Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Gels ; 9(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37998937

ABSTRACT

Skin wound healing is a complex biological process of tissue regeneration in which the wound dressing is crucial for rapid healing; it must protect the wound keep an adequate level of moisture and prevent infections. Alginate (AL), a polysaccharide from brown algae, has been extensively studied for wound treatment, and aloe vera gels (AVGs) have also been used in the treatment of skin. The AVG main bioactive polysaccharide was combined with AL for the preparation of membranes. Two-dimensional membranes were prepared by casting and, for comparison, transparent nanoparticle 3D membranes were produced by high-intensity ultrasonication followed by ionotropic crosslinking. The effects of the amount of AVG, ionotropic gelation, and the structure (2D or 3D) of the AL-AVG membranes were compared. Scanning electron microscopy (SEM) showed higher surface roughness on 3D membranes. Three-dimensional membranes showed a higher swelling ratio, and swelling increased with AVG content and decreased with higher calcium concentration and longer gelation times. The degradation of the membranes was evaluated with and without a lysozyme at pH 5.5, 7.5, and 8.5, to simulate different skin conditions; the results evidence that pH had a higher effect than the enzyme. The cytotoxicity of the membranes was evaluated with ATCC CCL 163 and ATCC CCL 81 cells, and an excellent biocompatibility of both cell types (>90% of cell viability after 48 h incubation) was observed for all AL-AVG membranes.

2.
Foods ; 11(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35267378

ABSTRACT

Aloe vera products, both in food and cosmetics, are becoming increasingly popular due to their claimed beneficial effects, which are mainly attributed to the active compound acemannan. Usually, these end products are based on powdered starting materials. High temperatures during the drying process to obtain the starting materials have several advantages, like shortening the drying time, eliminating toxic aloin and reducing bacterial contamination. Nevertheless, there are two major drawbacks: first, at temperatures of 80 °C or higher, structural changes in acemannan, especially its deacetylation (>46%), are triggered, which does not happen at lower temperatures (14% at 60 °C); secondly, a toxic principle is formed at higher temperatures, resulting in a higher cytotoxicity. Thus, two temperature-dependent but opposing effects cause with a median cytotoxic concentration of CC50 = 0.4× a peak of cytotoxicity at 80 °C; at 60 °C this cytotoxic substance is not formed and at 100 °C aloin is more readily eliminated, resulting in a CC50 = 1.1× and CC50 = 1.4×, respectively. The cytotoxic substance generated by dry heat at 80 °C is not a modified polysaccharide because its polysaccharide-enriched alcohol-insoluble fraction is with CC50 = 0.9× less cytotoxic. Moreover, this substance is polar enough to be washed away with ethanol. Additionally, when Aloe gel is heated at 80 °C under humid conditions (pasteurization), the cytotoxicity does not increase (CC50 = 1.6×). Finally, to produce powdered starting materials from Aloe gel, it is recommended to use temperatures of around 60 °C in order to preserve the acemannan structure (and thus biological activity) and the low cytotoxicity.

3.
Polymers (Basel) ; 13(11)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067251

ABSTRACT

Cactaceae and Asphodelaceae are native desert plants known for their high mucilage content, which is a polysaccharide of growing interest in the food, cosmetic, and pharmaceutical industries. In this study, powdered mucilage was obtained from cladodes of Opuntia ficus-indica (OFI) and aloe vera (AV) leaves, and their molecular, morphological, and thermal properties were investigated and compared. Additionally, their dietary fiber content was determined. Three-dimensional molecular models were calculated for both mucilages using ab initio methods. Vibrational spectra (FTIR and Raman) revealed intramolecular interactions and functional groups that were specified with the help of theoretical ab initio and semi-empirical calculations. SEM micrographs measured at magnifications of 500× and 2000× demonstrated significantly different superficial and internal morphologies between these two mucilages. Thermal analysis using DSC/TGA demonstrated superior thermal stability for the OFI mucilage. The dietary fiber content in OFI mucilage was more than double that of AV mucilage. Our results show that both dehydrated mucilages present adequate thermal and nutritional properties to be used as functional ingredients in industrial formulations; however, OFI mucilage exhibited better physicochemical and functional characteristics than AV mucilage as a raw material.

4.
Carbohydr Polym ; 222: 114998, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31320065

ABSTRACT

The effects of pH (3.5, 4.5, and 5.5) and UV-C irradiation dose (12.8, 24.2, 35.8, and 54.6 mJ/cm2) on the physicochemical properties changes in 10% Aloe vera gel blends; in addition, the acemannan concentration and structural changes in the precipitated polysaccharides were evaluated. A thermal treatment (TT; 45 s at 90 °C) was used for comparison. In contrast to TT, a dose of 24.2 mJ/cm2 did not induce significant changes of free sugar content. Moreover, TT and UV-C irradiation did not significantly affect the content of mannose but increased those of galactose, fructose, and glucose. 1H NMR analysis revealed minimal changes in the isolated fractions of acemannan, indicating that compared to the unprocessed control sample, the acemannan deacetylation was more pronounced by TT (27%) than by UV-C irradiation (11% at 54.6 mJ/cm2), without any significant difference between the two. UV-C irradiation of Aloe vera gel blends at pH 3.5 and 24.2 mJ/cm2 was an alternative to TT and efficiently preserve the characteristics of acemannan.


Subject(s)
Aloe/chemistry , Gels/chemistry , Mannans/chemistry , Plant Preparations/chemistry , Gels/radiation effects , Heating , Hexoses/chemistry , Hydrogen-Ion Concentration , Mannans/radiation effects , Molecular Weight , Plant Preparations/radiation effects , Sucrose/chemistry , Ultraviolet Rays
5.
Polymers (Basel) ; 11(2)2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30960314

ABSTRACT

The procedures to obtain two types of acemannan (AC) physical gels and their respective aerogels are reported. The gelation was induced by the diffusion of an alkali or a non-solvent, then supercritical CO2 drying technology was used to remove the solvent out and generate the AC aerogels. Fourier-transform infrared spectroscopic analysis indicated that alkali diffusion produced extensive AC deacetylation. Conversely, the non-solvent treatment did not affect the chemical structure of AC. Both types of gels showed syneresis and the drying process induced further volume reduction. Both aerogels were mesoporous nanostructured materials with pore sizes up to 6.4 nm and specific surface areas over 370 m²/g. The AC physical gels and aerogels enable numerous possibilities of applications, joining the unique features of these materials with the functional and bioactive properties of the AC.

SELECTION OF CITATIONS
SEARCH DETAIL