inhibition of ERN1 showing the ERN1 endoribonuclease-dependent mechanism of their regulation. However, the expression of PBX3 and PRPRX1 genes did not change significantly in dnrERN1 glioblastoma cells but was upregulated in dnERN1 cells indicating the dependence of these gene expressions on the ERN1 protein kinase. At the same time, the changes in PAX6 and PBXIP1 gene expressions introduced in glioblastoma cells by dnrERN1 and dnERN1 were different in direction and magnitude indicating the interaction of ERN1 protein kinase and endoribonuclease activities in regulation of these gene expressions. The impact of ERN1 and XBP1 silencing on the expression of studied homeobox genes is similar to that observed in dnERN1 and dnrERN1 glioblastoma cells, correspondingly. CONCLUSION: The expression of TGIF1 and other homeobox genes is dependent on the ern1 signaling pathways by diverse mechanisms because inhibition of ERN1 endoribonuclease and both ERN1 enzymatic activities had dissimilar impacts on the expression of most studied genes showing that ERN1 protein kinase plays an important role in controlling homeobox gene expression associated with glioblastoma cell invasion.


Subject(s)
Endoribonucleases , Gene Expression Regulation, Neoplastic , Glioblastoma , Homeodomain Proteins , Protein Serine-Threonine Kinases , Humans , Endoribonucleases/metabolism , Endoribonucleases/genetics , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Cell Line, Tumor , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Genes, Homeobox
5.
Cell Stem Cell ; 31(7): 1072-1090.e8, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38754429

ABSTRACT

Gastrulation is a critical stage in embryonic development during which the germ layers are established. Advances in sequencing technologies led to the identification of gene regulatory programs that control the emergence of the germ layers and their derivatives. However, proteome-based studies of early mammalian development are scarce. To overcome this, we utilized gastruloids and a multilayered mass spectrometry-based proteomics approach to investigate the global dynamics of (phospho) protein expression during gastruloid differentiation. Our findings revealed many proteins with temporal expression and unique expression profiles for each germ layer, which we also validated using single-cell proteomics technology. Additionally, we profiled enhancer interaction landscapes using P300 proximity labeling, which revealed numerous gastruloid-specific transcription factors and chromatin remodelers. Subsequent degron-based perturbations combined with single-cell RNA sequencing (scRNA-seq) identified a critical role for ZEB2 in mouse and human somitogenesis. Overall, this study provides a rich resource for developmental and synthetic biology communities endeavoring to understand mammalian embryogenesis.


Subject(s)
Cell Lineage , Embryonic Development , Proteomics , Animals , Mice , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Humans , Single-Cell Analysis , Cell Differentiation , Gastrula/metabolism , Gastrulation
6.
Am J Med Genet A ; 194(8): e63581, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38600862

ABSTRACT

Alu elements are short, interspersed elements located throughout the genome, playing a role in human diversity, and occasionally causing genetic diseases. Here, we report a novel Alu insertion causing Mowat-Wilson syndrome, a rare neurodevelopmental disorder, in an 8-year-old boy displaying the typical clinical features for Mowat-Wilson syndrome. The variant was not initially detected in genome sequencing data, but through deep phenotyping, which pointed to only one plausible candidate gene, manual inspection of genome sequencing alignment data enabled us to identify a de novo heterozygous Alu insertion in exon 8 of the ZEB2 gene. Nanopore long-read sequencing confirmed the Alu insertion, leading to the formation of a premature stop codon and likely haploinsufficiency of ZEB2. This underscores the importance of deep phenotyping and mobile element insertion analysis in uncovering genetic causes of monogenic disorders as these elements might be overlooked in standard next-generation sequencing protocols.


Subject(s)
Alu Elements , Facies , Hirschsprung Disease , Intellectual Disability , Microcephaly , Zinc Finger E-box Binding Homeobox 2 , Humans , Alu Elements/genetics , Microcephaly/genetics , Microcephaly/pathology , Male , Child , Zinc Finger E-box Binding Homeobox 2/genetics , Hirschsprung Disease/genetics , Hirschsprung Disease/pathology , Intellectual Disability/genetics , Intellectual Disability/pathology , Phenotype , Mutagenesis, Insertional/genetics , High-Throughput Nucleotide Sequencing , Exons/genetics
7.
Int J Mol Sci ; 25(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474085

ABSTRACT

Mowat-Wilson syndrome (MWS) is a rare genetic neurodevelopmental congenital disorder associated with various defects of the zinc finger E-box binding homeobox 2 (ZEB2) gene. The ZEB2 gene is autosomal dominant and encodes six protein domains including the SMAD-binding protein, which functions as a transcriptional corepressor involved in the conversion of neuroepithelial cells in early brain development and as a mediator of trophoblast differentiation. This review summarizes reported ZEB2 gene variants, their types, and frequencies among the 10 exons of ZEB2. Additionally, we summarized their corresponding encoded protein defects including the most common variant, c.2083 C>T in exon 8, which directly impacts the homeodomain (HD) protein domain. This single defect was found in 11% of the 298 reported patients with MWS. This review demonstrates that exon 8 encodes at least three of the six protein domains and accounts for 66% (198/298) of the variants identified. More than 90% of the defects were due to nonsense or frameshift changes. We show examples of protein modeling changes that occurred as a result of ZEB2 gene defects. We also report a novel pathogenic variant in exon 8 in a 5-year-old female proband with MWS. This review further explores other genes predicted to be interacting with the ZEB2 gene and their predicted gene-gene molecular interactions with protein binding effects on embryonic multi-system development such as craniofacial, spine, brain, kidney, cardiovascular, and hematopoiesis.


Subject(s)
Facies , Hirschsprung Disease , Intellectual Disability , Microcephaly , Repressor Proteins , Female , Humans , Child, Preschool , Repressor Proteins/genetics , Zinc Finger E-box Binding Homeobox 2/genetics , Intellectual Disability/genetics , Homeodomain Proteins/genetics , Transcription Factors
8.
Front Biosci (Elite Ed) ; 16(1): 6, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38538524

ABSTRACT

BACKGROUND: This research explores the significance of miR-215-5p and vasculogenic mimicry (VM) in forecasting the prognosis for hepatocellular carcinoma (HCC). METHODS: We analyzed HCC-associated miRNA expression profiles using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Samples included tissue and blood from 80 early-stage HCC patients and serum from 120 healthy individuals. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to measure miR-215-5p and zinc finger E-box binding homeobox 2 (ZEB2) gene expressions. Hematoxylin and eosin (H&E) and CD34/Periodic Acid-Schiff (PAS) double staining assessed VM presence in HCC tissue sections. Bioinformatics tools predicted interactions between miR-215-5p and ZEB2, confirmed through luciferase reporter assays. We also examined the impact of miR-215-5p or ZEB2 overexpression on HCC cell invasion, migration, and VM formation using scratch, Transwell invasion assays, and Matrigel 3D cultures. RESULTS: Bioinformatics analysis indicated that miR-215-5p was under-expressed in HCC, particularly in cases with vascular invasion, which correlated with worse patient outcomes. In contrast, ZEB2, targeted by miR-215-5p, was overexpressed in HCC. RT-qPCR validated these expression patterns in HCC tissues. Among the HCC patients, 38 were VM positive and 42 VM negative. Logistic regression highlighted a negative correlation between miR-215-5p levels and VM positivity in HCC tissues and a positive correlation for ZEB2 with VM positivity and tumor vascular invasion. Lower miR-215-5p levels were linked to increased HCC recurrence and metastasis. Both bioinformatics analysis and luciferase assays demonstrated a direct interaction between miR-215-5p and ZEB2. Enhancing miR-215-5p levels reduced ZEB2 expression, consequently diminishing invasion, migration, and VM formation of the HCC cells in vitro. CONCLUSIONS: miR-215-5p expression inversely correlates with VM occurrence in HCC tissues, while ZEB2 expression shows a direct correlation. By targeting ZEB2, miR-215-5p may hinder VM in HCC tissues, helping to prevent vascular invasion and HCC recurrence. Thus, miR-215-5p emerges as a vital prognostic indicator for predicting vascular invasion and recurrence in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Luciferases/genetics , Luciferases/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Movement/genetics
9.
Gene ; 912: 148365, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38485033

ABSTRACT

BACKGROUND: Hirschsprung's-associated enterocolitis (HAEC) is a prevalent complication of Hirschsprung's disease (HSCR). Zinc finger E-box binding homeobox 2 (ZEB2) and Notch-1/Jagged-2 are dysregulated in HSCR, but their role in HAEC progression remains poorly understood. We aimed to explore the role and underlying mechanism of enteric neural precursor cells (ENPCs) and the ZEB2/Notch-1/Jagged-2 pathway in HAEC development. METHODS: Colon tissues were collected from HSCR and HAEC patients. ENPCs were isolated from the HAEC group and stimulated by lipopolysaccharide (LPS). The expressions of ZEB2/Notch-1/Jagged-2 were measured using RT-qPCR and Western blot. Immunofluorescence and cell counting kit-8 assays were performed to assess the differentiation and proliferation of ENPCs. Inflammatory factors were measured by ELISA kits. Co-immunoprecipitation and bioinformatic analysis were used to explore the interaction between ZEB2 and Notch-1. Small interfering RNA and overexpression vectors were used to investigate the role and mechanism of ZEB2 and Notch-1 in regulating ENPCs' proliferation and differentiation during HAEC progression. RESULTS: We observed increased LPS in the colon tissues of HAEC, with downregulated ZEB2 expression and upregulated Notch-1/Jagged-2 expression. ZEB2 interacts with Notch-1. LPS treatment downregulated ZEB2 expression, upregulated Notch-1/Jagged-2 expression, and induced proliferation and differentiation disorders in ENPCs, which were reversed by the knockdown of Notch-1. Furthermore, overexpression of ZEB2 inhibited Notch-1/Jagged-2 signaling and ameliorated inflammation and dysfunction in LPS-induced ENPCs. Notch-1 overexpression enhanced LPS-induced dysfunction, but this effect was antagonized by the overexpression of ZEB2. CONCLUSION: Overexpression of ZEB2 ameliorates LPS-induced ENPCs' dysfunction via the Notch-1/Jagged-2 pathway, thus playing a role in HAEC.


Subject(s)
Enterocolitis , Hirschsprung Disease , Neural Stem Cells , Humans , Cell Proliferation , Colon/metabolism , Enterocolitis/complications , Enterocolitis/metabolism , Hirschsprung Disease/genetics , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Neural Stem Cells/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/metabolism
10.
Cell Signal ; 116: 111062, 2024 04.
Article in English | MEDLINE | ID: mdl-38242271

ABSTRACT

IKBKE (Inhibitor of Nuclear Factor Kappa-B Kinase Subunit Epsilon) is an important oncogenic protein in a variety of tumors, which can promote tumor growth, proliferation, invasion and drug resistance, and plays a critical regulatory role in the occurrence and progression of malignant tumors. HMGA1a (High Mobility Group AT-hook 1a) functions as a cofactor for proper transcriptional regulation and is highly expressed in multiple types of tumors. ZEB2 (Zinc finger E-box Binding homeobox 2) exerts active functions in epithelial mesenchymal transformation (EMT). In our current study, we confirmed that IKBKE can increase the proliferation, invasion and migration of glioblastoma cells. We then found that IKBKE can phosphorylate HMGA1a at Ser 36 and/or Ser 44 sites and inhibit the degradation process of HMGA1a, and regulate the nuclear translocation of HMGA1a. Crucially, we observed that HMGA1a can regulate ZEB2 gene expression by interacting with ZEB2 promoter region. Hence, HMGA1a was found to promote the ZEB2-related metastasis. Consequently, we demonstrated that IKBKE can exert its oncogenic functions via the IKBKE/HMGA1a/ZEB2 signalling axis, and IKBKE may be a prominent biomarker for the treatment of glioblastoma in the future.


Subject(s)
Glioblastoma , Humans , Glioblastoma/metabolism , Cell Line, Tumor , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition , Zinc Finger E-box Binding Homeobox 2/metabolism , I-kappa B Kinase/metabolism
11.
Pigment Cell Melanoma Res ; 37(1): 6-14, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37475109

ABSTRACT

We describe the first cases of pediatric melanoma with ALK fusion gene arising within giant congenital melanocytic nevi. Two newborn boys presented with large pigmented nodular plaques and numerous smaller satellite nevi. Additional expansile nodules developed within both nevi and invasive melanomas were diagnosed before 10 months of age in both boys. Oncogenic driver mutations in NRAS and BRAF were absent in both cases. Instead, oncogenic ZEB2::ALK fusion genes were identified in both the nevus and melanoma developing within the nevus. In both cases, tumors were noted by ultrasound in utero, demonstrated significant nodularity at birth, and progressed to melanoma in the first year of life suggesting that congenital nevi with ALK fusion genes may behave more aggressively than those with other mutations. As ALK kinase inhibitors are effective against a range of tumors with similar ALK fusion kinases, identifying ALK fusion genes in congenital melanocytic nevi may provide an opportunity for targeted therapy.


Subject(s)
Melanoma , Nevus, Epithelioid and Spindle Cell , Nevus, Pigmented , Skin Neoplasms , Child , Humans , Infant , Infant, Newborn , Male , Anaplastic Lymphoma Kinase/genetics , Gene Fusion/genetics , Melanoma/genetics , Melanoma/pathology , Nevus, Pigmented/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology
12.
Reprod Sci ; 31(3): 687-696, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37814200

ABSTRACT

Preeclampsia (PE) belongs to hypertensive disorder complicating pregnancy, which is a serious obstetric complication. Propofol is a new type of fast and short-acting general anesthetic, which has also been demonstrated to promote the cell growth recently. Therefore, this study was carried out to explore the effects of propofol on the cell growth, migration and invasion in the HTR-8/SVneo cells. The cell biological behaviors were analyzed using CCK-8, EdU, transwell assays. The relationship between METTL3 and ZEB2 was confirmed by RIP assay. Western blot and RT-qPCR assays were carried out to detect the protein and mRNA levels. The results showed that propofol enhanced the cell viability, proliferation, migration and invasion of the HTR-8/SVneo cells. Besides, METTL3 overexpression neutralized the propofol role. Furthermore, METTL3 overexpression elevated the m6A levels of ZEB2 and decreased the mRNA levels and stability of ZEB2. ZEB2 overexpression neutralized the role of METTL3 in the propofol treated HTR-8/SVneo cells. In conclusion, this study demonstrated the effects of propofol on promoting the cell growth, migration and invasion of HTR-8/SVneo cells. Mechanistically, propofol indirectly regulated ZEB2 expression by targeting METTL3 mediated m6A methylation modification.


Subject(s)
MicroRNAs , Pre-Eclampsia , Propofol , Pregnancy , Female , Humans , Propofol/pharmacology , Propofol/metabolism , Trophoblasts/metabolism , Cell Line , Pre-Eclampsia/metabolism , Cell Proliferation , RNA, Messenger/metabolism , Epithelial-Mesenchymal Transition , Cell Movement , MicroRNAs/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/metabolism
13.
Elife ; 122023 12 11.
Article in English | MEDLINE | ID: mdl-38078907

ABSTRACT

Lipid metabolism plays a critical role in cancer metastasis. However, the mechanisms through which metastatic genes regulate lipid metabolism remain unclear. Here, we describe a new oncogenic-metabolic feedback loop between the epithelial-mesenchymal transition transcription factor ZEB2 and the key lipid enzyme ACSL4 (long-chain acyl-CoA synthetase 4), resulting in enhanced cellular lipid storage and fatty acid oxidation (FAO) to drive breast cancer metastasis. Functionally, depletion of ZEB2 or ACSL4 significantly reduced lipid droplets (LDs) abundance and cell migration. ACSL4 overexpression rescued the invasive capabilities of the ZEB2 knockdown cells, suggesting that ACSL4 is crucial for ZEB2-mediated metastasis. Mechanistically, ZEB2-activated ACSL4 expression by directly binding to the ACSL4 promoter. ACSL4 binds to and stabilizes ZEB2 by reducing ZEB2 ubiquitination. Notably, ACSL4 not only promotes the intracellular lipogenesis and LDs accumulation but also enhances FAO and adenosine triphosphate production by upregulating the FAO rate-limiting enzyme CPT1A (carnitine palmitoyltransferase 1 isoform A). Finally, we demonstrated that ACSL4 knockdown significantly reduced metastatic lung nodes in vivo. In conclusion, we reveal a novel positive regulatory loop between ZEB2 and ACSL4, which promotes LDs storage to meet the energy needs of breast cancer metastasis, and identify the ZEB2-ACSL4 signaling axis as an attractive therapeutic target for overcoming breast cancer metastasis.


Subject(s)
Breast Neoplasms , Melanoma , Skin Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Feedback , Lipid Metabolism , Cell Line, Tumor , Lipids , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/metabolism
14.
Proc Natl Acad Sci U S A ; 120(46): e2301120120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37948583

ABSTRACT

Reactive oxygen species (ROS) serve important homeostatic functions but must be constantly neutralized by an adaptive antioxidant response to prevent supraphysiological levels of ROS from causing oxidative damage to cellular components. Here, we report that the cellular plasticity transcription factors ZEB1 and ZEB2 modulate in opposing directions the adaptive antioxidant response to fasting in skeletal muscle. Using transgenic mice in which Zeb1 or Zeb2 were specifically deleted in skeletal myofibers, we show that in fasted mice, the deletion of Zeb1, but not Zeb2, increased ROS production and that the adaptive antioxidant response to fasting essentially requires ZEB1 and is inhibited by ZEB2. ZEB1 expression increased in fasted muscles and protected them from atrophy; conversely, ZEB2 expression in muscles decreased during fasting and exacerbated muscle atrophy. In fasted muscles, ZEB1 reduces mitochondrial damage and increases mitochondrial respiratory activity; meanwhile, ZEB2 did the opposite. Treatment of fasting mice with Zeb1-deficient myofibers with the antioxidant triterpenoid 1[2-cyano-3,12-dioxool-eana-1,9(11)-dien-28-oyl] trifluoro-ethylamide (CDDO-TFEA) completely reversed their altered phenotype to that observed in fasted control mice. These results set ZEB factors as potential therapeutic targets to modulate the adaptive antioxidant response in physiopathological conditions and diseases caused by redox imbalance.


Subject(s)
Antioxidants , Zinc Finger E-box-Binding Homeobox 1 , Animals , Mice , Antioxidants/pharmacology , Fasting , Mice, Transgenic , Muscular Atrophy/genetics , Reactive Oxygen Species , Zinc Finger E-box Binding Homeobox 2/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
15.
Eur J Med Genet ; 66(12): 104882, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944854

ABSTRACT

High-throughput sequencing has identified vast numbers of variants in genetic disorders. However, the significance of variants at the exon-intron junction remains controversial. Even though most cases of Mowat-Wilson syndrome (MOWS) are caused by heterozygous loss-of-function variants in ZEB2, the pathogenicity of variants at exon-intron junction is often indeterminable. We identified four intronic variants in 5/173 patients with clinical suspicion for MOWS, and evaluated their pathogenicity by in vitro analyses. The minigene analysis showed that c.73+2T>G caused most of the transcripts skipping exon 2, while c.916+6T>G led to partial skipping of exon 7. No splicing abnormalities were detected in both c.917-21T>C and c.3067+6A>T. The minigene analysis reproduced the splicing observed in the blood cells of the patient with c.73+2T>G. The degree of the exon skipping was concordant with the severity of MOWS; while the patient with c.73+2T>G was typical MOWS, the patient with c.916+6T>G showed milder phenotype which has been seldom reported. Our results demonstrate that mRNA splicing assays using the minigenes are valuable for determining the clinical significance of intronic variants in patients with not only MOWS but also other genetic diseases with splicing aberrations and may explain atypical or milder cases, such as the current patient.


Subject(s)
RNA Splicing , Humans , Introns , Virulence , Exons
16.
Stem Cell Reports ; 18(11): 2254-2267, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37890485

ABSTRACT

Mowat-Wilson syndrome is caused by mutations in ZEB2, with patients exhibiting characteristics indicative of neural crest (NC) defects. We examined the contribution of ZEB2 to human NC formation using a model based on human embryonic stem cells. We found ZEB2 to be one of the earliest factors expressed in prospective human NC, and knockdown revealed a role for ZEB2 in establishing the NC state while repressing pre-placodal and non-neural ectoderm genes. Examination of ZEB2 N-terminal mutant NC cells demonstrates its requirement for the repression of enhancers in the NC gene network and proper NC cell terminal differentiation into osteoblasts and peripheral neurons and neuroglia. This ZEB2 mutation causes early misexpression of BMP signaling ligands, which can be rescued by the attenuation of BMP. Our findings suggest that ZEB2 regulates early human NC specification by modulating proper BMP signaling and further elaborate the molecular defects underlying Mowat-Wilson syndrome.


Subject(s)
Homeodomain Proteins , Neural Crest , Humans , Zinc Finger E-box Binding Homeobox 2/genetics , Homeodomain Proteins/genetics , Repressor Proteins/genetics , Prospective Studies
17.
Cell Rep ; 42(10): 113222, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37819755

ABSTRACT

Human embryonic stem cells (hESCs) can differentiate into any cell lineage. Here, we report that ZEB1 and ZEB2 promote and inhibit mesodermal-to-myogenic specification of hESCs, respectively. Knockdown and/or overexpression experiments of ZEB1, ZEB2, or PAX7 in hESCs indicate that ZEB1 is required for hESC Nodal/Activin-mediated mesodermal specification and PAX7+ human myogenic progenitor (hMuP) generation, while ZEB2 inhibits these processes. ZEB1 downregulation induces neural markers, while ZEB2 downregulation induces mesodermal/myogenic markers. Mechanistically, ZEB1 binds to and transcriptionally activates the PAX7 promoter, while ZEB2 binds to and activates the promoter of the neural OTX2 marker. Transplanting ZEB1 or ZEB2 knocked down hMuPs into the muscles of a muscular dystrophy mouse model, showing that hMuP engraftment and generation of dystrophin-positive myofibers depend on ZEB1 and are inhibited by ZEB2. The mouse model results suggest that ZEB1 expression and/or downregulating ZEB2 in hESCs may also enhance hESC regenerative capacity for human muscular dystrophy therapy.


Subject(s)
Human Embryonic Stem Cells , Muscular Dystrophies , Zinc Finger E-box Binding Homeobox 2 , Zinc Finger E-box-Binding Homeobox 1 , Animals , Humans , Mice , Activins/metabolism , Cell Differentiation/physiology , Cell Lineage , Human Embryonic Stem Cells/metabolism , Transforming Growth Factor beta/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics
18.
Cancer Cell Int ; 23(1): 243, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37845688

ABSTRACT

BACKGROUND: Drug resistance is a major obstacle causing chemotherapy failure, and enabling cancer progression. Exosome excreted by cancer cells is participated in cancer progression and chemoresistance, and can be used as an prognostic biomarker. Previous studies have revealed that serum exosomal hsa-circ-0004771 is over-expressed in colorectal cancer (CRC) sufferers and suggested it as a predictive biomarker for early diagnosis and prognosis of CRC. This work will to investigate the role and mechanism of serum exosomal hsa-circ-0004771 in mediating resistance to 5-fluorouracil (5-FU) in CRC. METHODS: Serum and tissue samples were collected from 60 patients with CRC/ benign intestinal disease, and 60 healthy control. Exosomes were isolated and identified from serum samples and cell cultured media with TEM, WB, NTA, and flow cytometry. qRT-PCR and WB were performed to evaluate mRNA expressions of exosomal has-circ-0004771 and miR-653, and ZEB2 protein expression, respectively. Cell proliferation, migration, invasion, and apoptosis abilities were assessed with BrdU and colony formation assay, wound-healing assay, and flow cytometry, respectively. RESULTS: Exosomal hsa-circ-0004771 was over-expressed in CRC serum and cell cultured media, while miR-653 was lower-expressed in CRC tissues and cells. Negative correlations existed between exosomal hsa-circ-0004771 in the patients' serum/cell culture media and miR-653 in CRC tissues/cells, and between miR-653 and ZEB2 in CRC cells. Exosomal hsa-circ-0004771 in CRC cell cultured media was positively related to ZEB2 in CRC cells. MiR-653 was associated with poor prognosis of CRC patients, and its upregulation restrained CRC cell proliferation, migration and invasion, and stimulated apoptosis. Exosomal hsa-circ-0004771 was higher-expressed in 5-FU-resistant CRC serum and cell cultured media, miR-653 was downregulated and ZEB2 was overexpressed in 5-FU-resistant CRC cells. In vitro, exosomal hsa-circ-0004771 in cell cultured media may be involved in 5-FU-resistance by modulating miR-653/ZEB2 pathway. CONCLUSIONS: miR-653 plays as a tumour suppressor in CRC progression, and serum exosomal hsa-circ-0004771 may be a predictive biomarker for 5-FU-resistance in CRC patients, potentially through miR-653/ZEB2 axis.

19.
BMC Pediatr ; 23(1): 480, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735378

ABSTRACT

BACKGROUND: Contiguous gene gain syndrome including entire ZEB2 may be a novel syndrome. In the past, there were no easily distinct and recognizable features as a guide for precise clinical and genetic diagnosis of the syndrome. CASE PRESENTATION: We report a novel case with the syndrome with a novel de novo 22.16 Mb duplication at 2q21.2-q24.1. The syndrome is characterized by multiple anomalies including the same typical craniofacial phenotype that is entirely different from Mowat-Wilson syndrome (MWS), and other quite similar features of MWS consisting of development delay, congenital heart disease, abdominal abnormalities, urogenital abnormalities, behavioral problems and so on, in which the distinctive craniofacial features can be more easily recognized. CONCLUSIONS: Contiguous gene gain syndrome including entire ZEB2 characterized with similar multiple congenital anomalies of MWS and the distinctive craniofacial features is mainly caused by large 2q22 repeats including ZEB2 leading to dominant singe ZEB2 gene gain mutation, which is recommended to be named "Liu-Liang-Chung" syndrome. We diagnose this novel syndrome to distinguish it from MWS. Some variable additional features in the syndrome including remarkable growth and development retardation and protruding ears were recognized for the first time.


Subject(s)
Abnormalities, Multiple , Hirschsprung Disease , Humans , Abnormalities, Multiple/genetics , Mutation , Hirschsprung Disease/diagnosis , Hirschsprung Disease/genetics , Phenotype , Zinc Finger E-box Binding Homeobox 2/genetics
20.
J Biol Chem ; 299(11): 105302, 2023 11.
Article in English | MEDLINE | ID: mdl-37777155

ABSTRACT

Immune checkpoint blockades have made huge breakthrough among some cancer types including lung cancer. However, only a small proportion of patients will benefit from immune checkpoint blockades; other patients have no or minor response to immunotherapy. The underlying mechanisms and efficient biomarkers to predict immunotherapy resistances remain unclear and lacking. In this study, BATF2 knockout mice, human xenograft mice, were used for in vivo studies. Relevant RNA and protein levels were analyzed by RT-quantitative PCR and Western blotting. As a result, we found that the expression of BATF2 is negatively correlated with expression of programmed death-ligand 1 in the plasma of patients. Mechanically, we showed that BATF2 inhibits programmed death-ligand 1 expression in cancer cells by inhibiting the PI3K-AKT pathway where ZEB2 plays an important role in this process. Based on bioinformatics analysis, we found that the function of BATF2 in promoting antitumor immune response in patients with non-small cell lung cancer, which is mediated by BATF2, enhances CD8+ T-cell infiltration as well as activation. The expression of BATF2 from circulating tumor cells and tissues can be serve as an efficient biomarker to predict diagnosis, prognosis, and immunotherapy efficacy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Mice , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/metabolism , CD8-Positive T-Lymphocytes , Lung Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...