Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Res ; 258: 119474, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38914253

ABSTRACT

In this study, we studied the conversion of Jatropha curcas oil to biodiesel by using three distinct reactor systems: microchannel, fixed bed, and microwave reactors. ZSM-5 was used as the catalyst for this conversion and was thoroughly characterized. X-ray diffraction was used to identify the crystalline structure, Brunauer-Emmett-Teller analysis to determine surface area, and temperature-programmed desorption to evaluate thermal stability and acidic properties. These characterizations provided crucial insights into the catalyst's structural integrity and performance under reaction conditions. The microchannel reactor exhibited superior biodiesel yield compared to the fixed bed and microwave reactors, and achieved peak efficiency at 60 °C, delivering high FAEE yield (99.7%) and conversion rates (99.92%). Ethanol catalyst volume at 1% was optimal, while varying flow rates exhibited trade-offs, emphasizing the need for nuanced control. Comparative studies against microwave and fixed-bed reactors consistently favored the microchannel reactor, emphasizing its remarkable FAME percentages, high conversion rates, and adaptability to diverse operating conditions. The zig-zag configuration enhances its efficiency, making it the optimal choice for biodiesel production and showcasing promising prospects for advancing sustainable biofuel synthesis technologies.


Subject(s)
Biofuels , Jatropha , Microwaves , Plant Oils , Biofuels/analysis , Jatropha/chemistry , Plant Oils/chemistry , Catalysis , Zeolites/chemistry , X-Ray Diffraction , Recycling
2.
Environ Sci Pollut Res Int ; 30(49): 108135-108149, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37747612

ABSTRACT

Iron-loaded zeolite (Fe-zeolite) has shown great potential as an efficient catalyst for degrading organic pollutants with high concentrations in the catalytic wet peroxide oxidation (CWPO) process under mild conditions. Here, 0.4 wt% Lanthanum (La) was added in the 1.0 wt% Fe-ZSM-5 by two-step impregnation method for an enhanced H2O2 utilization efficiency. For a systematical comparison, the CWPO process at 55 °C, where m-cresol with a high concentration of 1000 mg/L as a substrate, was studied over Fe-ZSM-5 and Fe-La-ZSM-5 catalysts. Compared with Fe-ZSM-5, Fe-La-ZSM-5 showed 15% higher H2O2 utilization efficiency with comparable total organic carbon (TOC) removal at around 40%, meanwhile with a 15% reduced metal leaching. Transmission electron microscopy (TEM) with elemental mapping (EDS), surface acidity analysis by Fourier transform infrared (FT-IR) and NH3-temperature programmed desorption (NH3-TPD), redox property analysis by Raman spectroscopy and H2-temperature-programmed reduction (H2-TPR) of both catalysts revealed, that the La doped Fe-ZSM-5 can provide an altered surface acidity, a more uniform and evenly dispersed surface Fe species with a promoted reducibility, which effectively promoted the accurate decomposition of H2O2 into the reactive •OH radicals, enhanced the H2O2 utilization efficiency, and increased the catalyst stability. Also, more than 90% conversion was maintained during the continuous experiment for more than 10 consecutive test days under 55 °C without pH adjustment, showing a promising possibility of the Fe-La-ZSM-5 for a practical wastewater treatment process.


Subject(s)
Peroxides , Zeolites , Hydrogen Peroxide/chemistry , Lanthanum , Zeolites/chemistry , Spectroscopy, Fourier Transform Infrared , Catalysis , Oxidation-Reduction
3.
Molecules ; 28(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37570728

ABSTRACT

This study aims to investigate the catalytic co-pyrolysis of beech wood with polystyrene as a synergic and catalytic effect on liquid oil production. For this purpose, a tubular semi-continuous reactor under an inert nitrogen atmosphere was used. Several zeolite catalysts were modified via incipient wetness impregnation using iron and/or nickel. The liquid oil recovered was analyzed using GC-MS for the identification of the liquid products, and GC-FID was used for their quantification. The effects of catalyst type, beechwood-to-polystyrene ratio, and operating temperature were investigated. The results showed that the Fe/Ni-ZSM-5 catalyst had the best deoxygenation capability. The derived oil was mainly constituted of aromatics of about 92 wt.% for the 1:1 mixture of beechwood and polystyrene, with a remarkably high heating value of around 39 MJ/kg compared to 18 MJ/kg for beechwood-based bio-oil. The liquid oil experienced a great reduction in oxygen content of about 92% for the polystyrene-beechwood 50-50 mixture in comparison to beechwood alone. The catalytic and synergetic effects were more realized for high beechwood percentages as a 75-25 beechwood-polystyrene mix. Regarding the temperature variation between 450 and 600 °C, the catalyst seemed to deactivate faster at higher temperatures, thus constituting a quality reduction in the pyrolytic oil in high-temperature ranges.

4.
Environ Res ; 227: 115707, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36931382

ABSTRACT

Superior de-NOx activity and N2 selectivity of the Pd/ZSM-5 catalyst was observed at low temperature (<200 °C) for the selective catalytic reduction of NOx by H2 (H2-SCR). Various Pd/ZSM-5 catalysts were prepared by calcinating at different temperatures (e.g., 500 °C, 650 °C, 750 °C, and 850 °C) and treated at reductive conditions before the H2-SCR reaction was performed. Among the prepared catalysts, the one prepared at the calcination temperature at 750 °C resulted in 96.7% NOx conversion and 96.8% N2 selectivity at 150 °C. Based on the H2-O2 reaction, the higher activity of the Pd/ZSM-5 catalyst calcined at 750 °C was attributed to its superior H2 activation ability for the H2-SCR reaction. The combined X-ray diffraction (XRD), temperature-programmed hydride decomposition (TPHD), and transmission electron microscopy (TEM) results revealed that highly dispersed Pd particles were generated on the catalyst calcined at 750 °C, while large Pd agglomerates were formed on the one calcined at 500 °C. It can be concluded that the catalytic activity of Pd/ZSM-5 improves by optimizing the calcination temperature, resulting in high Pd dispersion. Moreover, the Pd catalyst calcined at 750 °C showed high resistance to CO, maintaining >94% NOx conversion at 175 °C under 1000 ppm CO in the feed gas. Therefore, the catalyst calcined at 750 °C can be potentially used for industrial applications because of its simple preparation method and high resistance to CO.


Subject(s)
Ammonia , Cold Temperature , Temperature , Catalysis , Oxidation-Reduction
5.
Bioresour Technol ; 349: 126838, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35151847

ABSTRACT

Py-GC/MS and thermogravimetric analysis were carried out to systematically explore product selectivity and kinetics of poplar sawdust catalytic pyrolysis over bi-metallic Fe-Ni/ZSM-5. The results showed that the Fe-Ni/ZSM-5 exhibited an additive effect on the production of monocyclic aromatic hydrocarbons compared to mono-metallic catalysts (Fe/ZSM-5 or Ni/ZSM-5). Fe-Ni/ZSM-5 further increased the yield of toluene (17.28 mg g-1), which was 41.4% and 80.9% higher than Fe/ZSM-5 and Ni/ZSM-5, respectively. According to the kinetic analysis, the average activation energy obtained from catalytic pyrolysis with Fe-Ni/ZSM-5 using the methods of Friedman, Starink, Flynn-Wall-Ozawa, and Kissinger-Akahira-Sunose was 156.19, 152.39, 154.30, and 152.11 kJ mol-1, respectively. Fe-Ni/ZSM-5 addition lowered the activation energy compared to non-catalytic pyrolysis at the conversion rate of 0.15-0.75. The overall catalytic pyrolysis process of poplar sawdust follows the diffusion and nucleation models. The thermodynamic parameters (enthalpy and entropy) showed positive and negative values, respectively, indicating non-spontaneous reactions during the catalytic pyrolysis process.


Subject(s)
Nickel , Pyrolysis , Biomass , Catalysis , Iron , Kinetics , Thermogravimetry
6.
Article in English | MEDLINE | ID: mdl-30447628

ABSTRACT

DRIFT spectra were used for classification of ZSM-5 catalysts according to their mesopore volumes. The spectra were pretreated by Savitzky-Golay smoothing and standard normal variate (SNV) algorithms prior to outlier detection by Hotelling T2 statistic technique. Supervised classification was applied to the spectra using partial least squares-discriminant analysis (PLS-DA) and soft independent modelling of class analogies (SIMCA) algorithms. The samples were classified into three classes related to their mesopore volumes by the proposed method and the results were in accordance with N2 physisorption textural analysis using Brunauer-Emmett-Teller (BET) model. The confusion matrix and classification efficiency parameters including sensitivity, specificity, accuracy and precision were calculated. Classification accuracy of 96% and error rate of 2% was obtained using PLS-DA algorithm while SIMCA algorithm by providing 100% classification accuracy and zero error rate proved better performance in classification of ZSM-5 catalysts.

7.
MethodsX ; 5: 277-282, 2018.
Article in English | MEDLINE | ID: mdl-30038897

ABSTRACT

A modified hydrothermal method for ZSM-5 synthesis was described. The crystals gave a typical pattern (2θ at around 22.5°, 24.0° and 29.8° corresponding to the major peaks of (501, 303 and 503 crystal surfaces)), which indicated that the subnanocrystals could have the primary structure of MFI-type zeolites. the FT-IR spectra of subnanocrystals which have the primary structure of MFI zeolites. Oleic acid methyl ester (OAME) was prepared via a rapid derivatization procedure. the acidic strength is determined by the zeolite crystal structure and the higher esterification rate of ZSM-5 can be attributed to its stronger acidity compared to H2SO4, especially after 50 min of reaction. ZSM-5 can be an excellent substitute to sulfuric acid which caused corrosion and equipments damage. •Zeolites are popular industrial catalysts comprised of crystalline microporous materials.•A modified hydrothermal method was used for ZSM-5 synthesis.•Synthesized ZSM-5 has a typical subnanocrystals structure corresponds to MFI- type Zeolite.•ZSM-5 can be an excellent substitute to sulfuric acid for the catalysis of esterification reactions.

8.
Bioresour Technol ; 191: 187-96, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25997007

ABSTRACT

The objective of the present work is to explore the particularities of a micro-scale experimental apparatus with regards to the study of catalytic fast pyrolysis (CFP) of biomass. In situ and ex situ CFP of miscanthus × giganteus were performed with ZSM-5 catalyst. Higher permanent gas yields and higher selectivity to aromatics in the bio-oil were observed from ex situ CFP, but higher bio-oil yields were recorded during in situ CFP. Solid yields were comparable across both configurations. The results from in situ and ex situ PyGC were also compared with the product yields and selectivities obtained using a bench-scale, spouted-bed reactor. The bio-oil composition and overall product distribution for the PyGC ex situ configuration more closely resembled that of the spouted-bed reactor. The coke/char from in situ CFP in the PyGC was very similar in nature to that obtained from the spouted-bed reactor.


Subject(s)
Bioreactors , Gas Chromatography-Mass Spectrometry/methods , Catalysis
9.
Bioresour Technol ; 169: 188-197, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25058293

ABSTRACT

A conical spouted bed reactor was designed and tested for fast catalytic pyrolysis of miscanthus × giganteus over Zeolite Socony Mobil-5 (ZSM-5) catalyst, in the temperature range of 400-600 °C and catalyst to biomass ratios 1:1-5:1. The effect of operating conditions on the lumped product distribution, bio-oil selectivity and gas composition was investigated. In particular, it was shown that higher temperature favors the production of gas and bio-oil aromatics and results in lower solid and liquid yields. Higher catalyst to biomass ratios increased the gas yield, at the expense of liquid and solid products, while enhancing aromatic selectivity. The separate catalytic effects of ZSM-5 catalyst and its Al2O3 support were studied. The support contributes to increased coke/char formation, due to the uncontrolled spatial distribution and activity of its alumina sites. The presence of ZSM-5 zeolite in the catalyst enhanced the production of aromatics due to its proper pore size distribution and activity.


Subject(s)
Bioreactors , Biotechnology/instrumentation , Biotechnology/methods , Crosses, Genetic , Hot Temperature , Poaceae/metabolism , Biofuels , Biomass , Catalysis , Equipment Design , Gases/analysis , Hydrodynamics , Zeolites/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL