Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 379
Filter
1.
Sci Rep ; 14(1): 19718, 2024 08 24.
Article in English | MEDLINE | ID: mdl-39181914

ABSTRACT

In this study, Ziziphus spina christi leaves was used to synthesize a trimetallic CuO/Ag/ZnO nanocomposite by a simple and green method. Many characterizations e.g. FTIR, UV-vis DRS, SEM-EDX, TEM, XRD, zeta-size analysis, and DLS, were used to confirm green-synthesized trimetallic CuO/Ag/ZnO nanocomposite. The green, synthesized trimetallic CuO/Ag/ZnO nanocomposite exhibited a spherical dot-like structure, with an average particle size of around 7.11 ± 0.67 nm and a zeta potential of 21.5 mV. An extremely homogeneous distribution of signals, including O (79.25%), Cu (13.78%), Zn (4.42%), and Ag (2.55%), is evident on the surface of green-synthetic nanocomposite, according to EDX data. To the best of our knowledge, this is the first study to effectively use an industrially produced green trimetallic CuO/Ag/ZnO nanocomposite as a potent antimicrobial agent by employing different statistically experimental designs. The highest yield of green synthetic trimetallic CuO/Ag/ZnO nanocomposite was (1.65 mg/mL), which was enhanced by 1.85 and 5.7 times; respectively, by using the Taguchi approach in comparison to the Plackett-Burman strategy and basal condition. A variety of assays techniques were utilized to evaluate the antimicrobial capabilities of the green-synthesized trimetallic CuO/Ag/ZnO nanocomposite at a 200 µg/mL concentration against multidrug-resistant human pathogens. After a 36-h period, the tested 200 µg/mL of the green-synthetic trimetallic CuO/Ag/ZnO nanocomposite effectively reduced the planktonic viable counts of the studied bacteria, Escherichia coli and Staphylococcus aureus, which showed the highest percentage of biofilm reduction (98.06 ± 0.93 and 97.47 ± 0.65%; respectively).


Subject(s)
Copper , Green Chemistry Technology , Nanocomposites , Plant Extracts , Silver , Zinc Oxide , Ziziphus , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Nanocomposites/chemistry , Copper/chemistry , Plant Extracts/chemistry , Ziziphus/chemistry , Silver/chemistry , Green Chemistry Technology/methods , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Escherichia coli/drug effects
2.
J Biomater Sci Polym Ed ; : 1-22, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088278

ABSTRACT

This investigation examined the potential antibacterial and antidiabetic effects of wound dressings created using electrospun nanofibers containing Ziziphus jujuba fruit extract (ZJ). These nanofibers were composed of a combination of Polycaprolactone (PCL), Polyvinyl Alcohol (PVA), and Polyhexamethylene Biguanide (PHMB). The process of creating these nanofibers involved electrospinning. The nanofiber products, which included PCL, PCL/PVA, PCL/PVA/ZJ, PCL/PVA/PHMB, and PCL/PVA/PHMB/ZJ, underwent a morphology, physicochemical, and biological assessment. Incorporating PHMB into the nanofibers enhanced the antibacterial properties, effectively preventing bacterial infections in wounds. Furthermore, including ZJ fruit extract in the nanofibers provided antidiabetic properties, making these dressings suitable for diabetic patients. The PCL/PVA/PHMB/ZJ combination exhibited exceptional healing capabilities and superior antibacterial efficiency in MRSA-infected wounds. The histological assay confirmed complete wound healing by day 14, accompanied by reduced inflammation. Based on these findings, using PCL/PVA/PHMB/ZJ as innovative wound dressings is recommended, as they can expedite wound healing while offering significant antidiabetic and antibacterial features. Ultimately, these electrospun nanofibers possess the potential to serve as advanced wound dressings with enhanced antibacterial and anti-diabetes properties.

3.
Heliyon ; 10(14): e34002, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39092262

ABSTRACT

This study explores novel applications of combining natural products by integrating Ziziphus lotus L. (Z. lotus), honey, and argan oil to create a product similar to traditional Moroccan Amlou (a mixture of almonds, honey, and argan oil). Five formulations were developed with varying percentages of these three ingredients, alongside two formulations of traditional Amlou. The nutritional value, mineral composition, fatty acid profile, bioactive compounds, and antioxidant activities of the products were analyzed using standard analytical methods such as gas chromatography and spectrophotometry. Additionally, sensory evaluations were conducted to assess consumer preferences. The results showed that the new formulations are rich in oil (45.15-52.24 g/100 g), carbohydrates (40.26-46.81 g/100 g), and protein (3.15-3.92 g/100 g). Mineral analysis revealed significant amounts of potassium (443-578 mg/100 g), calcium (98-124 mg/100 g), phosphorus (50-65 mg/100 g), and magnesium (38-50 mg/100 g). The Z. lotus-based products exhibited higher phenolic content (7-12 mg GAE/g), flavonoids (7.10-10.18 mg QE/g), and stronger antioxidant activities using DPPH radical scavenging activity (3.55-11.14 mg AAE/g) and FRAP (5.39-8.55 mg AAE/g). Moreover, the new product retains the beneficial fatty acid profile of argan oil, with a high content of oleic acid (48 %) and linoleic acid (32 %). Sensory evaluation indicated that the formulation consisting of 45 % Z. lotus powder, 50 % argan oil, and 5 % honey was the most appreciated for taste and texture. These findings suggest that incorporating Z. lotus into traditional Amlou recipes not only enhances nutritional and antioxidant properties but also meets consumer acceptance in terms of flavor and texture.

4.
BMC Plant Biol ; 24(1): 612, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937704

ABSTRACT

With global warming, high temperature (HT) has become one of the most common abiotic stresses resulting in significant crop yield losses, especially for jujube (Ziziphus jujuba Mill.), an important temperate economic crop cultivated worldwide. This study aims to explore the coping mechanism of jujube to HT stress at the transcriptional and post-transcriptional levels, including identifying differentially expressed miRNAs and mRNAs as well as elucidating the critical pathways involved. High-throughput sequencing analyses of miRNA and mRNA were performed on jujube leaves, which were collected from "Fucumi" (heat-tolerant) and "Junzao" (heat-sensitive) cultivars subjected to HT stress (42 °C) for 0, 1, 3, 5, and 7 days, respectively. The results showed that 45 known miRNAs, 482 novel miRNAs, and 13,884 differentially expressed mRNAs (DEMs) were identified. Among them, integrated analysis of miRNA target genes prediction and mRNA-seq obtained 1306 differentially expressed miRNAs-mRNAs pairs, including 484, 769, and 865 DEMIs-DEMs pairs discovered in "Fucuimi", "Junzao" and two genotypes comparative groups, respectively. Furthermore, functional enrichment analysis of 1306 DEMs revealed that plant-pathogen interaction, starch and sucrose metabolism, spliceosome, and plant hormone signal transduction were crucial pathways in jujube leaves response to HT stress. The constructed miRNA-mRNA network, composed of 20 DEMIs and 33 DEMs, displayed significant differently expressions between these two genotypes. This study further proved the regulatory role of miRNAs in the response to HT stress in plants and will provide a theoretical foundation for the innovation and cultivation of heat-tolerant varieties.


Subject(s)
Genotype , MicroRNAs , RNA, Messenger , RNA, Plant , Ziziphus , Ziziphus/genetics , Ziziphus/physiology , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , Gene Expression Regulation, Plant , Hot Temperature , Plant Leaves/genetics , Stress, Physiological/genetics , High-Throughput Nucleotide Sequencing , Heat-Shock Response/genetics
5.
Biomed Pharmacother ; 176: 116823, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834008

ABSTRACT

Ancient Egyptians (including Bedouins and Nubians) have long utilized Ziziphus spina-christi (L.), a traditional Arabian medicinal herb, to alleviate swellings and inflammatory disorders. It is also mentioned in Christian and Muslim traditions. Ziziphus spina-christi L. (Family: Rhamnaceae) is a plentiful source of polyphenols, revealing free radical scavenging, antioxidant, metal chelating, cytotoxic, and anti-inflammatory activities. Herein, different classes of the existing bioactive metabolites in Z. spina-christi L. were detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the first time. The study also aimed to assess the anti-inflammatory and antifibrotic properties of Z. spina-christi L. extract against bleomycin-induced lung fibrosis in an experimental mouse model. 32 male Swiss Albino mice were assigned into 4 groups; the first and second were the normal control group and the bleomycin positive control (single 2.5 U/kg bleomycin intratracheal dose). The third and fourth groups received 100 and 200 mg/kg/day Z. spina-christi L. extract orally for 3 weeks, 2 weeks before bleomycin, and 1 week after. The bioactive metabolites in Z. spina-christi L. extract were identified as phenolic acids, catechins, flavonoids, chalcones, stilbenes, triterpenoid acids, saponins, and sterols. The contents of total phenolic compounds and flavonoids were found to be 196.62 mg GAE/gm and 33.29 mg QE/gm, respectively. In the experimental study, histopathological examination revealed that lung fibrosis was attenuated in both Z. spina-christi L.- treated groups. Z. spina-christi L. extract downregulated the expression of nuclear factor kappa B (NF-κB) p65 and decreased levels of the inflammatory markers tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and c-Jun N-terminal kinase (JNK) in lung tissue. Z. spina-christi L. also downregulated the expression of the fibrotic parameters collagen-1, alpha-smooth muscle actin (α-SMA), transforming growth factor-beta 1 (TGF-ß1), matrix metalloproteinase-9 (MMP-9) and SMAD3, with upregulation of the antifibrotic SMAD7 in lung tissue. Overall, the present study suggests a potential protective effect of Z. spina-christi L. extract against bleomycin-induced lung fibrosis through regulation of the TGF-ß1/SMAD pathway.


Subject(s)
Bleomycin , Plant Extracts , Pulmonary Fibrosis , Signal Transduction , Smad Proteins , Tandem Mass Spectrometry , Transforming Growth Factor beta1 , Ziziphus , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Male , Ziziphus/chemistry , Mice , Plant Extracts/pharmacology , Transforming Growth Factor beta1/metabolism , Smad Proteins/metabolism , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Signal Transduction/drug effects , Lung/drug effects , Lung/pathology , Lung/metabolism , Metabolomics/methods , Anti-Inflammatory Agents/pharmacology , Liquid Chromatography-Mass Spectrometry
6.
Food Chem X ; 22: 101425, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38736979

ABSTRACT

This study was designed to reveal the relationship among browning, polyphenol degradation, Maillard reaction (MR) and flavor variation in jujube fruit (JF) during air-impingement jet drying (AIJD). Five kinds of JFs were dried by AIJD at 60 °C and vacuum freeze drying. Colorimeter and chemometric analysis found that AIJD induced color changes of JF pulp and peel. AIJD also reduced the total polyphenols content and total flavonoids levels in JF. The Fe3+ reducing capacity and 2,2'-Azinobis-(3-ethylbenzothiazoline-6-sulphonate) cationic radical scavenging capacity of JF were reduced by 31.6% and 8.2%, respectively. Seven polyphenols were identified in JF, and epicatechin was found related to change of JF pulp color by sparse partial least square (sPLS). sPLS revealed that 3-deoxy glucosone, N-ε-carboxymethyl-l-lysine and 5-hydroxymethylfurfural associated with JF color. sPLS found that MR generated 3-methyl-butanoic acid and cyclobutanone during AIJD of JF. Chemometrics is an effective tool to disclose mechanism of color changes in food.

7.
Heliyon ; 10(9): e29989, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707456

ABSTRACT

Objectives: To investigate extracts of the stem bark of Ziziphus jujuba (L.) Gaertn. var. hysudrica Edgew. (Rhamnaceae) for anti-inflammatory activity and isolate the active principle(s). Methods: The dry powder was macerated separately in three types of solvents to prepare methanol extract (ME), ethyl acetate extract (EE), and chloroform extract (CE). Following in vitro anti-inflammatory screening, the most active extract was selected to isolate the active compound. Both, the active extract and isolated compound were further tested on rats using the carrageenan-induced inflammation model. The blood and paw tissue were subjected to qPCR, and histopathology, respectively. Key findings: CE showed comparatively higher anti-inflammatory activity (85.0-95.0 %) in all in vitro assays, except the heat-induced membrane stabilization model (p < 0.05), and upon column chromatography, it yielded a pure crystalline compound. The compound was a pentacyclic triterpenoid (Lupane), named as hydroxymethyl (3ß)-3-methyl-lup-20(29)-en-28-oate (Hussainate). CE (500 mg/kg) and Hussainate (1.0 mg/kg) reduced edema in 5 h after carrageenan administration. The activity of Hussainate was found to be comparable to that of dexamethasone (standard). The possible activity mechanism was the downregulation of tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX-II), NF-κB, and IL-1ß. Conclusions: This study reveals that chloroform extract of the stem's bark of Z. jujuba may be used to prepare standardized anti-inflammatory herbal products using Hussainate as an active analytical marker. Hussainate may be used as a lead to develop anti-inflammatory drugs.

8.
Malar J ; 23(1): 141, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734650

ABSTRACT

BACKGROUND: The development of resistance by Plasmodium falciparum is a burdening hazard that continues to undermine the strides made to alleviate malaria. As such, there is an increasing need to find new alternative strategies. This study evaluated and validated 2 medicinal plants used in traditional medicine to treat malaria. METHODS: Inspired by their ethnobotanical reputation of being effective against malaria, Ziziphus mucronata and Xysmalobium undulutum were collected and sequentially extracted using hexane (HEX), ethyl acetate (ETA), Dichloromethane (DCM) and methanol (MTL). The resulting crude extracts were screened for their anti-malarial and cytotoxic potential using the parasite lactate dehydrogenase (pLDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, respectively. This was followed by isolating the active compounds from the DCM extract of Z. mucronata using silica gel chromatography and structural elucidation using spectroscopic techniques (NMR: 1H, 12C, and DEPT). The active compounds were then targeted against P. falciparum heat shock protein 70-1 (PfHsp70-1) using Autodock Vina, followed by in vitro validation assays using ultraviolet-visible (UV-VIS) spectroscopy and the malate dehydrogenase (MDH) chaperone activity assay. RESULTS: The extracts except those of methanol displayed anti-malarial potential with varying IC50 values, Z. mucronata HEX (11.69 ± 3.84 µg/mL), ETA (7.25 ± 1.41 µg/mL), DCM (5.49 ± 0.03 µg/mL), and X. undulutum HEX (4.9 ± 0.037 µg/mL), ETA (17.46 ± 0.024 µg/mL) and DCM (19.27 ± 0.492 µg/mL). The extracts exhibited minimal cytotoxicity except for the ETA and DCM of Z. mucronata with CC50 values of 10.96 and 10.01 µg/mL, respectively. Isolation and structural characterization of the active compounds from the DCM extracts revealed that betulinic acid (19.95 ± 1.53 µg/mL) and lupeol (7.56 ± 2.03 µg/mL) were responsible for the anti-malarial activity and had no considerable cytotoxicity (CC50 > µg/mL). Molecular docking suggested strong binding between PfHsp70-1, betulinic acid (- 6.8 kcal/mol), and lupeol (- 6.9 kcal/mol). Meanwhile, the in vitro validation assays revealed the disruption of the protein structural elements and chaperone function. CONCLUSION: This study proves that X undulutum and Z. mucronata have anti-malarial potential and that betulinic acid and lupeol are responsible for the activity seen on Z. mucronata. They also make a case for guided purification of new phytochemicals in the other extracts and support the notion of considering medicinal plants to discover new anti-malarials.


Subject(s)
Antimalarials , Phytochemicals , Plant Extracts , Plasmodium falciparum , Ziziphus , Antimalarials/pharmacology , Antimalarials/chemistry , Ziziphus/chemistry , Plasmodium falciparum/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Drug Discovery
9.
Inflammopharmacology ; 32(4): 2463-2476, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38739176

ABSTRACT

BACKGROUND: Rheumatoid arthritis is an autoimmune inflammatory disorder that mainly affects bone and cartilage architecture. The continuous use of NSAIDs and DMARDs is associated with severe toxic effects. Therefore, the current study was designed to scrutinize herb-based therapy for the treatment of RA. AIM: To evaluate the anti-arthritic activity of ethanol extract of Ziziphus nummularia using formaldehyde-induced arthritic model in rats and elucidate the possible mechanism for anti-arthritic activity. MATERIALS AND METHODS: Anti-arthritic activity of ETZN was studied at three oral doses, i.e., 200, 400, and 600 mg/kg. Selected doses were studied using various clinical parameters viz. paw volume, inflammatory index, motility test, stair test, anti-nociceptive efficacy, walking track analysis, and motor activity) from day 1 to day 10. On the last day, the animals were killed for the evaluation of hematological parameters, oxidative stress biomarkers, and histological and radiographic studies of the hind paw. RESULTS: Treatment with ETZN 400 mg/kg and 600 mg/kg markedly elicited a significant reduction in paw volume, inflammatory index, and nociceptive action compared to diseased animals. Furthermore, the anti-inflammatory activity was confirmed by increased latency of pain threshold in thermal and mechanical algesia models. The anti-arthritic activity is mainly attributed to a reduction in oxidative stress biomarkers as well as restoration of haematological profile in treated animals when compared to diseased animals. Lastly, the anti-arthritic potential was confirmed by histological and radiological analysis which revealed a marked reduction in inflammatory cells and bone destruction as compared to diseased animals. CONCLUSION: The study revealed that ETZN exhibits significant anti-arthritic activity via modulation of oxidative stress biomarkers, restoration of hematological profile, and reduction in bone erosion.


Subject(s)
Arthritis, Experimental , Biomarkers , Ethanol , Formaldehyde , Oxidative Stress , Plant Extracts , Rats, Wistar , Ziziphus , Animals , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Rats , Biomarkers/metabolism , Male , Arthritis, Experimental/drug therapy , Arthritis, Experimental/chemically induced , Ziziphus/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/chemically induced , Dose-Response Relationship, Drug
10.
Antioxidants (Basel) ; 13(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38790680

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory condition caused by the disruption of the intestinal barrier. The intestinal barrier is maintained by tight junctions (TJs), which sustain intestinal homeostasis and prevent pathogens from entering the microbiome and mucosal tissues. Ziziphus jujuba Miller (Z. jujuba) is a natural substance that has been used in traditional medicine as a therapy for a variety of diseases. However, in IBD, the efficacy of Z. jujuba is unknown. Therefore, we evaluated ZJB in Caco2 cells and a dextran sodium sulfate (DSS)-induced mouse model to demonstrate its efficacy in IBD. Z. jujuba extracts were prepared using 70% ethanol and were named ZJB. ZJB was found to be non-cytotoxic and to have excellent antioxidant effects. We confirmed its anti-inflammatory properties via the down-regulation of inflammatory factors, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). To evaluate the effects of ZJB on intestinal barrier function and TJ improvement, the trans-epithelial electrical resistance (TEER) and fluorescein isothiocyanate-dextran 4 kDa (FITC-Dextran 4) permeability were assessed. The TEER value increased by 61.389% and permeability decreased by 27.348% in the 200 µg/mL ZJB group compared with the 50 ng/mL IL-6 group after 24 h. Additionally, ZJB alleviated body weight loss, reduced the disease activity index (DAI) score, and induced colon shortening in 5% DSS-induced mice; inflammatory cytokines, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were down-regulated in the serum. TJ proteins, such as Zonula occludens (ZO)-1 and occludin, were up-regulated by ZJB in an impaired Caco2 mouse model. Additionally, according to the liquid chromatography results, in tandem with mass spectrometry (LC-MS/MS) analysis, seven active ingredients were detected in ZJB. In conclusion, ZJB down-regulated inflammatory factors, protected intestinal barrier function, and increased TJ proteins. It is thus a safe, natural substance with the potential to be used as a therapeutic agent in IBD treatment.

11.
Cureus ; 16(3): e55400, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38562322

ABSTRACT

Diabetes mellitus (DM), a prevalent metabolic disorder, is associated with widespread damage to bodily systems, notably causing significant dysfunction within the peripheral and central nervous systems (CNS). The primary objective of this study is to explore the extent of DM's impact on cognitive and behavioral functions and to evaluate the therapeutic potential of ethanol leaf extracts from Ziziphus jujuba (ZJ) and Eclipta alba (EA) in mitigating these adverse effects. Utilizing an established animal model, we aimed to determine the effectiveness of these plant extracts in ameliorating the cognitive impairments commonly seen in diabetic states. In our experimental framework, we allocated Wistar rats (n=6 per group) into eight different groups, inducing DM through alloxan administration. The intervention groups were treated orally with either the standard antidiabetic drug glibenclamide or varying doses of ZJ and EA extracts over periods of seven and 21 days. Throughout the study, we carefully tracked fluctuations in blood glucose levels, noting considerable decreases, particularly following the 21-day treatment interval. Post-treatment, the rats' cognitive functions were assessed using the Morris water maze (MWM) test. This evaluation revealed significant cognitive enhancement in the diabetic rats administered with ZJ and EA extracts, with these groups displaying reduced latency in finding the submerged platform, indicative of improved learning and memory. These observations were statistically significant (p<0.01). The findings underscore the hypoglycemic effects of ZJ and EA extracts and suggest their viability as cognitive enhancers in the context of DM. The protective effects of these extracts against cognitive decline caused by DM are clear. They add important new information to the research on natural phytochemicals for managing chronic diseases. This study opens new avenues for the application of these substances in treating neurocognitive disorders associated with DM.

12.
Physiol Mol Biol Plants ; 30(3): 497-511, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38633271

ABSTRACT

Ziziphus nummularia an elite heat-stress tolerant shrub, grows in arid regions of desert. However, its molecular mechanism responsible for heat stress tolerance is unexplored. Therefore, we analysed whole transcriptome of Jaisalmer (heat tolerant) and Godhra (heat sensitive) genotypes of Z. nummularia to understand its molecular mechanism responsible for heat stress tolerance. De novo assembly of 16,22,25,052 clean reads yielded 276,029 transcripts. A total of 208,506 unigenes were identified which contains 4290 and 1043 differentially expressed genes (DEG) in TGO (treated Godhra at 42 °C) vs. CGO (control Godhra) and TJR (treated Jaisalmer at 42 °C) vs. CJR (control Jaisalmer), respectively. A total of 987 (67 highly enriched) and 754 (34 highly enriched) pathways were obsorved in CGO vs. TGO and CJR vs. TJR, respectively. Antioxidant pathways and TFs like Homeobox, HBP, ARR, PHD, GRAS, CPP, and E2FA were uniquely observed in Godhra genotype and SET domains were uniquely observed in Jaisalmer genotype. Further transposable elements were highly up-regulated in Godhra genotype but no activation in Jaisalmer genotype. A total of 43,093 and 39,278 simple sequence repeats were identified in the Godhra and Jaisalmer genotypes, respectively. A total of 10 DEGs linked to heat stress were validated in both genotypes for their expression under different heat stresses using quantitative real-time PCR. Comparing expression patterns of the selected DEGs identified ClpB1 as a potential candidate gene for heat tolerance in Z. nummularia. Here we present first characterized transcriptome of Z. nummularia in response to heat stress for the identification and characterization of heat stress-responsive genes. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01431-y.

13.
Front Plant Sci ; 15: 1361771, 2024.
Article in English | MEDLINE | ID: mdl-38633465

ABSTRACT

Introduction: Fruit size is an important economic trait affecting jujube fruit quality, which has always been the focus of marker-assisted breeding of jujube traits. However, despite a large number of studies have been carried out, the mechanism and key genes regulating jujube fruit size are mostly unknown. Methods: In this study, we used a new analysis method Quantitative Trait Loci sequencing (QTL-seq) (bulked segregant analysis) to screen the parents 'Yuhong' and 'Jiaocheng 5' with significant phenotypic differences and mixed offspring group with extreme traits of large fruit and small fruit, respectively, and, then, DNA mixed pool sequencing was carried out to further shortening the QTL candidate interval for fruit size trait and excavated candidate genes for controlling fruit size. Results: The candidate intervals related to jujube fruit size were mainly located on chromosomes 1, 5, and 10, and the frequency of chromosome 1 was the highest. Based on the QTL-seq results, the annotation results of ANNOVAR were extracted from 424 SNPs (single-nucleotide polymorphisms) and 164 InDels (insertion-deletion), from which 40 candidate genes were selected, and 37 annotated candidate genes were found in the jujube genome. Four genes (LOC107428904, LOC107415626, LOC125420708, and LOC107418290) that are associated with fruit size growth and development were identified by functional annotation of the genes in NCBI (National Center for Biotechnology Information). The genes can provide a basis for further exploration and identification on genes regulating jujube fruit size. Discussion: In summary, the data obtained in this study revealed that QTL intervals and candidate genes for fruit size at the genomic level provide valuable resources for future functional studies and jujube breeding.

14.
Nat Prod Res ; : 1-5, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630967

ABSTRACT

A total of 20 endophytic fungi were isolated (ZSEFL1-ZSEFL20) from Ziziphus spina-christi (L.) Desf. (Nabq) leaves. Four isolates A2/ZSEFL2, Alternaria alternata, D/ZSEFL14, Aspergillus niger, E/ZSEFL15, Epicoccum nigrum, and S/ZSEFL19, Penicillium crustosum were found to show the most promising antimicrobial activities either in plug or disc diffusion screening assays against Gram-positive, Gram-negative bacteria and pathogenic fungi. Antimicrobial activity was tested against Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213, Serratia marcescens ATCC 14764, Klebsiella pneumoniae ATCC 700603, Candida albicans ATCC 10231, and Fusarium oxysporum ATCC417. In vitro antioxidant activity assay was conducted using the ABTS [2,2'-Azino-bis (3-Ethylbenzthiazoline-6-Sulfonic Acid)] free radical scavenging method. EtOAc extracts of all isolated endophytic fungi showed antioxidant activities. This study would be one of the first reports to measure the antioxidant activity of Z. spina-christi (L.) Desf. endophytic fungi. Therefore, these isolated endophytic fungi can provide additional information for medicinal sources of natural antioxidants and antimicrobial agents.

15.
Complement Ther Med ; 82: 103041, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648942

ABSTRACT

OBJECTIVES: The effects of jujube (Ziziphus jujube) consumption on metabolic and mental health outcomes in subjects diagnosed with metabolic syndrome (MetS) is unknown and remains to be examined. Hence, we carried out a parallel-group, randomized controlled trial to investigate this issue. METHODS: Eligible participants were randomly assigned to the intervention (n = 30) or the control (n = 30) groups to receive either jujube or a placebo for eight weeks. Subjects were provided with 30 g dried jujube powder or placebo and were asked to consume half of the powder at 10 a.m. and the rest at 4 p.m. Lipid profile, fasting blood glucose (FBG), waist circumference (WC), and blood pressure were evaluated as primary outcomes. Secondary outcomes collected were mental health measures (e.g., depression, anxiety, and stress). RESULTS: Jujube consumption failed to decrease FBG, total cholesterol, low-density lipoprotein cholesterol, and blood pressure, as well as depression and anxiety scores (P > 0.05). However, the between-group comparison revealed a significant improvement in WC (- 3.98 vs. - 0.51, P = 0.01), triglyceride (TG) (- 24.96 vs. - 0.73, P = 0.03), and high-density lipoprotein cholesterol (HDL-C) (2.83 vs. 0.40, P = 0.01) in the jujube group compared to the placebo. In addition, compared to the control group, jujube consumption led to a significant improvement in the score of stress (- 5.80 vs. - 2.86, P = 0.01). CONCLUSION: Jujube consumption only had beneficial effects on WC, TG, and HDL-C in subjects with MetS. However, the current study has methodological weaknesses in blinding and herb purity/potency testing, which should be addressed in future studies.


Subject(s)
Blood Glucose , Metabolic Syndrome , Ziziphus , Humans , Male , Female , Middle Aged , Adult , Blood Pressure , Waist Circumference , Plant Extracts/therapeutic use , Plant Extracts/pharmacology , Mental Health , Depression/drug therapy
16.
Mol Nutr Food Res ; 68(8): e2300643, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600887

ABSTRACT

SCOPE: Polyphenols are the major active substances in red jujube fruit, and their anti-inflammatory and antioxidant activities suggest their potential utility in the prevention of ulcerative colitis (UC). METHODS AND RESULTS: In this study, the effect of polyphenol extracts from red jujube (Ziziphus jujuba Mill. "Junzao") (PERJ) on the dextron sulfate sodium (DSS)-induced UC mice is investigated. The result shows that PERJ effectively improves clinical symptoms, including food and water intake, the disease activity insex (DAI) and spleen index, and routine blood levels, and alleviates the shortening of the colon, in mice with DSS-induced UC. Meanwhile, PERJ remarkably decreases the expression of proinflammatory factors. Moreover, PERJ repairs intestinal barrier damage by increasing the expression level of mucin 2 and mucin 3, and the result is also confirmed in the histological assessment. Besides, the expression levels of Nod-like receptor family pyrin domain-containing 3 (NLRP3) and mitogen-activated protein kinase cascade (MAPKs) signaling pathway-related proteins are inhibited by the PERJ administration. Finally, 16S rRNA sequencing analyses reveal that PERJ reverses intestinal microbiota dysbiosis by enhancing the abundance of Firmicutes and decreasing that of Proteobacteria and Bacteroidetes. CONCLUSION: PERJ probably inhibits the development of UC by suppressing the NLRP3 and MAPKs signaling pathways and regulating gut microbiota homeostasis, and can be considered as a potential resource for preventing UC.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome , MAP Kinase Signaling System , Plant Extracts , Ziziphus , Animals , Male , Mice , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colon/drug effects , Colon/metabolism , Colon/pathology , Dextran Sulfate , Gastrointestinal Microbiome/drug effects , Homeostasis/drug effects , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plant Extracts/pharmacology , Polyphenols/pharmacology , Ziziphus/chemistry
17.
Acta Parasitol ; 69(2): 1231-1243, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38671280

ABSTRACT

PURPOSE: Alternative and affordable tick control strategies are crucial to control and prevent tick bites and tick-borne diseases. METHODS: In this study, we evaluated the acaricidal efficacy of 35 aqueous plant extracts (17%) against the camel tick, Hyalomma dromedarii. RESULTS: The phytochemical profile indicated the presence of various secondary substances. Plants were classified into three groups according to their mortality percentage 15 days post-treatment with 17%. This highly effective group (91%-95%) comprised Ocimum basilicum, Mespilus germanica, and Viola alpine followed by Carum carvi, Cucurbita pepo (peel), and Peganum harmala. A moderately effective group (80%-90%) included Acacia nilotica, Apium graveolens, Capsicum annuum, Ceratonia siliqua, Cucurbita pepo (seeds), Equisetum arvense, Eruca sativa, Ginkgo biloba, Plantago psyllium, Phyllanthus emblica, Punica granatum, and Ziziphus spinachristi. The 20 remaining plants were assigned to the less effective group (< 80%). Viscum album (58.3%), which was the least effective reference plant. The high potency of six plant extracts as acaricides may be attributed to the high content of active principles, e.g., phenols, flavonoids, and tannins. CONCLUSION: All of these highly effective plants are recommended for use as an acaricide, in case of facing acaricidal resistance or limited options for tick control.


Subject(s)
Acaricides , Camelus , Ixodidae , Plant Extracts , Animals , Acaricides/pharmacology , Plant Extracts/pharmacology , Egypt , Camelus/parasitology , Ixodidae/drug effects , Tick Infestations/veterinary , Tick Infestations/prevention & control , Tick Infestations/parasitology , Tick Infestations/drug therapy
18.
Plant Cell Environ ; 47(8): 2895-2910, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38623040

ABSTRACT

Phytoplasmic SAP11 effectors alter host plant architecture and flowering time. However, the exact mechanisms have yet to be elucidated. Two SAP11-like effectors, SJP1 and SJP2, from 'Candidatus Phytoplasma ziziphi' induce shoot branching proliferation. Here, the transcription factor ZjTCP7 was identified as a central target of these two effectors to regulate floral transition and shoot branching. Ectopic expression of ZjTCP7 resulted in enhanced bolting and earlier flowering than did the control. Interaction and expression assays demonstrated that ZjTCP7 interacted with the ZjFT-ZjFD module, thereby enhancing the ability of these genes to directly bind to the ZjAP1 promoter. The effectors SJP1 and SJP2 unravelled the florigen activation complex by specifically destabilising ZjTCP7 and ZjFD to delay floral initiation. Moreover, the shoot branching of the ZjTCP7-SRDX transgenic Arabidopsis lines were comparable to those of the SJP1/2 lines, suggesting the involvement of ZjTCP7 in the regulation of shoot branching. ZjTCP7 interacted with the branching repressor ZjBRC1 to enhance suppression of the auxin efflux carrier ZjPIN3 expression. ZjTCP7 also directly bound to and upregulated the auxin biosynthesis gene ZjYUCCA2, thereby promoting auxin accumulation. Our findings confirm that ZjTCP7 serves as a bifunctional regulator destabilised by the effectors SJP1 and SJP2 to modulate plant development.


Subject(s)
Arabidopsis , Flowers , Phytoplasma , Plant Shoots , Plants, Genetically Modified , Phytoplasma/physiology , Flowers/growth & development , Flowers/genetics , Plant Shoots/growth & development , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/growth & development , Gene Expression Regulation, Plant , Transcription Factors/metabolism , Transcription Factors/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Promoter Regions, Genetic/genetics , Indoleacetic Acids/metabolism
19.
Sci Rep ; 14(1): 7202, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38531974

ABSTRACT

Cancer is responsible for approximately 10 million deaths worldwide, with 70% of the deaths occurring in low- and middle-income countries; as such safer and more effective anti-cancer drugs are required. Therefore, the potential benefits of Ziziphus nummularia and Ziziphus spina-christi as sources of anti-cancer agents were investigated. Z. nummularia and Z. spina-christi extracts were prepared using chloroform, ethanol, ethyl acetate, and water. The extracts' anti-cancer properties were determined using the MTT Cell Viability Assay in four cancer cell lines: breast (KAIMRC2 and MDA-MB-231), colorectal (HCT8), and liver (HepG2). The ApoTox-Glo Triplex Assay and high-content imaging (HCI)-Apoptosis Assay were used to assess KAIMRC2 and HCT8 cells further. In addition, KAIMRC2 cells were tested for microtubule staining, and AKT/mTOR protein expression was determined by western blot analysis. Liquid chromatography-mass spectrometry (LC-MS) was performed to identify the secondary metabolites in the ethanol and ethyl acetate extracts, followed by in silico techniques to predict molecular targets and interactions, safety, and pharmacokinetic profile for identified metabolites. Out of the eight extracts, the ethanolic extract of Z. nummularia, exhibited the most potent activity against KAIMRC2 cells with an IC50 value of 29.2 µg/ml. Cancer cell treatment with the ethanolic extract of Z. nummularia resulted in a dose-dependent decrease in cell viability with increased apoptosis and cytotoxic effects. Microtubule staining showed a disrupted microtubular network. The ethanolic extract treatment of KAIMRC2 cells led to upregulated expression of pAKT and pmTOR. In silico studies predicted luteolin-7-O-glucoside to be a ligand for tubulin with the highest docking score (- 7.686) and similar binding interactions relative to the native ligand. Further computational analysis of the metabolites showed acceptable pharmacokinetic and safety profiles, although ethanolic extract metabolites were predicted to have cardiotoxic effects. Ethanolic extraction is optimal for solubilizing active anticancer metabolites from Z. nummularia, which may act by causing M-phase arrest via inhibition of tubulin polymerization. Luteolin-7-O-glucoside is the lead candidate for further research and development as an anti-cancer agent. In addition, this study suggests that herbal treatment could switch on mechanisms of adaptation and survival in cancer cells.


Subject(s)
Acetates , Glucosides , Luteolin , Neoplasms , Ziziphus , Plant Extracts/pharmacology , Ziziphus/chemistry , Tubulin Modulators , Ligands , Tubulin , Ethanol
20.
J Biomol Struct Dyn ; : 1-12, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529845

ABSTRACT

The COVID-19 pandemic caused by the SARS-CoV-2 virus, recognized by the World Health Organization (WHO), has led to 164,523,894 confirmed cases and 3,412,032 deaths globally as of May 20, 2021. SARS-CoV-2 encodes crucial proteases for its replication cycle, including the papain-like protease (PLpro), presenting a potential target for developing COVID-19 treatments. Mauritine, a cyclopeptide alkaloid found in the Ziziphus-spina christi plant, exhibits antiviral properties and was investigated for its affinity and toxicity towards PLpro using molecular docking through MGLTools 1.5.6 with Autodock Tools 4.2. Preceding this, toxicity and ADME prediction were performed via Toxtree 3.1.0 software and SwissADME servers. Results from molecular docking revealed free binding energy values of -8.58; -7.73; -8.36; -6.07; -6.67; -7.83; -7.67; -7.40; and -6.87 Kcal/mol for Mauritine-A, Mauritine-B, Mauritine-C, Mauritine-D, Mauritine-F, Mauritine-H, Mauritine-J, Mauritine-L, and Mauritine-M, respectively. Correspondingly, inhibition constants were 0.51724; 2.14; 0.7398; 35.43; 12.95; 1.83; 2.38; 3.80; and 9.17 µM, respectively. Interactions observed included hydrogen bonds, hydrophobic interactions, and electrostatic interactions between the Mauritine compounds and the receptor. Mauritine-A and Mauritine-C emerged as a promising anti-COVID-19 candidate due to its superior affinity compared to other derivatives, as indicated by research findings. Interestingly, Mauritine-A and Mauritine-C exhibits notable stability as depicted by the RMSD and RMSF graphs, along with a considerable MM-PBSA binding free energy value of -162.431 and -137.500 kJ/mol, respectively.Communicated by Ramaswamy H. Sarma.

SELECTION OF CITATIONS
SEARCH DETAIL
...