Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 804
Filter
1.
J Colloid Interface Sci ; 677(Pt A): 435-445, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39098277

ABSTRACT

Extraction uranium (VI) (U(VI)) from wastewater and seawater is highly important for environmental protection and life safety, but it remains a great challenge. In this work, the growth of the zeolitic imidazolate framework-8 (ZIF-8) nanoparticles on the tannic acid (TA)-3-aminopropyltriethoxysilane (APTES) modified PVDF (TAP) membrane was designed to obtain an excellent U(VI) adsorbent. The zeolite imidazolate framework composite membrane (TAPP-ZIF-60) was prepared through polyethyleneimine (PEI) bridging strategy and temperature regulation strategy in solvothermal method. The coordination bond between PEI and ZIF-8 and the covalent bond between PEI and TAP are essential in forming stable composite membrane. TAPP-ZIF with different properties was synthesized through a temperature regulation process and the TAPP-ZIF prepared at 60 °C has the uniform morphology and good performance. The adsorption capacity of TAPP-ZIF-60 is 153.68 mg/g (C0 = 95.01 mg/L and pH = 8.0) and water permeability is 5459 L m-2 h-1 bar-1. After ten adsorption-desorption cycles, it is proved that TAPP-ZIF-60 has good repeatability and stability. In addition, the TAPP-ZIF-60 composites membrane has a good inhibitory effect on Staphylococcus aureus and Escherichia coli. X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) analysis reveal that the coordination between TAPP-ZIF-60 and uranyl ions is the primary factor contributing to the high adsorption capacity.

2.
Small ; : e2402812, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350464

ABSTRACT

Oxidative stress is a major factor leading to inflammation and disease occurrence, and superoxide dismutase (SOD) is a crucial antioxidative metalloenzyme capable of alleviating oxidative stress. In this study, a novel thermostable SOD gene is obtained from the Hydrogenobacter thermophilus strain (HtSOD), transformed and efficiently expressed in Escherichia coli with an activity of 3438 U mg-1, exhibiting excellent thermal stability suitable for scalable production. However, the activity of HtSOD is reduced to less than 10% under the acidic environment. To address the acid resistance and gastrointestinal stability issues, a biomimetic mineralization approach is employed to encapsulate HtSOD within the ZIF-8 (HtSOD@ZIF-8). Gastrointestinal simulation results show that HtSOD@ZIF-8 maintained 70% activity in simulated gastric fluid for 2 h, subsequently recovering to 97% activity in simulated intestinal fluid. Cell and in vivo experiments indicated that HtSOD@ZIF-8 exhibited no cytotoxicity and do not impair growth performance. Furthermore, HtSOD@ZIF-8 increased the relative abundance of beneficial microbiota such as Dubosiella and Alistipes, mitigated oxonic stress and intestinal injury by reducing mitochondrial and total reactive oxygen species (ROS) levels in diquat-induced. Together, HtSOD@ZIF-8 maintains and elucidates activity in the intestine and biocompatibility, providing insights into alleviating oxidative stress in hosts and paving the way for scalable production.

3.
Int J Biol Macromol ; 280(Pt 4): 136083, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39353523

ABSTRACT

Carbonic anhydrase (CA) enzyme-based absorption technology for CO2 capture has been intensively investigated. However, low solubility of CO2 and poor stability of CA severely limits its industrial utilization. Here, hydrolyzed polyacrylonitrile (PAN) membrane (HPAN) was first modified by polyethyleneimine (PEI) with a large number of amino groups, which has a strong affinity for CO2. Then, ZIF-8 was grown in situ on the surface of HPAN/PEI membrane by using the metal chelation of PEI and Zn2+. In this process, CA was embedded inside ZIF-8 by co-precipitation (CA@HPAN/PEI/ZIF-8). The resultant CA@HPAN/PEI/ZIF-8 exhibited high catalytic activity for CO2 capture compared with free CA, which was due to the synergistic enhancement of CO2 capture by PEI and ZIF-8 with high affinity to CO2 and enzymatic catalysis. The yield of CaCO3 by CA@HPAN/PEI/ZIF-8 in the process of one-time conversion of CO2 was 13.6-fold higher than free CA. Furthermore, the CA@HPAN/PEI/ZIF-8 showed better thermal stability, storage and reusability than free CA. Free CA retained only 18.3 % of its original activity after 18 days of storage, whereas CA@HPAN/PEI/ZIF-8 remained 48.7 % of its original activity. The total CaCO3 yield by CA@HPAN/PEI/ZIF-8 was 74.9-fold that of free CA after 8 consecutive rounds of CO2 conversion.

4.
Carbohydr Polym ; 345: 122562, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39227101

ABSTRACT

In this investigation, a hydrogel adsorbent featuring remarkable efficiency in dye adsorption was successfully synthesized by the integration of natural polysaccharide (pullulan) and nanoparticles (ZIF-8@PDA). The prepared natural polysaccharide nanocomposite hydrogels not only exhibit superior mechanical strength and biocompatibility, but also demonstrate adeptness in the removal of dye pollutants. The dye removal capacities were 615.4 mg/g for malachite green (MG) and 525.8 mg/g for Congo red (CR), respectively. Notably, the adsorption process exhibits minimal susceptibility to variations in water quality and the presence of co-existing ions. The pH-responsive surface charge conversion capability of the adsorbent renders it recyclable, maintaining a dye adsorption performance exceeding 88 % even after 5 cycles of repeated usage. Overall, these environmentally friendly natural polysaccharide nanocomposite hydrogels hold potential for addressing complex wastewater treatment challenges and long-term use.

5.
Mater Today Bio ; 28: 101200, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39221207

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized by higher recurrence rate and mortality. Thermally-mediated ablation via photothermal therapy (PTT) demonstrates considerable promise for the eradication of breast cancer. Nonetheless, the efficacy of PTT is impeded by the thermal tolerance of tumor cells, which is attributed to the augmented expression of heat shock proteins (HSPs). These proteins, which function as ATP-dependent molecular chaperones, confer protection to cancer cells against the cytotoxic heat generated during PTT. Glycolysis is an important way for breast cancer cells to produce ATP, which can promote the occurrence and development of lung metastasis of breast cancer. Therefore, inhibiting glycolysis may diminish the expression of HSPs, curtail the growth of breast cancer, and prevent its metastasis. Glycolytic metabolism plays a pivotal role in the ATP biosynthesis within breast cancer cells, facilitating the progression and dissemination of pulmonary metastases. Consequently, targeting glycolysis presents a strategic approach to HSP expression, the proliferation of breast cancer, and impede its metastatic spread. Herein, we designed an indocyanine green (ICG) and cryptotanshinone (CTS) loaded hyaluronic acid (HA) coated Zeolitic Imidazolate Framework-8 (ZIF-8) drug delivery system. The drug delivery system had excellent photothermal properties, which could reach temperature sufficient for photothermal ablation of tumor cells. (ICG + CTS)@HA-ZIF-8 also showed pH-responsive drug release, enhancing the sustained release of ICG and CTS to extend their systemic circulation duration. Moreover, the HA modification of ZIF-8 served to augment its targeting capabilities both in vitro and in vivo, leveraging the enhanced permeation and retention (EPR) effect, as well as active tumor targeting via the CD44 receptor pathway, resulting in a higher drug concentration and a better therapeutic effect in tumor. (ICG + CTS)@HA-ZIF-8 could downregulate the expression of glycolysis-related protein pyruvate kinase-M2 (PKM2), thereby inhibiting the glycolysis process, further suppressing tumor cell energy metabolism, downregulating the expression of HSPs, overcoming tumor cell heat resistance, and improving PTT effect. It exhibited a notable suppressive impact on both the proliferation and migration of breast cancer cells, potentially offering innovative insights for the visualized PTT in breast cancer treatment.

6.
Front Chem ; 12: 1452670, 2024.
Article in English | MEDLINE | ID: mdl-39268004

ABSTRACT

In this study, zeolitic imidazolate framework 8 (ZIF-8) was coated on porous Ti6Al4V scaffolds, either bare or previously modified using hydroxyapatite (HA) or HA and gelatin (HAgel), via a growing single-step method in aqueous media using two contact times at 6 h and 24 h. The coated scaffolds termed ZIF-8@Ti, ZIF-8@HA/Ti, and ZIF-8@HAgel/Ti were characterized via scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), and molecular plasma-atomic emission spectroscopy (MP-AES). In order to assess the cell proliferation rate, the cytocompatibility of the scaffolds was evaluated in primary osteoblasts (hOBs) using alamarBlue assay, while the osteoconductivity was analyzed in hOBs using a real-time approach, evaluating the expression of secreted phosphoprotein 1 (SPP1). Osteopontin, which is the protein encoded by this gene, represents the major non-collagenous bone protein that binds tightly to HA. The scaffolds were shown to be non-cytotoxic based on hOB proliferation at all time points of analysis (24 h and 72 h). In hOB cultures, the scaffolds induced the upregulation of SPP1 with different fold changes. Some selected scaffolds were assayed in vitro for their antibacterial potential against Staphylococcus epidermidis; the scaffolds coated with ZIF-8 crystals, regardless of the presence of HA and gelatin, strongly inhibited bacterial adhesion to the materials and reduced bacterial proliferation in the culture medium, demonstrating the suitable release of ZIF-8 in a bioactive form. These experiments suggest that the innovative scaffolds, tested herein, provide a good microenvironment for hOB adhesion, viability, and osteoconduction with effective prevention of S. epidermidis adhesion.

7.
Food Chem ; 463(Pt 1): 141054, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39260177

ABSTRACT

This study presented a dual-layer freshness indicator film produced through electrospinning, combining cellulose acetate and polyvinylidene fluoride with zeolitic imidazolate framework-8 (ZIF-8) loaded with curcumin as the indicator. Our findings demonstrated that ZIF-8 effectively preserved its metal-organic framework structure during curcumin loading, ensuring the inherent color-changing ability of curcumin. The resulting colorimetric film exhibited altered tensile properties and increased water vapor permeability. Improved light stability and storage performance were observed. Compared to single-layer films, the dual-layer structure improved the hydrophilicity and stability of the indicator film. Importantly, the introduced indicator label efficiently captured the dynamic changes of TVB-N during freshness monitoring, providing comprehensive visual information for assessing fish freshness. The synergistic properties of ZIF-8, curcumin, and the dual-layer film structure contributed to an advanced freshness indicator system, providing a multifunctional and effective approach for real-time freshness assessment of fish freshness.

8.
Environ Technol ; : 1-13, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258839

ABSTRACT

In this work, a kind of novel Chitosan (Cs)-doped zeolite imidazole framework (ZIF-8@Cs) with a larger surface area and a smaller pore size was synthesised via a facial solvothermal approach and applied to remove Cu2+ from mine wastewater. Compared to nondoped ZIF-8, ZIF-8@Cs exhibited a stronger adsorption performance and removal efficiency. The reason was that ZIF-8@Cs doped by the Cs could suppress the aggregation and increase the monodispersity of ZIF-8. Using the high-performance ZIF-8@Cs, as a novel adsorbent, was successfully developed for the efficient removal of Cu2+ from mine wastewater. Various parameters, such as contact time, initial Cu2+ concentration, adsorbent dosage, and pH, were investigated. The results showed that a removal efficiency of 85% was obtained at 4 h contact time for a Cu2+ concentration of 30 mg/L at the optimum pH of 6.0. Equilibrium data were analysed using different isothermal models and kinetic models, analytic results indicated that the capture of Cu2+ by ZIF-8@Cs could favourably comply with the pseudo-first-order kinetic model and Langmuir isotherm model. The single-layer adsorption of Cu2+ on ZIF-8@Cs was dominated by diffusional mass transfer. Additionally, the results of the thermodynamic analysis indicated that the adsorption of Cu2+ by ZIF-8/Cs was a spontaneous, exothermic, and ordered process. Overall, the results reported herein indicated that ZIF-8/Cs with high adsorption efficiency are very attractive and imply a potential practical application for the removal of potentially toxic elements in wastewater.

9.
Materials (Basel) ; 17(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39274688

ABSTRACT

Lithium (Li) metal is regarded as a next-generation anode material owing to its high energy density. However, issues such as dendritic growth and volume changes during charging and discharging pose significant challenges for commercialization. We propose using lithiophilic reduced graphene oxide (rGO) and carbonized zeolite imidazolate framework-8 (C-ZIF-8) composites as host materials for Li to address these problems. The rGO/C-ZIF-8 composites are synthesized through a simple redox reaction followed by carbonization and are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The roles of chemical composition, characteristics, and morphology are demonstrated. As a result of these favorable structural and functional properties, the Li symmetric cell with rGO/C-ZIF-8 exhibits a stable voltage profile for more than 100 h at 1 mA cm-2 without short-circuiting. A relatively low Li plating/stripping overpotential of ~101.5 mV at a high current density of 10 mA cm-2 is confirmed. Moreover, a rGO/C-ZIF-8-Li full cell paired with a LiFePO4 cathode demonstrates good cyclability and rate capability.

10.
Molecules ; 29(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39274994

ABSTRACT

The excessive utilization of antimicrobials in humans and animals has resulted in considerable environmental contamination, necessitating the development of high-performance antibiotic adsorption media. A significant challenge is the development of composite nanofibrous materials that are both beneficial and easy to fabricate, with the aim of improving adsorption capacity. Herein, a new kind of zeolitic imidazolate framework-8 (ZIF-8)-modified regenerated cellulose nanofibrous membrane (ZIF-8@RC NFM) was designed and fabricated by combining electrospinning and in situ surface modification technologies. Benefiting from its favorable surface wettability, enhanced tensile strength, interconnected porous structure, and relatively large specific surface area, the resulting ZIF-8@RC NFMs exhibit a relatively high adsorption capacity for tetracycline hydrochloride (TCH) of 105 mg g-1 within 3 h. Moreover, a Langmuir isotherm model and a pseudo-second-order model have been demonstrated to be more appropriate for the description of the TCH adsorption process of ZIF-8@RC-3 NFMs. Additionally, this composite fibrous material could keep a relatively stable adsorption capability under various ionic strengths. The successful fabrication of the novel ZIF-8@RC NFMs may shed light on the further development of wastewater adsorption treatment materials.


Subject(s)
Cellulose , Nanofibers , Tetracycline , Zeolites , Tetracycline/chemistry , Nanofibers/chemistry , Adsorption , Cellulose/chemistry , Zeolites/chemistry , Imidazoles/chemistry , Water Pollutants, Chemical/chemistry , Metal-Organic Frameworks/chemistry , Membranes, Artificial , Water Purification/methods
11.
Int J Biol Macromol ; 279(Pt 3): 135465, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39250990

ABSTRACT

Efficient capture of dyes from wastewater is of great importance for environmental remediation. Yet constructing adsorbents with satisfactory adsorption efficiency and low cost remains a major challenge. This work reports a simple and scalable method for the fabrication of functionalized porous pullulan hydrogel adsorbent decorated with ATTM@ZIF-8 for the adsorption of congo red (CR) and malachite green (MG). The embedding of ammonium tetrathiomolybdate (ATTM) into the ZIF-8 nanoclusters offered additional adsorption sites and enlarged the pore size of the resulting ATTM@ZIF-8. The homogeneous dispersion of the nanoparticles in the three-dimensional network of polysaccharide gels prevents their agglomeration and thus improves the affinity for dye molecules. The resulting adsorbent AZP-20 at optimized composite ratios exhibits high activity, selectivity, interference resistance, reusability and cytocompatibility in dye adsorption applications, and possesses high removal rate of dye in real water systems. Batch experiments demonstrated that the adsorption rate of AZP-20 for MG and CR was 1645.28 mg g-1 and 680.33 mg g-1, and would be influenced by pH conditions. Adsorption kinetics followed pseudo-second-order model. Adsorption isotherms followed Langmuir model for MG and Freundlich model for CR. The adsorption of dye molecules primarily relied on electrostatic interaction (MG) and π-π stacking interaction (CR). Conclusively, the prepared AZPs adsorbent illuminated good application prospects in the treatment of complex component dye wastewater.

12.
Eur J Pharm Biopharm ; : 114516, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39349074

ABSTRACT

Antimicrobial resistance (AMR) has emerged as a significant threat to human health. Antimicrobial peptides (AMPs) have proven to be an effective strategy against antibiotic-resistant bacteria, given their capacity to swiftly disrupt microorganism membranes and alter cell morphology. A common limitation, however, lies in the inherent toxicity of many AMPs and their vulnerability to protease degradation within the body. Photothermal therapy (PTT) stands out as a widely utilized approach in combating antibiotic-resistant bacterial infections, boasting high efficiency and non-invasive benefits. To enhance the stability and antibacterial efficacy of AMPs, a novel approach involving the combination of AMPs and PTT has been proposed. This study focuses on the encapsulation of At10 (an AMP designed by our group), and copper sulfide nanoparticles (CuS NPs) within zeolitic imidazolate framework-8 (ZIF-8) to form nanocomposites (At10/CuS@ZIF-8). The encapsulated CuS NPs exhibit notable photothermal properties upon exposure to near-infrared radiation. This induces the cleavage of ZIF-8, facilitating the release of At10, which effectively targets bacterial membranes to exert its antibacterial effects. Bacteria treated with At10/CuS@ZIF-8 under light radiation exhibited not only membrane folding and intracellular matrix outflow but also bacterial fracture. This synergistic antibacterial strategy, integrating the unique properties of AMPs, CuS NPs, and pH responsiveness of ZIF-8, holds promising potential for widespread application in the treatment of bacterial infections.

13.
ChemSusChem ; : e202401968, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39344071

ABSTRACT

This study demonstrated a simple and innovative way of using the direct de novo synthesis to fabricate the mesoporous structure and diverse functionality of ZIF-8 for environmental cleanup and gas storage applications. By introducing different ligands, we have developed a version of ZIF-8 that could better capture carbon dioxide (CO2) and iodine. The ZIF-8 was successfully designed to have the hierarchical and mesoporous structure with the functional groups of amine and thiol groups by adjusting the pKa values (from 8 to 12) of ligand instead of original ligand, 2-methyl imidazole (Hmim, pKa~14.2). The modulation of ZIF-8 particle size, porosity, and functional characteristics was achieved through varied ligands and their concentrations, streamlined into a single and room-temperature synthesis condition. The resulting ZIF-8 materials exhibit intricate hierarchical architectures and a high density of functional groups, significantly enhancing molecular diffusion and accessibility. Among the developed materials, ZIF-8-AS, featuring both amine and thiol groups, demonstrates the fastest adsorption kinetics and a twofold increase in iodine adsorption capacity (qm = 1101.5 mg·g-1) compared to ZIF-8 (qm = 514.3 mg·g-1). Furthermore, the hierarchical mesoporosity of ZIF-8-A-10.1 improves CO2 adsorption to 1.0 mmol·g-1 at 298 K, which is 1.3 times higher than that of the microporous ZIF-8.

14.
Molecules ; 29(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39339460

ABSTRACT

This study investigated the enhancement in bioethanol recovery from mixed matrix membranes (MMMs) by functionalizing zeolite framework-8 (ZIF-8) with imidazolate. This study focused on the separation of ethanol from low-concentration ethanol/water mixtures (typical post-fermentation concentrations of 5-10 wt%). Specifically, ZIF-8 was modified by the shell-ligand exchange reaction (SLER) with 5,6-dimethylbenzimidazole (DMBIM), resulting in ZIF-8-DMBIM particles with improved hydrophobicity, organophilicity, larger size, and adjustable pore size. These particles were incorporated into a PEBAX 2533 matrix to produce ZIF-8-DMBIM/PEBAX MMMs using a dilution blending method. The resulting membranes showed significant performance enhancement: 8 wt% ZIF-8-DMBIM loading achieved a total flux of 308 g/m2·h and a separation factor of 16.03, which was a 36.8% increase in flux and 176.4% increase in separation factor compared with the original PEBAX membrane. In addition, performance remained stable during a 130 h cycling test. These improvements are attributed to the enhanced compatibility and dispersion of ZIF-8-DMBIM in the PEBAX matrix. In conclusion, the evaluation of nanofiller content, feed concentration, operating temperature, and membrane stability confirmed that ZIF-8-DMBIM/PEBAX MMM is ideal for ethanol recovery in primary bioethanol concentration processes.

15.
ACS Appl Mater Interfaces ; 16(39): 53060-53071, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39314205

ABSTRACT

Currently, the actual mechanical properties of carbon fibers (CF) differ significantly from the theoretical values. This is primarily attributed to significant limitations imposed by structural defects, greatly hindering the widespread application of CF. To solve this problem, we used in situ growth of zeolitic imidazolate framework-8 (ZIF-8) and γ rays to modulate the core-shell of CF in this study. For the surface structure of CF during the process of γ irradiation, the organic structure within ZIF-8 gradually degrades and forms a cross-linking structure with the surface defects of the CF. This process significantly enhances the binding strength between inorganic material from the postdecomposition of ZIF-8 and the carbon layer on the surface of CF, repairing the surface defects. For the internal structure of CF, γ irradiation can improve the orientation of the internal micropores of CF and increase the degree of internal graphitization of CF. In this paper, an in-depth analysis of CF before and after repair was conducted by using characterization techniques such as nanoindentation and ultrasmall angle X-ray scattering (USAXS). Compared to unmodified CF, its mechanical properties improved by approximately 19.99%, which exceeds that in approximately 95% of similar works in the field.

16.
ACS Appl Mater Interfaces ; 16(40): 53460-53473, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39303016

ABSTRACT

Tumor necrosis factor-α (TNF-α) plays a causal role in the pathogenesis of ulcerative colitis (UC), and anti-TNF-α siRNA shows great promise in UC therapy. However, delivering siRNA with site-targeted stability and therapeutic efficacy is still challenging due to the complex and dynamic intestinal microenvironment. Here, based on the functional plant-derived ginger extracellular vesicles (EVs) and porous ZIF-8 nanoparticles, we propose a novel TNF-α siRNA delivery strategy (EVs@ZIF-8@siRNA) for UC targeted therapy. Ginger EVs show strong colon and macrophage targeting, as well as robust resistance to acidic degradation in the stomach. Moreover, 6-shogaol in ginger-derived EVs displays anti-inflammatory effects, which enhance the treatment efficiency by cooperation with TNF-α siRNA. In vitro experiments reveal that ZIF-8 nanoparticles have high TNF-α siRNA loading capacity and promote siRNA escape from cellular lysosomes. In vivo experiments show that the TNF-α level is reduced more significantly in colonic tissue than other nontargeted inflammation related factors, showing a good targeting of this composite nanoparticle. Furthermore, gut microbiota sequencing results demonstrate that the nanoparticles can promote intestinal barrier repair by regulating the intestinal microbial balance and restoring the intestinal health of UC mice. Therefore, the developed EVs@ZIF-8@siRNA nanoparticles may represent a novel colon-targeted oral drug, providing a promising therapeutic strategy for UC therapy.


Subject(s)
Colitis, Ulcerative , Extracellular Vesicles , Gastrointestinal Microbiome , RNA, Small Interfering , Tumor Necrosis Factor-alpha , Zingiber officinale , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/therapy , Animals , Zingiber officinale/chemistry , Mice , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Tumor Necrosis Factor-alpha/metabolism , Gastrointestinal Microbiome/drug effects , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Nanoparticles/chemistry , Zeolites/chemistry , Humans , Male , Mice, Inbred C57BL , RAW 264.7 Cells
17.
ACS Appl Mater Interfaces ; 16(40): 54092-54104, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39317960

ABSTRACT

N-doped carbon materials have garnered extensive development in electrochemical CO2 reduction due to their abundant sources, high structural plasticity, and excellent catalytic performance. However, the use of powder carbon materials for electrocatalytic reactions limits their current density and mechanical strength, which pose challenges for industrial applications. In this study, we synthesized a monolithic N-doped carbon electrode with high mechanical strength for efficient electrochemical reduction of CO2 to CO through a simple pyrolysis method, using phenolic resin as the precursor and ZIF-8 as the sacrificial template. At 900 °C, the decomposition of ZIF-8 and the volatilization of Zn atoms promote the formation of a hierarchical porous structure in the carbon matrix, characterized by macropores with extended mesoporous channels. Simultaneously, N active species derived from ZIF-8 are effectively generated around the pores and fully exposed. The efficient mass transfer facilitated by the hierarchical porous structure and high activity of exposed nitrogen species enables efficient conversion of CO2 to CO. When the ZIF-8 content is 30%, the catalyst achieves a Faradaic efficiency of 88.9% for CO at a low potential of -0.7 V (vs RHE), with a CO production rate of 244.05 µmol h-1 cm-2. After 50 h of potentiostatic electrolysis, the current density and FECO remain stable. This work not only provides a strategy for the synergistic effects of hierarchical porous structures and nitrogen doping but also offers an effective method to avoid using powder binders and prepare integrated, stable monolithic electrodes.

18.
Angew Chem Int Ed Engl ; : e202415023, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324847

ABSTRACT

ZIF-8 membranes have long been prized for their exceptional C3H6/C3H8 separation performance. On the other hand, ZIF-8 has structural flexibility, where the external pressure triggers channel expansion, potentially deteriorating the molecular sieving ability. Here, we demonstrate a reliable strategy to fine-tune the flexible pore structure of ZIF-8 by embedding crown ether within a ZIF-8 membrane. Benzo-15-crown-5 (15C5) was selected as the cavity occupant and perfectly confined in the sodalite (SOD) cage of ZIF-8. The 15C5 molecules, which have a size comparable to the nanocage, impose a spatial constraint on linker rotation, enabling the phase transition to a rigid structure in the flexible ZIF-8. The corresponding 15C5@ZIF-8 membranes achieve an ultrahigh C3H6/C3H8 selectivity of 220, outperforming that of most membranes. Unlike their flexible counterparts, the resulting membranes manifest a positive increase in the C3H6/C3H8 separation factor with elevated pressure, securing a record-high C3H6/C3H8 separation factor of 331 under 7 bar. More importantly, extraordinary separation stability was demonstrated with continuous measurement, which is highly desirable for practical applications.

19.
Talanta ; 281: 126813, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39255621

ABSTRACT

Surface Enhanced Raman Scattering (SERS) has been extensively utilized in therapeutic drug monitoring (TDM) due to its rapid detection speed, high sensitivity and straightforward sample pretreatment. In this study, Au/AgNPs were obtained through the reduction of AgNO3 on the surface of AuNPs. Subsequently, Au/AgNPs were embedded into the tetrahedral lattice of ZIF-8 MOFs, resulting in the formation of Au/Ag@ZIF-8 nanocomposites. The Au/Ag@ZIF-8 nanocomposites exhibit a robust electromagnetic enhancement of Au/Ag bimetallic nanoparticles and a considerable adsorption capacity of ZIF-8 MOFs. This enables the pre-enrichment of target molecules in the vicinity of the electromagnetic field of the Au/AgNPs, thereby enhancing the sensitivity of SERS detection. The SERS substrate also exhibits high stability and reproducibility, as well as molecular sieving effects, due to the fact that Au/AgNPs are embedded into the tetrahedral lattice of ZIF-8. A TDM method for tacrolimus (FK506) in human serum was developed by using Au/Ag@ZIF-8 nanocomposites as solid phase extraction (SPE) adsorbent and SERS substrates. The results showed that under the optimized conditions, tacrolimus exhibited satisfactory linearity within the concentration range of 10-5-10-11 mol L-1, with a correlation coefficient (R2) of 0.9944, and the limit of detection (LOD) was as low as 6.4 pg mL-1. The recoveries were observed to range between 92 % and 105 %, with an RSD of below 8 %. The method is highly sensitive, exhibiting a sensitivity that is 3-6 orders of magnitude higher than that of existing analytical techniques. It has the potential to be applied in a clinical setting to biological samples.

20.
Angew Chem Int Ed Engl ; : e202411440, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261286

ABSTRACT

Metal-organic framework (MOF)-based membranes excel in molecular separation, attracting significant research interest. The crystallographic microstructure and selective adsorption capacity of MOFs closely correlate with their gas separation performance. Here, aniline was added to the ZIF-8 synthesis in varying concentrations. Aniline, encapsulated within ZIF-8 cavities, interacts strongly with the 2-methylimidazole linker, resulting in both a shift in crystallographic phase from I_43m to Cm in Rietveld refinement of X-ray diffraction (XRD) patterns and the selective adsorption behavior between propylene and propane. Consequently, an aniline decorative ZIF-8 (Anix-ZIF-8) membrane was prepared using a fast current-driven synthesis method, which exhibits good propylene/propane separation selectivity of up to 85. Calculation of the interaction energy between aniline and the various crystallographic phases of ZIF-8 using density functional theory (DFT) further verifies that aniline not only promotes the formation of crystallographic Cm phase, but also enhances the adsorption selectivity of propylene over propane. Aniline modification effectively tunes the crystallographic microstructure of ZIF-8, thereby, improving molecular sieving capabilities.

SELECTION OF CITATIONS
SEARCH DETAIL