Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.521
Filter
1.
EFORT Open Rev ; 9(7): 632-645, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949170

ABSTRACT

Purpose: To assess utility, benefits, and risks of 4th-generation alumina-zirconia ceramic pairings in elective total hip arthroplasty (THA). Methods: A comprehensive mixed-methods best-evidence synthesis using data from systematic reviews, randomized controlled trials (RCTs), prospective and retrospective cohort studies, as well as joint replacement registries, was conducted to estimate overall revision and survival rates, periprosthetic infection, bearing fractures, and noise phenomena with 4th-generation alumina-zirconia ceramic versus other tribological couplings in elective THA. The systematic review part across multiple databases was registered with PROSPERO (CRD42023418076), and individual study data were extracted for statistical re-analysis. Results: Twenty overlapping systematic reviews, 7, 17, and 8 references from RCTs, cohort studies, and joint replacement registries form the basis of this work. According to current best evidence, it is (i) 15-33 times more likely that 4th-generation alumina-zirconia pairings avoid a revision for infection than causing a revision for audible noise, (ii) 38-85 times more likely that 4th-generation alumina-zirconia pairings avoid a revision for infection than causing a revision for ceramic head fractures, and (iii) three to six times more likely that 4th-generation alumina-zirconia pairings avoid a revision for infection than cause a revision for ceramic liner fractures. Conclusion: Fourth-generation alumina-zirconia pairings in THA show a favorable benefit-risk ratio, with rare compound-specific adverse events and complications significantly outbalanced by long-term advantages, such as a markedly lower incidence of revision for infection.

2.
Article in English | MEDLINE | ID: mdl-38953431

ABSTRACT

OBJECTIVES: To evaluate the effect of different cement types on the incidence of failure and loss of retention of zirconia and metal-ceramic single crowns (SCs) cemented on implant abutments. METHODS: We placed 567 implant-supported SCs in 358 patients and retrospectively evaluated long-term retention for up to 12.8 years. The frameworks were made from metal alloy (n = 307) or zirconia (n = 260). SCs were cemented with permanent (glass-ionomer cement; n = 376) or semipermanent cement (zinc oxide non-eugenol cement; n = 191) on standardized (n = 446) or customized (n = 121) abutments. Kaplan-Meier curves were used to calculate the incidence of decementation. Differences between survival curves were assessed with log-rank tests. Cox-regression analysis was performed to evaluate multiple risk factors. RESULTS: Of the 567 SCs, 22 failed because of technical complications and four because of implant loss. Loss of retention was observed in 50 SCs. Analysis revealed a 7% probability of loss of retention for zirconia and 16% for metal-ceramic SCs after 10 years (p = .011). After 5 years, loss of retention was higher for standardized abutments than for customized abutments (p = .014). The probability of loss of retention was higher with semipermanent than with permanent cement (p = .001). Cox-regression analysis revealed semipermanent cement as the only significant risk factor for SC failure (p = .026). CONCLUSIONS: In contrast to semipermanent cement, permanent cement provides acceptable long-term retention of cemented implant-supported SCs. These possible positive effects of customized abutments have to be controlled with larger sample sizes.

3.
Dent Mater J ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38960668

ABSTRACT

The glass infiltration technique was employed for surface modification of zirconia implants in this study. The prepared glass-infiltrated zirconia with low infiltrating temperature showed excellent mechanical properties and enough infiltrating layer. The zirconia substrate was pre-sintered at 1,200°C and the glass infiltration depth reached 400 µm after infiltrating at 1,200°C for 10 h. The infiltrating glass has good wetting ability, thermal expansion match and good chemical compatibility with the zirconia substrate. Indentation fracture toughness and flexural strength of the dense sintered glass-infiltrated zirconia composite are respectively 5.37±0.45 MPa•m1/2 and 841.03±89.31 MPa. Its elasticity modulus is 163.99±7.6 GPa and has about 500 µm infiltrating layer. The glass-infiltrated zirconia can be acid etched to a medium roughness (1.29±0.09 µm) with a flexural strength of 823.65±87.46 MPa, which promotes cell proliferation and has potential for dental implants.

4.
Article in English | MEDLINE | ID: mdl-38958858

ABSTRACT

Diesel soot is a significant contributor to air pollution. Soot particles present in diesel engine exhaust have a negative impact on the environment and human health. Diesel oxidation catalysts (DOCs) and diesel particulate filters (DPFs) currently use noble metal-based catalysts for soot oxidation. Due to the use of noble metals in the catalyst, the cost of diesel after-treatment systems is steadily rising. As a result, diesel vehicles have become commercially less viable than gasoline vehicles and electronic vehicles. The study focuses on an alternative diesel oxidation catalyst with efficiency similar to that of a noble metal catalyst but with a much lower cost. CeO2-Al2O3 catalysts are known for their oxygen storage capacity and high redox activity, making them suitable for soot oxidation. Adding Zr to these catalysts has been shown to influence their structural and chemical properties, significantly affecting their catalytic behavior. Therefore, the current study is focused on using Zr/CeO2-Al2O3 as a substitute for noble metal-based catalysts to enhance its performance for diesel soot oxidation in automotive exhaust. Evaporation-induced self-assembly (EISA) was used to prepare 1, 3, and 5 weight (wt) % Zr supported mesoporous CeO2-Al2O3 catalysts. Morphological, structural, and physicochemical properties of the synthesized catalysts were examined using Brunauer-Emmett-Teller (BET) absolute isotherm, Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Temperature programmed reduction (TPR), and Temperature-programmed desorption of ammonia (NH3-TPD). XRD, BET, and SEM data confirmed that the catalysts were mesoporous and low-crystalline with a high surface area. The soot oxidation activity of the catalysts was evaluated using a thermogravimetric analysis (TGA) technique. The loose contacts soot oxidation activity test suggested that 50% oxidation of soot occurred at 390 °C in the absence of a catalyst. T50 of CeO2-Al2O3 catalyzed soot oxidation was 296 °C. Adding Zr to the catalyst significantly improved catalytic activity for diesel soot oxidation. We observed a further drastic change in T50 of soot over 1, 3, and 5% Zr/CeO2-Al2O3, which were 220 °C, 210 °C, and 193 °C, respectively. According to these results, incorporating Zr into the CeO2-Al2O3 catalyst significantly improved the oxidation process of soot.

5.
J Esthet Restor Dent ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963682

ABSTRACT

OBJECTIVE: To evaluate the effect of the deterioration of computer aided design/computer aided manufacturing (CAD/CAM) burs during zirconia milling, on surface roughness, contact angle, and fibroblast viability. MATERIALS AND METHODS: Ceramic blocks were milled and 75 ceramic disks (8 × 1.5 mm) made and allocated into three groups (n = 25): G1-brand new 2L and 1L burs, G2-2L bur at the end of lifetime and brand new 1L bur and G3-both burs at the end of their lifetimes. Roughness (Ra, Rq, and Rz) was evaluated using a 3D optical profilometer, the contact angle by the sessile drop method and the cell viability of the mouse NIH/3T3 fibroblast, using the Alamar Blue assay at intervals of 24, 48, and 72 h (ISO 10993-5). Data were analyzed by one-way ANOVA and Kruskal-Wallis tests (p ≤ 0.05). RESULTS: Roughness increased as the burs deteriorated and G3 (0.27 ± 0.04) presented a higher value for Ra (p < 0.001). The highest contact angle was observed in G3 (86.2 ± 2.66) when compared with G1 (63.7 ± 12.49) and G2 (75.3 ± 6.36) (p < 0.001). Alamar Blue indicated an increase in cell proliferation, with no significant differences among the groups at 24 and 72 h (p > 0.05). CONCLUSIONS: The deterioration of the burs increased the surface roughness and decreased the wettability, but did not interfere in cell viability and proliferation. CLINICAL SIGNIFICANCE: The use of custom zirconia abutments represents an effective strategy for single crowns restorations. Our findings suggest that these abutments can be efficiently milled using CAD/CAM burs within their recommended lifetime.

6.
Cureus ; 16(6): e61633, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38966468

ABSTRACT

Introduction The evolution of computer-aided design/computer-aided manufacturing (CAD/CAM) systems has heightened the significance of digital models in dentistry, particularly for fabricating prostheses like inlays, crowns, and bridges. While digital dentistry offers enhanced speed and precision, the initial investment in intraoral scanners may pose a barrier for some clinicians. Extraoral or lab scanners, however, offer a viable alternative, reducing laboratory time and providing accurate prostheses fit, though challenges such as reflective surfaces and availability of scanning sprays persist, impacting scanning quality and operator technique. Optical scanning using laboratory scanners is a routine practice in today's age of digital dentistry. Often these require powder opacification to record fine details. There are numbered studies on the accuracy of scanning sprays. Materials and methods Ten casts, poured with type 4 dental stone (Elite Rock, Zhermack, Italy) with single implants, were used for the purpose of this study. Each cast was scanned by two different operators, using both mediums. It was scanned using an extraoral scanner (E4, 3Shape, Copenhagen, Denmark). Operator A used easy scan (Alphadent, Korea), followed by zirconia dust (Upcera, Guangdong, China), whereas operator B used zirconia dust first. Digital models within each group were superimposed individually to measure precision. Results Easy scan operator 1 and zirconia dust operator 1 differ by 0.16000 (p = 0.0802). In scenario 2, easy scan operator 2 and zirconia dust operator 2 differ by 0.21900 (p = 0.0212) . Operator type significantly affects performance, emphasizing the need to account for operator variability in relevant contexts. The trueness values obtained for zirconia dust and easy scan among both operators were statistically insignificant.  Conclusion Zirconia dust can be reliably used for extraoral scanning of abutments in place of optical scanning sprays.

7.
Heliyon ; 10(11): e32616, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961961

ABSTRACT

The study aimed to evaluate the impact of varying modulus of elasticity (MOE) values of dental implants on the deformation and von Mises stress distribution in implant systems and peri-implant bone tissues under dynamic cyclic loading. The implant-bone interface was characterised as frictional contact, and the initial stress was induced using the interference fit method to effectively develop a finite element model for an immediately loaded implant-supported denture. Using the Ansys Workbench 2021 R2 software, an analysis was conducted to examine the deformation and von Mises stress experienced by the implant-supported dentures, peri-implant bone tissue, and implants under dynamic loading across three simulated masticatory cycles. These findings were subsequently evaluated through a comparative analysis. The suprastructures showed varying degrees of maximum deformation across zirconia (Zr), titanium (Ti), low-MOE-Ti, and polyetheretherketone (PEEK) implant systems, registering values of 103.1 µm, 125.68 µm, 169.52 µm, and 844.06 µm, respectively. The Zr implant system demonstrated the lowest values for both maximum deformation and von Mises stress (14.96 µm, 86.71 MPa) in cortical bone. As the MOE increased, the maximum deformation in cancellous bone decreased. The PEEK implant system exhibited the highest maximum von Mises stress (59.12 MPa), whereas the Ti implant system exhibited the lowest stress (22.48 MPa). Elevating the MOE resulted in reductions in both maximum deformation and maximum von Mises stress experienced by the implant. Based on this research, adjusting the MOE of the implant emerged as a viable approach to effectively modify the biomechanical characteristics of the implant system. The Zr implant system demonstrated the least maximum von Mises stress and deformation, presenting a more favourable quality for preserving the stability of the implant-bone interface under immediate loading.

8.
Heliyon ; 10(12): e32493, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975209

ABSTRACT

This in vitro study was to evaluate the effect of different non-thermal atmospheric pressure plasma (NTP) on shear bond strength (SBS) between yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and self-adhesive resin cement. In this study, The Y-TZP specimens were divided into 4 groups according to the surface treatment methods as follows: Control (no surface treatment), Sb (Sandblasting), AP(argon NTP), and CP(20 % oxygen and 80 % argon combination NTP). Y-TZP specimens were randomly selected from each group to observe and test the following indexes: scanning electron microscope to observe the surface morphology; atomic force microscope to detect the surface roughness; contact angle detector to detect the surface contact angle; energy spectrometer to analyze the surface elements. Then, resin cement (Rely X-U200) was bonded to human isolated teeth with Y-TZP specimens to measure SBS. The results showed that for the SE test, the NTP group was significantly higher than the control group (p < 0.05). The results of the SBS test showed that the SBS values of the NTP group were significantly higher than those of the other groups, regardless of the plasma treatment (p < 0.05). However, there was no significant difference between groups AP and CP in a test of SBS (p > 0.05). This study shows that non-thermal atmospheric pressure plasma can improve the shear bond strength of Y-TZP by increasing the surface energy. The addition of oxygen ratio to argon is more favorable to increase the shear bond strength and is worth further investigation.

9.
Clin Exp Dent Res ; 10(4): e918, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38970231

ABSTRACT

AIMS AND OBJECTIVES: To evaluate the effect of coffee thermocycling on color stability and translucency of CAD-CAM polychromatic high translucent zirconia compared with lithium disilicate glass ceramic. METHODS: Sixteen rectangular plates (14 × 16 × 1.0 mm) of two ceramic materials (IPS E.max CAD (IEC), IPS E.max ZirCAD Prime [IZP]) were prepared. Each specimen was measured for color coordinates using a spectrophotometer following 30,000 cycles of coffee thermocycling. CIELAB formula was used to determine color and translucency differences (ΔE and ΔTP). The means of ΔE and ΔTP were compared using independent samples t-test and were evaluated using their respective 50%:50% perceptibility and acceptability thresholds (PT and AT). One-way analysis of variance was performed to evaluate the translucency parameter (TP) and surface roughness (Ra) of each material. RESULTS: Mean ΔE values of IEC (4.69) and IZP (4.64) were higher than the AT (ΔE ≤ 2.7) with no significant difference found between the two groups (p = 0.202). Considering the TP, only IEC showed a statistically significant increase in TP value (p < 0.001). However, the mean ΔTP of IEC (3.25) remained within the range of acceptability (1.3 < ΔTP ≤ 4.4). CONCLUSIONS: Within the limitations of this current study, the color stability of all materials was clinically affected by coffee thermocycling. In terms of translucency, only lithium disilicate glass ceramic was influenced by coffee thermocycling. High translucent zirconia had superior translucency stability compared to lithium disilicate glass ceramic.


Subject(s)
Ceramics , Coffee , Color , Computer-Aided Design , Dental Porcelain , Materials Testing , Surface Properties , Zirconium , Ceramics/chemistry , Dental Porcelain/chemistry , Zirconium/chemistry , Coffee/chemistry , Humans , Spectrophotometry , Dental Materials/chemistry
10.
BMC Oral Health ; 24(1): 744, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937719

ABSTRACT

BACKGROUND: The translucency of different zirconia generations at each time point after thermocycling aging is still lacking. METHODS: Four zirconia materials were used with a total of 60 samples produced from monolithic third generation (5Y) 5 mol% yttria-stabilized zirconia polycrystalline ceramic and fourth generation zirconia (4Y) 4 mol% yttria-stabilized zirconia polycrystalline ceramic, represented by [group1:[CM-5Y] Ceramill Zolid fx (3rd generation zirconia) (Amann Girrbach, Koblach, Austria), group 2:[CM-4Y] Ceramill Zolid HT + (4th generation zirconia) (Amann Girrbach, Koblach, Austria), group 3:[CC-5Y] Cercon XT/ML (Dentsply Sirona, Germany) (3rd generation), and group 4:[CC-4Y] Cercon HT/ML (Dentsply Sirona, Germany) (4th generation)]. The L*a*b* figures were measured by using a spectrophotometer at baseline and after 10,000, 30,000, and 50,000 cycles of thermocycling. At each interval, the translucency of the samples was estimated by using the translucency formula CIEDE2000. The Scheffe post-hoc compared differences among each of the four materials. The Repeated measures ANOVA tested the differences between the materials at each of the different thermocycling intervals (p < .001). Data analyses were evaluated at a significance level of p < .05 (CI 95%). RESULTS: Two-way ANOVA revealed that at baseline the third and fourth generation's zirconia showed statistically significant differences in translucency (P < .001). Translucency values at baseline and after thermocycling exhibited statistically significant changes (p = .003). At each of the time interval; CM-4Y had the highest translucency values followed by CM-5Y, CC-4Y and CC-5Y had the least translucency values. CONCLUSIONS: The third and fourth generations of zirconia displayed different translucencies. Thermocycling affected the translucency of both third and fourth generations of zirconia. At each of the time intervals group 2:[CM-4Y] had the highest TP followed by group1:[CM-5Y], while, group 3:[CC-5Y] and group 4:[CC-4Y] had the least TP.


Subject(s)
Materials Testing , Zirconium , Zirconium/chemistry , Time Factors , Yttrium/chemistry , Spectrophotometry , Dental Materials/chemistry , Light , Surface Properties , Color , Temperature , Humans , Dental Porcelain/chemistry
11.
Dent Mater ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944559

ABSTRACT

OBJECTIVE: To assess the influence of calcination process on the properties of minimally processed recycled 3Y-TZP, and to compare it with its commercial counterpart. METHODS: Non-milled 3Y-TZP waste was collected, fragmented and ball-milled to a granulometric < 5 µm. Half of the recycled powder was calcined at 900 °C. Recycled 3Y-TZP disks were uniaxially pressed and sintered to create two recycled groups: 1) Calcined and 2) Non-calcined to be compared with a commercial CAD/CAM milled 3Y-TZP. The microstructure of experimental groups was assessed through density (n = 6), scanning electron microscopy (n = 3) and energy-dispersive X-ray spectroscopy (n = 3); and the crystalline content was evaluated through X-ray diffraction (XRD) (n = 3). Optical and mechanical properties were investigated through reflectance tests (n = 10), and Vickers hardness, fracture toughness (n = 5), and biaxial flexural strength tests (n = 16), respectively. Fractographic analysis was performed to identify fracture origin and crack propagation. Statistical analyses were performed through ANOVA followed by Tukey´s test, and by Weibull statistics. RESULTS: Particle size distribution of recycled powder revealed an average diameter of ∼1.60 µm. The relative density of all experimental groups was > 98.15 % and XRD analysis exhibited a predominance of tetragonal-phase in both recycled groups, which were similar to the crystallographic pattern of the control group. Cross-section micrographs presented flaws on the non-calcined group, and a more homogeneous microstructure for the calcined and commercial groups. Commercial samples showed lower contrast-ratio and higher translucency-parameter than the recycled groups, where non-calcined presented higher translucency-parameter and lower contrast-ratio than its calcined counterpart. The commercial group presented higher fracture toughness and characteristic strength than the recycled groups. Moreover, the calcined group exhibited higher hardness, characteristic strength, and probability of survival at higher loads than the non-calcined group. Fractographic analysis depicted the presence of microstructural flaws in the non-calcined group, which may have acted as stress-raisers and led to failures at lower flexural strengths values. SIGNIFICANCE: The calcination process improved the microstructure, optical, and mechanical properties of the recycled 3Y-TZP.

12.
Dent Mater ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876830

ABSTRACT

OBJECTIVES: During the manufacturing of Porcelain Veneered Zirconia (PVZ) dental crowns, the veneer-core system undergoes high-temperature firing cycles and gets fused together which is then, under a controlled setting, cooled down to room temperature. During this cooling process, the mismatch in thermal properties between zirconia and porcelain leads to the development of transient and residual thermal stresses within the crown. These thermal stresses are inherent to the PVZ dental crown systems and render the crown structure weak, acting as a precursor to veneer chipping, fracture, and delamination. In this study, the introduction of an intermediate functionally graded material (FGM) layer at the bi-material interface is investigated as a potentially viable alternative for providing a smoother transition of properties between zirconia and porcelain in a PVZ crown system. METHODS: Anatomically correct 3D crown models were developed for this study, with and without the FGM layer modeled at the bi-material interface. A viscoelastic finite element model was developed and validated for an anatomically correct bilayer PVZ crown system which was then used for predicting residual and transient stresses in the bilayer PVZ crown. Subsequently, the viscoelastic finite element model was further extended for the analysis of graded sublayers within the FGM layer, and this extended model was used for predicting the residual and transient stresses in the functionally graded PVZ crown, with an FGM layer at the bi-material interface. RESULTS: The study showed that the introduction of an FGM layer at the bi-material interface has the potential to reduce the effects from transient and residual stresses within the PVZ crown system relative to a bilayer PVZ crown structure. Furthermore, the study revealed that the FGM layer causes stress redistribution to alleviate the stress concentration at the interfacial surface between porcelain and zirconia which can potentially enhance the durability of the PVZ crowns towards interfacial debonding or fracture. SIGNIFICANCE: Thus, the use of an FGM layer at the bi-material interface shows a good prospect for enhancing the longevity of the PVZ dental crown restorations by alleviating the abrupt thermal property difference and relaxing thermal stresses.

13.
J Funct Biomater ; 15(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38921530

ABSTRACT

BACKGROUND: The advent of three-dimensional (3D) printing technology has revolutionized the field of dentistry, enabling the precise fabrication of dental implants. By utilizing 3D printing, dentists can devise implant plans prior to surgery and accurately translate them into clinical procedures, thereby eliminating the need for multiple surgical procedures, reducing surgical discomfort, and enhancing surgical efficiency. Furthermore, the utilization of digital 3D-printed implant guides facilitates immediate restoration by precisely translating preoperative implant design plans, enabling the preparation of temporary restorations preoperatively. METHODS: This comprehensive study aimed to assess the postoperative oral health status of patients receiving personalized 3D-printed implants and investigate the advantages and disadvantages between the 3D-printed implant and conventional protocol. Additionally, variance analysis was employed to delve into the correlation between periodontal status and overall oral health. Comparisons of continuous paired parameters were made by t-test. RESULTS: The results of our study indicate a commendable one-year survival rate of over 94% for 3D-printed implants. This finding was corroborated by periodontal examinations and follow-up surveys using the Oral Health Impact Profile-14 (OHIP-14) questionnaire, revealing excellent postoperative oral health status among patients. Notably, OHIP-14 scores were significantly higher in patients with suboptimal periodontal health, suggesting a strong link between periodontal health and overall oral well-being. Moreover, we found that the operating time (14.41 ± 4.64 min) was less statistically significant than for the control group (31.76 ± 6.83 min). CONCLUSION: In conclusion, personalized 3D-printed implant surgery has emerged as a reliable clinical option, offering a viable alternative to traditional implant methods. However, it is imperative to gather further evidence-based medical support through extended follow-up studies to validate its long-term efficacy and safety.

14.
J Dent ; 148: 105151, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909644

ABSTRACT

OBJECTIVES: The present study aimed to evaluate the trueness and precision of monolithic zirconia crowns (MZCs) fabricated by 3D printing and milling techniques. METHODS: A premolar crown was designed after scanning a prepared typodont. Twenty MZCs were fabricated using milling and 3D-printing techniques (n = 10). All the specimens were scanned with an industrial scanner, and the scanned data were analyzed using 3D measurement software to evaluate the trueness and precision of each group. Root mean square (RMS) deviations were measured and statistically analyzed (One-way ANOVA, Tukey's, p ≤ 0.05). RESULTS: The trueness of the printed MZC group (140 ± 14 µm) showed a significantly higher RMS value compared to the milled MZCs (96 ± 27 µm,p < 0.001). At the same time, the precision of the milled MZCs (61 ± 17 µm) showed a significantly higher RMS value compared to that of the printed MZCs (31 ± 5 µm,p < 0.001). CONCLUSIONS: The Fabrication techniques had a significant impact on the accuracy of the MZCs. Milled MZCs showed the highest trueness, while printed MZCs showed the highest precision. All the results were within the clinically acceptable error values. CLINICAL SIGNIFICANCE: Although the trueness of the milled MZCs is higher, the manufacturing accuracy of the 3D-printed MZCs showed clinically acceptable results in terms of trueness and precision. However, additional clinical studies are recommended. Furthermore, the volumetric changes of the material should be considered.

15.
J Mol Model ; 30(7): 204, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861191

ABSTRACT

CONTEXT: Freon, a greenhouse gas that contributes to the depletion of the ozone layer, has been the subject of investigation in this study. The catalytic hydrolysis enhancement of CFC-12 by ZrO2 was examined using a density functional theory approach. A detailed reaction mechanism and a new reaction pathway were proposed. The study found that CFC-12 is more likely to be adsorbed on the ZrO2 surface in the CFC-12-TO(F) configuration, while H2O is more likely to be adsorbed on the ZrO2 surface in the H2O-TO(H) configuration. Additionally, H2O replaces CFC-12 on the surface of ZrO2. The hydrolysis of CFC-12 is primarily determined by the first dechlorination process, while the defluorination process is comparatively easier. ZrO2 has a catalytic effect on both dechlorination and defluorination processes, with a more pronounced effect on the former. The production of C-OH bonds is inhibited, which facilitates the dechlorination and defluoridation processes. METHODS: This work was carried out in the Dmol3 program in the Material Studio 2017, including the geometric structure optimization and energy calculations. The GGA/PBE method was used in this work, along with the DNP basis, spin-polarized set, and DFT-D correction. The possible TSs were guessed based on the linear synchronous transit/quadratic synchronous transit/conjugate gradient (LST/QST/CG) method, and they were further confirmed and reoptimized to ensure that the only one imaginary frequency exists in the TSs.

16.
Nanomaterials (Basel) ; 14(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38869592

ABSTRACT

Zirconia (ZrO2) nanoparticles were synthesized using a solvothermal method under varying synthesis conditions, namely acidic, neutral, and alkaline. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were leveraged to investigate the phase evolution and topographical features in detail. The resulting crystal phase structures and grain sizes exhibited substantial variation based on these conditions. Notably, the acidic condition fostered a monoclinic phase in ZrO2, while the alkaline condition yielded a combination of tetragonal and monoclinic phases. In contrast, ZrO2 obtained under neutral conditions demonstrated a refinement in grain sizes, constrained within a 1 nm scale upon an 800 °C thermal treatment. This was accompanied by an important transformation from a monoclinic phase to tetragonal phase in the ZrO2. Furthermore, a rigorous examination of XPS data and a UV-visible spectrometer (UV-vis) analysis revealed the significant role of oxygen vacancies in phase stabilization. The notable emergence of new energy bands in ZrO2, in stark contrast to the intrinsic bands observed in a pure monoclinic sample, are attributed to these oxygen vacancies. This research offers valuable insights into the novel energy bands, phase stability, and optical absorption properties influenced by oxygen vacancies in ZrO2. Moreover, it proposes an innovative energy level model for zirconia, underpinning its applicability in diverse technological areas.

17.
J Dent ; 147: 105111, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866229

ABSTRACT

OBJECTIVES: Zirconia (ZrO2) ceramics are widely used in dental restorations due to their superior mechanical properties, durability, and ever-improving translucency. This review aims to explore the properties, classification, applications, and recent advancements of zirconia-based dental materials, highlighting their potential to revolutionize dental restoration techniques. STUDY SELECTION, DATA AND SOURCES: The most recent literature available in scientific databases (PubMed and Web of Science) reporting advances of zirconia-based materials within the dental field is thoroughly examined and summarized, covering the major keywords "dental zirconia, classification, aesthetic, LTD, applications, manufacturing, surface treatments". CONCLUSIONS: An exhaustive overview of the properties, classifications, and applications of dental zirconia was presented, alongside an exploration of future prospects and potential advances. This review highlighted the importance of addressing challenges such as low-temperature degradation resistance and optimizing the balance between mechanical strength and translucency. Also, innovative approaches to improve the performances of zirconia as dental material was discussed. CLINICAL SIGNIFICANCE: This review provides a better understanding of zirconia-based dental biomaterials for dentists, helping them to make better choice when choosing a specific material to fabricate the restorations or to place the implant. Moreover, new generations of zirconia are still expected to make progress on key issues such as the long-term applications in dental materials while maintaining both damage resistance and aesthetic appeal, defining the directions for future research.

18.
J Biomed Mater Res A ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884299

ABSTRACT

Despite the significant recent advances in manufacturing materials supporting advanced dental therapies, peri-implantitis still represents a severe complication in dental implantology. Herein, a sol-gel process is proposed to easily deposit antibacterial zirconia coatings onto bulk zirconia, material, which is becoming very popular for the manufacturing of abutments. The coatings' physicochemical properties were analyzed through x-ray diffraction and scanning electron microscopy-energy-dispersive x-ray spectroscopy investigations, while their stability and wettability were assessed by microscratch testing and static contact angle measurements. Uniform gallium-doped tetragonal zirconia coatings were obtained, featuring optimal mechanical stability and a hydrophilic behavior. The biological investigations pointed out that gallium-doped zirconia coatings: (i) displayed full cytocompatibility toward human gingival fibroblasts; (ii) exhibited significant antimicrobial activity against the Aggregatibacter actinomycetemcomitans pathogen; (iii) were able to preserve the commensal Streptococcus salivarius. Furthermore, the proteomic analyses revealed that the presence of Ga did not impair the normal oral microbiota. Still, interestingly, it decreased by 17% the presence of Fusobacterium nucleatum, a gram-negative, strictly anaerobic bacteria that is naturally present in the gastrointestinal tract. Therefore, this work can provide a valuable starting point for the development of coatings aimed at easily improving zirconia dental implants' performance.

19.
Clin Oral Investig ; 28(7): 380, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886209

ABSTRACT

OBJECTIVE: To describe the clinical and radiographic performance and survival rate of a new two-piece ceramic implant system after at least 12 months of follow-up. MATERIALS AND METHODS: Sixty-five implants were placed and followed up for at least 12 months (12.3 ± 1.5), in 50 patients. The implants were installed both in fresh extraction sockets and in healed sites and received provisional restoration when the clinical insertion torque was greater than 35Ncm. The primary results describe the survival rate of these implants. Clinical performance was evaluated through the evaluation of the Pink Esthetic Score (PES) and the degree of satisfaction of the patients. Bone loss was measured through radiographic measurements of the marginal bone loss in the mesial (MBLM) and distal (MBLD) sites. RESULTS: The survival rate was 98.5%. The average MBLM was 0.24 mm (± 0.53) and the MBLD was 0.27 mm (± 0.57). A statistical difference was observed only when comparing immediate implants with delayed ones (MBLM - p = 0.046 and MBLD - p = 0.028) and when they received immediate provisionalization or not (MBLM - p = 0.009 and MBLD - p = 0.040). The PES before the intervention (T0) was 13.4 (± 0.8) and the PES at T2 (12-month follow-up) was 12.9 (± 1.5) (p = 1.14). CONCLUSION: The new two-piece ceramic implant used in the present study showed predictable and reliable results, similar to those found with titanium implants after one year of follow-up. CLINICAL RELEVANCE: These implants can be used as an alternative to titanium implants in terms of the marginal bone loss and the degree of patient satisfaction.


Subject(s)
Ceramics , Dental Prosthesis Design , Humans , Prospective Studies , Male , Female , Middle Aged , Ceramics/chemistry , Treatment Outcome , Adult , Patient Satisfaction , Aged , Esthetics, Dental , Alveolar Bone Loss/diagnostic imaging , Tooth Socket/surgery , Tooth Socket/diagnostic imaging , Dental Restoration Failure , Dental Implants
20.
Article in English | MEDLINE | ID: mdl-38881646

ABSTRACT

Background: Insufficient information exists regarding the fracture resistance and failure pattern of newly developed zirconia-reinforced lithium disilicate (ZL, Vita Ambria) onlays. This in vitro study compared the fracture resistance of two types of onlays: monolithic lithium disilicate (LD) and monolithic ZL. Methods: Forty-eight ceramic onlay restorations were fabricated on epoxy dies using a maxillary first premolar model. The samples were divided into two main groups: LD and ZL. Half of each group was subjected to thermomechanical fatigue loading (TML) using a chewing simulator. All the samples were cemented with self-adhesive resin cement. Subsequently, they were loaded until failure in a universal testing machine, and the fracture patterns and resistance were recorded. Results: Before TML, ZL demonstrated the highest statistically significant mean fracture resistance (499.76±34.14N) compared to LD (470.40±27.38N). After TML, ZL showed the highest non-statistically significant mean fracture resistance (429.27±131.42N), while LD's mean fracture resistance decreased (377.31±62.18N). Conclusion: Monolithic zirconia-reinforced onlays demonstrated higher fracture resistance and a more favorable failure mode compared to LD. However, the impact of thermomechanical aging resulted in reduced fracture resistance for both materials, with a notable preference observed for ZL.

SELECTION OF CITATIONS
SEARCH DETAIL
...