Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Type of study
Language
Publication year range
1.
Infect Genet Evol ; 118: 105564, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307396

ABSTRACT

This pilot study aimed to investigate genetic factors that may have contributed to the milder clinical outcomes of COVID-19 in Brazilian indigenous populations. 263 Indigenous from the Araweté, Kararaô, Parakanã, Xikrin do Bacajá, Kayapó and Munduruku peoples were analyzed, 55.2% women, ages ranging from 10 to 95 years (average 49.5 ± 20.7). Variants in genes involved in the entry of SARS-CoV-2 into the host cell (ACE1 rs1799752 I/D, ACE2 rs2285666 C/T, ACE2 rs73635825 A/G and TMPRSS2 rs123297605 C/T), were genotyped in indigenous peoples from the Brazilian Amazon, treated during the SARS-CoV-2 pandemic between 2020 and 2021. The distribution of genotypes did not show any association with the presence or absence of IgG antibodies. Additionally, the influence of genetic variations on the severity of the disease was not examined extensively because a significant number of indigenous individuals experienced the disease with either mild symptoms or no symptoms. It is worth noting that the frequencies of risk alleles were found to be lower in Indigenous populations compared to both continental populations and Brazilians. Indigenous Brazilian Amazon people exhibited an ethnic-specific genetic profile that may be associated with a milder disease, which could explain the unexpected response they demonstrated to COVID-19, being less impacted than Brazilians.


Subject(s)
COVID-19 , Peptidyl-Dipeptidase A , Serine Endopeptidases , Female , Humans , Male , Angiotensin-Converting Enzyme 2/genetics , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/genetics , Peptidyl-Dipeptidase A/genetics , Pilot Projects , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Indians, South American
2.
Genes (Basel) ; 14(10)2023 09 29.
Article in English | MEDLINE | ID: mdl-37895241

ABSTRACT

Indoor residual spray (IRS), mainly employing pyrethroid insecticides, is the most common intervention for preventing malaria transmission in many regions of Latin America; the use of long-lasting insecticidal nets (LLINs) has been more limited. Knockdown resistance (kdr) is a well-characterized target-site resistance mechanism associated with pyrethroid and DDT resistance. Most mutations detected in acetylcholinesterase-1 (Ace-1) and voltage-gated sodium channel (VGSC) genes are non-synonymous, resulting in a change in amino acid, leading to the non-binding of the insecticide. In the present study, we analyzed target-site resistance in Nyssorhynchus darlingi, the primary malaria vector in the Amazon, in multiple malaria endemic localities. We screened 988 wild-caught specimens of Ny. darlingi from three localities in Amazonian Peru and four in Amazonian Brazil. Collections were conducted between 2014 and 2021. The criteria were Amazonian localities with a recent history as malaria hotspots, primary transmission by Ny. darlingi, and the use of both IRS and LLINs as interventions. Fragments of Ace-1 (456 bp) and VGSC (228 bp) were amplified, sequenced, and aligned with Ny. darlingi sequences available in GenBank. We detected only synonymous mutations in the frequently reported Ace-1 codon 280 known to confer resistance to organophosphates and carbamates, but detected three non-synonymous mutations in other regions of the gene. Similarly, no mutations linked to insecticide resistance were detected in the frequently reported codon (995) at the S6 segment of domain II of VGSC. The lack of genotypic detection of insecticide resistance mutations by sequencing the Ace-1 and VGSC genes from multiple Ny. darlingi populations in Brazil and Peru could be associated with low-intensity resistance, or possibly the main resistance mechanism is metabolic.


Subject(s)
Anopheles , Insecticides , Malaria , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Acetylcholinesterase/genetics , Anopheles/genetics , Insecticide Resistance/genetics , Brazil , Peru/epidemiology , Mosquito Vectors/genetics , Insecticides/pharmacology , Mutation , Pyrethrins/pharmacology , Voltage-Gated Sodium Channels/genetics , Codon
3.
In Vivo ; 37(1): 433-439, 2023.
Article in English | MEDLINE | ID: mdl-36593047

ABSTRACT

BACKGROUND/AIM: Renin-angiotensin system (RAS) is present in a diverse type of cells and plays an important role in lung physiology and pathophysiology. Angiotensin converting enzymes (ACE) are part of the RAS system. There are still controversies about the association of I/D polymorphisms of ACE1 with COVID-19 severity. The goal of the study was to determine whether there is an association of the I/D polymorphism with severity of COVID-19 in Mexican patients. PATIENTS AND METHODS: The study included voluntary participants: 53 healthy individuals negative to RT-PCR COVID-19 (control), and 165 patients positive to COVID-19. Severity was defined by the need of hospitalization, invasive ventilation, shock, or multiple organ failure. The patient group consisted of 28 asymptomatic, 82 with mild, and 55 with severe COVID-19. I/D polymorphism was determined by PCR. Rutinary laboratory tests were performed in all the participants. RESULTS: DD polymorphism was significantly associated with severe COVID-19, independently of comorbidities, or any other variable. Receiver operator characteristic curves demonstrated association of low total cholesterol, low high-density lipoproteins, and high c-reactive protein with severity of COVID-19. CONCLUSION: The DD polymorphism was associated with the course of the infection and severity of COVID-19 in a sample of Mexican patients.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , Lipids/blood , Polymorphism, Genetic , Renin-Angiotensin System/genetics
4.
Genes (Basel) ; 14(1)2022 12 22.
Article in English | MEDLINE | ID: mdl-36672770

ABSTRACT

Although advanced age, male sex, and some comorbidities impact the clinical course of COVID-19, these factors only partially explain the inter-individual variability in disease severity. Some studies have shown that genetic polymorphisms contribute to COVID-19 severity; however, the results are inconclusive. Thus, we investigated the association between polymorphisms in ACE1, ACE2, DPP9, IFIH1, IFNAR2, IFNL4, TLR3, TMPRSS2, and TYK2 and the clinical course of COVID-19. A total of 694 patients with COVID-19 were categorized as: (1) ward inpatients (moderate symptoms) or patients admitted at the intensive care unit (ICU; severe symptoms); and (2) survivors or non-survivors. In females, the rs1990760/IFIH1 T/T genotype was associated with risk of ICU admission and death. Moreover, the rs1799752/ACE1 Ins and rs12329760/TMPRSS2 T alleles were associated with risk of ICU admission. In non-white patients, the rs2236757/IFNAR2 A/A genotype was associated with risk of ICU admission, while the rs1799752/ACE1 Ins/Ins genotype, rs2236757/IFNAR2 A/A genotype, and rs12329760/TMPRSS2 T allele were associated with risk of death. Moreover, some of the analyzed polymorphisms interact in the risk of worse COVID-19 outcomes. In conclusion, this study shows an association of rs1799752/ACE1, rs1990760/IFIH1, rs2236757/IFNAR2, rs12329760/TMPRSS2, and rs2304256/TYK2 polymorphisms with worse COVID-19 outcomes, especially among female and non-white patients.


Subject(s)
COVID-19 , Humans , Male , Female , COVID-19/genetics , Interferon-Induced Helicase, IFIH1/genetics , Polymorphism, Genetic , Genotype , Disease Progression , TYK2 Kinase/genetics , Receptor, Interferon alpha-beta/genetics , Serine Endopeptidases/genetics , Interleukins/genetics
5.
Braz. arch. biol. technol ; Braz. arch. biol. technol;63: e20190185, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132193

ABSTRACT

Abstract The second-generation bioethanol employs lignocellulosic materials degraded by microbial cellulases in their production. The fungus Trichoderma reesei is one of the main microorganisms producing cellulases, and its genetic modification can lead to the optimization in obtaining hydrolytic enzymes. This work carried out the deletion of the sequence that encodes the zinc finger motif of the transcription factor ACE1 (cellulase expression repressor I) of the fungus T. reesei RUT-C30. The transformation of the RUT-C30 lineage was confirmed by amplification of the 989 bp fragment relative to the selection marker, and by the absence of the zinc finger region amplification in mutants, named T. reesei RUT-C30Δzface1. The production of cellulases by mutants was compared to RUT-C30 and measured with substrates carboxymethylcellulose (CMC), microcrystalline cellulose (Avicel®) and Whatman filter paper (PF). The results demonstrated that RUT-C30Δzface1 has cellulolytic activity increased 3.2-fold in Avicel and 2.1-fold in CMC and PF. The mutants presented 1.4-fold higher sugar released in the hydrolysis of the biomass assays. These results suggest that the partial deletion of ace1 gene is an important strategy in achieving bioethanol production on an industrial scale at a competitive price in the fuel market.


Subject(s)
Trichoderma/enzymology , Cellulase/biosynthesis , Zinc Fingers , Biomass , Ethanol , Biofuels
6.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;43(9): 837-842, Sept. 2010. ilus
Article in English | LILACS | ID: lil-556866

ABSTRACT

Angiotensin-converting enzymes 1 (ACE1) and 2 (ACE2) are key enzymes of the renin-angiotensin system, which act antagonistically to regulate the levels of angiotensin II (Ang II) and Ang-(1-7). Considerable data show that ACE1 acts on normal skeletal muscle functions and architecture. However, little is known about ACE1 levels in muscles with different fiber compositions. Furthermore, ACE2 levels in skeletal muscle are not known. Therefore, the purpose of this study was to characterize protein expression and ACE1 and ACE2 activities in the soleus and plantaris muscles. Eight-week-old female Wistar rats (N = 8) were killed by decapitation and the muscle tissues harvested for biochemical and molecular analyses. ACE1 and ACE2 activities were investigated by a fluorometric method using Abz-FRK(Dnp)P-OH and Mca-YVADAPK(Dnp)-OH fluorogenic substrates, respectively. ACE1 and ACE2 protein expression was analyzed by Western blot. ACE2 was expressed in the skeletal muscle of rats. There was no difference between the soleus (type I) and plantaris (type II) muscles in terms of ACE2 activity (17.35 ± 1.7 vs 15.09 ± 0.8 uF·min-1·mg-1, respectively) and protein expression. ACE1 activity was higher in the plantaris muscle than in the soleus (71.5 ± 3.9 vs 57.9 ± 1.1 uF·min-1·mg-1, respectively). Moreover, a comparative dose-response curve of protein expression was established in the soleus and plantaris muscles, which indicated higher ACE1 levels in the plantaris muscle. The present findings showed similar ACE2 levels in the soleus and plantaris muscles that might result in a similar Ang II response; however, lower ACE1 levels could attenuate Ang II production and reduce bradykinin degradation in the soleus muscle compared to the plantaris. These effects should enhance the aerobic capacity necessary for oxidative muscle activity.


Subject(s)
Animals , Female , Rats , Muscle, Skeletal/enzymology , Peptidyl-Dipeptidase A/metabolism , Fluorometry , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL