Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Microorganisms ; 12(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39065219

ABSTRACT

Bioethanol fermentation from lignocellulosic hydrolysates is negatively affected by the presence of acetic acid. The budding yeast S. cerevisiae adapts to acetic acid stress partly by activating the transcription factor, Haa1. Haa1 induces the expression of many genes, which are responsible for increased fitness in the presence of acetic acid. Here, we show that protein kinase A (PKA) is a negative regulator of Haa1-dependent gene expression under both basal and acetic acid stress conditions. Deletions of RAS2, encoding a positive regulator of PKA, and PDE2, encoding a negative regulator of PKA, lead to an increased and decreased expression of Haa1-regulated genes, respectively. Importantly, the deletion of HAA1 largely reverses the effects of ras2∆. Additionally, the expression of a dominant, hyperactive RAS2A18V19 mutant allele also reduces the expression of Haa1-regulated genes. We found that both pde2Δ and RAS2A18V19 reduce cell fitness in response to acetic acid stress, while ras2Δ increases cellular adaptation. There are three PKA catalytic subunits in yeast, encoded by TPK1, TPK2, and TPK3. We show that single mutations in TPK1 and TPK3 lead to the increased expression of Haa1-regulated genes, while tpk2Δ reduces their expression. Among tpk double mutations, tpk1Δ tpk3Δ greatly increases the expression of Haa1-regulated genes. We found that acetic acid stress in a tpk1Δ tpk3Δ double mutant induces a flocculation phenotype, which is reversed by haa1Δ. Our findings reveal PKA to be a negative regulator of the acetic acid stress response and may help engineer yeast strains with increased efficiency of bioethanol fermentation.

2.
Antioxidants (Basel) ; 13(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38539794

ABSTRACT

The Greatwall-family protein kinase Rim15 is associated with the nutrient starvation response, whereas its role in oxidative stress responses remains unclear. Here, acetic acid and peroxide were used as two oxidative stress elicitors. The antioxidant indicator assay under acetic acid stress revealed the impaired growth in rim15Δ related to the regulation of antioxidant systems. Comparative transcriptome analysis revealed that differentially expressed genes (DEGs) are predicted to be mostly regulated by oxidative stress-responsive transcriptional factor Yap1. Among the DEGs, acetic acid stress-induced genes were found, and YAP1 disruption also inhibited their induction. The deletion of Rim15 or the Rim15 kinase domain in yap1Δ did not further decrease the gene expression, suggesting that Rim15 functions together with Yap1 in regulating acetic acid stress-induced genes, which requires Rim15 kinase activity. Additionally, Rim15 regulated H2O2 stress tolerance through partially similar but special mechanisms in that Rim15 kinase activity impacted acetic acid and H2O2 stress tolerance in different degrees, indicating the different mechanisms underlying Rim15-mediated redox regulation against different stressors. These results benefit the better understanding of stress signaling pathways related to Rim15. Given that Rim15 and some of its target genes are conserved across eukaryotes, these results also provide a basis for studies of oxidative stress-related processes in other organisms.

3.
Front Microbiol ; 15: 1348063, 2024.
Article in English | MEDLINE | ID: mdl-38476938

ABSTRACT

Introduction: This study is the final part of a two-part series that delves into the molecular mechanisms driving adaptive laboratory evolution (ALE) of Salmonella enterica in acid stress. The phenotypic and transcriptomic alterations in the acid-evolved lineages (EL) of Salmonella enterica serovar Enteritidis after 70 days of acid stress exposure were analyzed. Materials and methods: The stability of phenotypic changes observed after 70 days in acetic acid was explored after stress removal using a newly developed evolutionary lineage EL5. Additionally, the impact of short-term acid stress on the previously adapted lineage EL4 was also examined. Results: The results indicate that the elevated antibiotic minimum inhibitory concentration (MIC) observed after exposure to acetic acid for 70 days was lost when acid stress was removed. This phenomenon was observed against human antibiotics such as meropenem, ciprofloxacin, gentamicin, and streptomycin. The MIC of meropenem in EL4 on day 70 was 0.094 mM, which dropped to 0.032 mM when removed from acetic acid stress after day 70. However, after stress reintroduction, the MIC swiftly elevated, and within 4 days, it returned to 0.094 mM. After 20 more days of adaptation in acetic acid, the meropenem MIC increased to 0.125 mM. The other human antibiotics that were tested exhibited a similar trend. The MIC of acetic acid in EL4 on day 70 was observed to be 35 mM, which remained constant even after the removal of acetic acid stress. Readaptation of EL4 in acetic acid for 20 more days caused the acetic acid MIC to increase to 37 mM. Bacterial whole genome sequencing of EL5 revealed base substitutions in several genes involved in pathogenesis, such as the phoQ and wzc genes. Transcriptomic analysis of EL5 revealed upregulation of virulence, drug resistance, toxin-antitoxin, and iron metabolism genes. Unstable Salmonella small colony variants (SSCV) of S. Enteritidis were also observed in EL5 as compared to the wild-type unevolved S. Enteritidis. Discussion: This study presents a comprehensive understanding of the evolution of the phenotypic, genomic, and transcriptomic changes in S. Enteritidis due to prolonged acid exposure through ALE.

4.
Front Microbiol ; 14: 1285421, 2023.
Article in English | MEDLINE | ID: mdl-38033570

ABSTRACT

Introduction: Adaptive laboratory evolution (ALE) studies play a crucial role in understanding the adaptation and evolution of different bacterial species. In this study, we have investigated the adaptation and evolution of Salmonella enterica serovar Enteritidis to acetic acid using ALE. Materials and methods: Acetic acid concentrations below the minimum inhibitory concentration (sub-MIC) were used. Four evolutionary lineages (EL), namely, EL1, EL2, EL3, and EL4, of S. Enteritidis were developed, each demonstrating varying levels of resistance to acetic acid. Results: The acetic acid MIC of EL1 remained constant at 27 mM throughout 70 days, while the MIC of EL2, EL3, and EL4 increased throughout the 70 days. EL4 was adapted to the highest concentration of acetic acid (30 mM) and demonstrated the highest increase in its MIC against acetic acid throughout the study, reaching an MIC of 35 mM on day 70. The growth rates of the evolved lineages increased over time and were dependent on the concentration of acetic acid used during the evolutionary process. EL4 had the greatest increase in growth rate, reaching 0.33 (h-1) after 70 days in the presence of 30 mM acetic acid as compared to EL1, which had a growth rate of 0.2 (h-1) after 70 days with no exposure to acetic acid. Long-term exposure to acetic acid led to an increased MIC of human antibiotics such as ciprofloxacin and meropenem against the S. enterica evolutionary lineages. The MIC of ciprofloxacin for EL1 stayed constant at 0.016 throughout the 70 days while that of EL4 increased to 0.047. Bacterial whole genome sequencing revealed single-nucleotide polymorphisms in the ELs in various genes known to be involved in S. enterica virulence, pathogenesis, and stress response including phoP, phoQ, and fhuA. We also observed genome deletions in some of the ELs as compared to the wild-type S. Enteritidis which may have contributed to the bacterial acid adaptation. Discussion: This study highlights the potential for bacterial adaptation and evolution under environmental stress and underscores the importance of understanding the development of cross resistance to antibiotics in S. enterica populations. This study serves to enhance our understanding of the pathogenicity and survival strategies of S. enterica under acetic acid stress.

5.
Microbiol Spectr ; : e0301122, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36975803

ABSTRACT

Responses to acetic acid toxicity in the budding yeast Saccharomyces cerevisiae have widespread implications in the biorefinery of lignocellulosic biomass and food preservation. Our previous studies revealed that Set5, the yeast lysine methyltransferase and histone H4 methyltransferase, was involved in acetic acid stress tolerance. However, it is still mysterious how Set5 functions and interacts with the known stress signaling network. Here, we revealed that elevated phosphorylation of Set5 during acetic acid stress is accompanied by enhanced expression of the mitogen-activated protein kinase (MAPK) Hog1. Further experiments uncovered that the phosphomimetic mutation of Set5 endowed yeast cells with improved growth and fermentation performance and altered transcription of specific stress-responsive genes. Intriguingly, Set5 was found to bind the coding region of HOG1 and regulate its transcription, along with increased expression and phosphorylation of Hog1. A protein-protein interaction between Set5 and Hog1 was also revealed. In addition, modification of Set5 phosphosites was shown to regulate reactive oxygen species (ROS) accumulation, which is known to affect yeast acetic acid stress tolerance. The findings in this study imply that Set5 may function together with the central kinase Hog1 to coordinate cell growth and metabolism in response to stress. IMPORTANCE Hog1 is the yeast homolog of p38 MAPK in mammals that is conserved across eukaryotes, and it plays crucial roles in stress tolerance, fungal pathogenesis, and disease treatments. Here, we provide evidence that modification of Set5 phosphorylation sites regulates the expression and phosphorylation of Hog1, which expands current knowledge on upstream regulation of the Hog1 stress signaling network. Set5 and its homologous proteins are present in humans and various eukaryotes. The newly identified effects of Set5 phosphorylation site modifications in this study benefit an in-depth understanding of eukaryotic stress signaling, as well as the treatment of human diseases.

6.
Int. microbiol ; 25(3): 417-426, Ago. 2022. graf
Article in English | IBECS | ID: ibc-216203

ABSTRACT

Issatchenkia orientalis (I. orientalis) is tolerant to various environmental stresses especially acetic acid stress in wine making. However, limited literature is available on the transcriptome profile of I. orientalis under acetic acid stress. RNA-sequence was used to investigate the metabolic changes due to underlying I. orientalis 166 (Io 166) tolerant to acetic acid. Transcriptomic analyses showed that genes involved in ergosterol biosynthesis are differentially expressed under acetic acid stress. Genes associated with ribosome function were downregulated, while energy metabolism-related genes were upregulated. Moreover, Hsp70/Hsp90 and related molecular chaperones were upregulated to recognize and degrade misfolded proteins. Compared to Saccharomyces cerevisiae, transcriptomic changes of Io 166 showed many similarities under acetic acid stress. There were significant upregulation of genes in ergosterol biosynthesis and for the application of wine production.(AU)


Subject(s)
Humans , Fermentation , Wine , Transcriptome , Acetic Acid , Microbiology
7.
Int Microbiol ; 25(3): 417-426, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34811604

ABSTRACT

Issatchenkia orientalis (I. orientalis) is tolerant to various environmental stresses especially acetic acid stress in wine making. However, limited literature is available on the transcriptome profile of I. orientalis under acetic acid stress. RNA-sequence was used to investigate the metabolic changes due to underlying I. orientalis 166 (Io 166) tolerant to acetic acid. Transcriptomic analyses showed that genes involved in ergosterol biosynthesis are differentially expressed under acetic acid stress. Genes associated with ribosome function were downregulated, while energy metabolism-related genes were upregulated. Moreover, Hsp70/Hsp90 and related molecular chaperones were upregulated to recognize and degrade misfolded proteins. Compared to Saccharomyces cerevisiae, transcriptomic changes of Io 166 showed many similarities under acetic acid stress. There were significant upregulation of genes in ergosterol biosynthesis and for the application of wine production.


Subject(s)
Acetic Acid , Wine , Acetic Acid/metabolism , Ergosterol/metabolism , Fermentation , Pichia , RNA/metabolism , Saccharomyces cerevisiae/metabolism , Transcriptome , Wine/microbiology
8.
Microorganisms ; 9(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34576766

ABSTRACT

Studies with Saccharomyces cerevisiae indicated that non-physiologically high levels of acetic acid promote cellular acidification, chronological aging, and programmed cell death. In the current study, we compared the cellular lipid composition, acetic acid uptake, intracellular pH, growth, and chronological lifespan of wild-type cells and mutants lacking the protein kinase Sch9 and/or a functional V-ATPase when grown in medium supplemented with different acetic acid concentrations. Our data show that strains lacking the V-ATPase are especially more susceptible to growth arrest in the presence of high acetic acid concentrations, which is due to a slower adaptation to the acid stress. These V-ATPase mutants also displayed changes in lipid homeostasis, including alterations in their membrane lipid composition that influences the acetic acid diffusion rate and changes in sphingolipid metabolism and the sphingolipid rheostat, which is known to regulate stress tolerance and longevity of yeast cells. However, we provide evidence that the supplementation of 20 mM acetic acid has a cytoprotective and presumable hormesis effect that extends the longevity of all strains tested, including the V-ATPase compromised mutants. We also demonstrate that the long-lived sch9Δ strain itself secretes significant amounts of acetic acid during stationary phase, which in addition to its enhanced accumulation of storage lipids may underlie its increased lifespan.

9.
Yeast ; 38(7): 391-400, 2021 07.
Article in English | MEDLINE | ID: mdl-34000094

ABSTRACT

Acetic acid stress represents a frequent challenge to counteract for yeast cells under several environmental conditions and industrial bioprocesses. The molecular mechanisms underlying its response have been mostly elucidated in the budding yeast Saccharomyces cerevisiae, where acetic acid can be either a physiological substrate or a stressor. This review will focus on acetic acid stress and its response in the context of cellular transport, pH homeostasis, metabolism and stress-signalling pathways. This information has been integrated with the results obtained by multi-omics, synthetic biology and metabolic engineering approaches aimed to identify major cellular players involved in acetic acid tolerance. In the production of biofuels and renewable chemicals from lignocellulosic biomass, the improvement of acetic acid tolerance is a key factor. In this view, how this knowledge could be used to contribute to the development and competitiveness of yeast cell factories for sustainable applications will be also discussed.


Subject(s)
Acetic Acid/metabolism , Saccharomyces cerevisiae/metabolism , Biofuels , Industrial Microbiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Stress, Physiological
10.
Food Microbiol ; 95: 103684, 2021 May.
Article in English | MEDLINE | ID: mdl-33397616

ABSTRACT

Shanxi aged vinegar (SAV), a Chinese traditional vinegar, is produced by various microorganisms. Ammonium is an important nitrogen source for microorganisms and a key intermediate for the utilization of non-ammonium nitrogen sources. In this work, an ammonium metabolic network during SAV fermentation was constructed through the meta-transcriptomic analysis of in situ samples, and the potential mechanism of acid affecting ammonium metabolism was revealed. The results showed that ammonium was enriched as the acidity increased. Meta-transcriptomic analysis showed that the conversion of glutamine to ammonia is the key pathway of ammonium metabolism in vinegar and that Lactobacillus and Acetobacter are the dominant genera. The construction and analysis of the metabolic network showed that amino acid metabolism, nucleic acid metabolism, pentose phosphate pathway and energy metabolism were enhanced to resist acid damage to the intracellular environment and cell structures. The enhancement of nitrogen assimilation provides nitrogen for metabolic pathways that resist acid cytotoxicity. In addition, the concentration gradient allows ammonium to diffuse outside the cell, which causes ammonium to accumulate during fermentation.


Subject(s)
Acetic Acid/metabolism , Acetobacter/metabolism , Ammonium Compounds/metabolism , Edible Grain/microbiology , Lactobacillus/metabolism , Edible Grain/metabolism , Fermentation , Metabolic Networks and Pathways
11.
Sheng Wu Gong Cheng Xue Bao ; 37(12): 4293-4302, 2021 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-34984875

ABSTRACT

Acetic acid is a common inhibitor present in lignocellulosic hydrolysate. Development of acetic acid tolerant strains may improve the production of biofuels and bio-based chemicals using lignocellulosic biomass as raw materials. Current studies on stress tolerance of yeast Saccharomyces cerevisiae have mainly focused on transcription control, but the role of transfer RNA (tRNA) was rarely investigated. We found that some tRNA genes showed elevated transcription levels in a stress tolerant yeast strain. In this study, we further investigated the effects of overexpressing an arginine transfer RNA gene tR(ACG)D and a leucine transfer RNA gene tL(CAA)K on cell growth and ethanol production of S. cerevisiae BY4741 under acetic acid stress. The tL(CAA)K overexpression strain showed a better growth and a 29.41% higher ethanol productivity than that of the control strain. However, overexpression of tR(ACG)D showed negative influence on cell growth and ethanol production. Further studies revealed that the transcriptional levels of HAA1, MSN2, and MSN4, which encode transcription regulators related to stress tolerance, were up-regulated in tL(CAA)K overexpressed strain. This study provides an alternative strategy to develop robust yeast strains for cellulosic biorefinery, and also provides a basis for investigating how yeast stress tolerance is regulated by tRNA genes.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Acetic Acid , DNA-Binding Proteins/metabolism , Fermentation , Leucine , RNA, Transfer/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors
12.
Chinese Journal of Biotechnology ; (12): 4293-4302, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-921506

ABSTRACT

Acetic acid is a common inhibitor present in lignocellulosic hydrolysate. Development of acetic acid tolerant strains may improve the production of biofuels and bio-based chemicals using lignocellulosic biomass as raw materials. Current studies on stress tolerance of yeast Saccharomyces cerevisiae have mainly focused on transcription control, but the role of transfer RNA (tRNA) was rarely investigated. We found that some tRNA genes showed elevated transcription levels in a stress tolerant yeast strain. In this study, we further investigated the effects of overexpressing an arginine transfer RNA gene tR(ACG)D and a leucine transfer RNA gene tL(CAA)K on cell growth and ethanol production of S. cerevisiae BY4741 under acetic acid stress. The tL(CAA)K overexpression strain showed a better growth and a 29.41% higher ethanol productivity than that of the control strain. However, overexpression of tR(ACG)D showed negative influence on cell growth and ethanol production. Further studies revealed that the transcriptional levels of HAA1, MSN2, and MSN4, which encode transcription regulators related to stress tolerance, were up-regulated in tL(CAA)K overexpressed strain. This study provides an alternative strategy to develop robust yeast strains for cellulosic biorefinery, and also provides a basis for investigating how yeast stress tolerance is regulated by tRNA genes.


Subject(s)
Acetic Acid , DNA-Binding Proteins/metabolism , Fermentation , Leucine , RNA, Transfer/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors
13.
Extremophiles ; 24(6): 909-922, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33026498

ABSTRACT

Elucidation of the acetic acid resistance (AAR) mechanisms of Acetobacter pasteurianus is significant for vinegar production. In this study, cell membrane lipid profile of A. pasteurianus Ab3 was investigated by gas chromatography-mass spectrometer (GC-MS) and high performance liquid chromatography-electrospray ionization (HPLC-ESI) combined with high resolution accurate mass/mass spectrometry (HRAM/MS). We observed that cell remodeled the membrane physical state by decreasing the ratio of saturated fatty acids (SFAs)/unsaturated fatty acids (UFAs), and increasing the chain length of fatty acids (FAs) and the content of cyclopropane FAs in response to extreme acid stress. Noticeably, the content of octadecadienoic acid (C18:2) elevated remarkably. Moreover, a continuous reduction in cell membrane fluidity and a "V-type" variance in permeability were discovered. The content of glycerophospholipid and ceramide increased significantly in cells harvested from culture with acidity of 75 g/L and 95 g/L compared to that with acidity of 30 g/L. Among the identified lipid species, the content of phosphatidylcholine (e.g. PC 19:0/18:2 and 19:1/18:0), ceramide (e.g. Cer d18:0/16:1 and d18:0/16:1 + O), and dimethylphosphatidylethanolamine (e.g. dMePE 19:1/16:1) increased notably with increasing acidity. Collectively, these findings refresh our current understanding of the AAR mechanisms in A. pasteurianus Ab3, and should direct future strain breeding and vinegar fermentation.


Subject(s)
Acetic Acid , Acetobacter/chemistry , Food Microbiology , Lipids/chemistry , Fermentation
14.
J Food Biochem ; 44(6): e13203, 2020 06.
Article in English | MEDLINE | ID: mdl-32232868

ABSTRACT

Issatchenkia orientalis known as a multi-tolerant non-Saccharomyces yeast, which tolerant environmental stresses, exhibits potential in wine making and bioethanol production. It is essential for the growth of I. orientalis to tolerant acetic acid in the mixed cultures with Saccharomyces cerevisiae. In this work, RNA-sequence and TMT (Tandem Mass Tag) were used to examine the comprehensive transcriptomic and proteomic profiles of I. orientalis in response to acetic acid. The results showed that 876 genes were identified differentially transcribed in I. orientalis genome and 399 proteins expressed in proteome after 4 hr acetic acid (90 mM, pH 4.5). The comprehensive analysis showed a series of determinants of acetic acid tolerance: Glycolysis and TCA cycle provide enough nicotinamide adenine dinucleotide to effectively convert acetic acid. Genes associated with potassium, iron, zinc, and glutathione synthesis were upregulated. The same changes of differentially expressed genes and proteins were mainly concentrated in chaperones, coenzyme, energy production, and transformation. PRACTICAL APPLICATIONS: In addition to the main fermentation products, wine yeast also produces metabolite acetic acid in the fermentation process, and yeast cells are exposed to acetic acid stress, which restrains cell proliferation. Issatchenkia orientalis exhibits great potential in winemaking and bioethanol production. The yeast is known as a multi-tolerant non-Saccharomyces yeast that can tolerate a variety of environmental stresses. In this study, RNA-Seq and TMT were conducted to investigate the changes in transcriptional and proteomic profile of I. orientalis under acetic acid stress. The knowledge of the transcription and expression changes of the I. orientalis is expected to understand the tolerance mechanisms in I. orientalis and to guide traditional fermentation processes by Saccharomyces cerevisiae improving its high resistance to acetic acid stress.


Subject(s)
Saccharomyces cerevisiae , Wine , Acetic Acid , Pichia , Proteomics , Saccharomyces cerevisiae/genetics , Transcriptome
15.
Sheng Wu Gong Cheng Xue Bao ; 34(6): 906-915, 2018 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-29943536

ABSTRACT

By-products released from pretreatment process of lignocellulose seriously hinder the development of cellulosic fuel ethanol. Therefore, the great way to increase the efficiency of cellulosic ethanol production is improvement of Saccharomyces cerevisiae tolerance to these inhibitors. In this work, the effects of LCB4 gene overexpression on cell growth and ethanol fermentation in S. cerevisiae S288C under acetic acid, furfural and vanillin stresses were studied. Compared to the control strain S288C-HO, the recombinant strain S288C-LCB4 grew better on YPD solid medium containing 10 g/L acetic acid, 1.5 g/L furfural and 1 g/L vanillin. Ethanol yields of recombinant strain S288C-LCB4 were 0.85 g/(L·h), 0.76 g/(L·h) and 1.12 g/(L·h) when 10 g/L acetic acid, 3 g/L furfural and 2 g/L vanillin were supplemented into the fermentation medium respectively, which increased by 34.9%, 85.4% and 330.8% than the control strain S288C-HO. Meanwhile, ethanol fermentation time was reduced by 30 h and 44 h under furfural and vanillin stresses respectively. Further metabolites analysis in fermentation broth showed that the recombinant strain produced more protective compounds, such as glycerol, trehalose and succinic acid, than the control strain, which could be the reason for enhancing strain tolerance to these inhibitors from pretreatment process of lignocellulose. The results indicated that overexpression of LCB4 gene could significantly improve ethanol fermentation in S. cerevisiae S288C under acetic acid, furfural and vanillin stresses.


Subject(s)
Ethanol/metabolism , Fermentation , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Acetic Acid , Benzaldehydes , Culture Media , Furaldehyde , Phosphotransferases (Alcohol Group Acceptor)/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
16.
Chinese Journal of Biotechnology ; (12): 906-915, 2018.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-687726

ABSTRACT

By-products released from pretreatment process of lignocellulose seriously hinder the development of cellulosic fuel ethanol. Therefore, the great way to increase the efficiency of cellulosic ethanol production is improvement of Saccharomyces cerevisiae tolerance to these inhibitors. In this work, the effects of LCB4 gene overexpression on cell growth and ethanol fermentation in S. cerevisiae S288C under acetic acid, furfural and vanillin stresses were studied. Compared to the control strain S288C-HO, the recombinant strain S288C-LCB4 grew better on YPD solid medium containing 10 g/L acetic acid, 1.5 g/L furfural and 1 g/L vanillin. Ethanol yields of recombinant strain S288C-LCB4 were 0.85 g/(L·h), 0.76 g/(L·h) and 1.12 g/(L·h) when 10 g/L acetic acid, 3 g/L furfural and 2 g/L vanillin were supplemented into the fermentation medium respectively, which increased by 34.9%, 85.4% and 330.8% than the control strain S288C-HO. Meanwhile, ethanol fermentation time was reduced by 30 h and 44 h under furfural and vanillin stresses respectively. Further metabolites analysis in fermentation broth showed that the recombinant strain produced more protective compounds, such as glycerol, trehalose and succinic acid, than the control strain, which could be the reason for enhancing strain tolerance to these inhibitors from pretreatment process of lignocellulose. The results indicated that overexpression of LCB4 gene could significantly improve ethanol fermentation in S. cerevisiae S288C under acetic acid, furfural and vanillin stresses.

17.
Front Microbiol ; 8: 1302, 2017.
Article in English | MEDLINE | ID: mdl-28747907

ABSTRACT

Saccharomyces cerevisiae response and tolerance to acetic acid is critical in industrial biotechnology and in acidic food and beverages preservation. The HRK1 gene, encoding a protein kinase of unknown function belonging to the "Npr1-family" of kinases known to be involved in the regulation of plasma membrane transporters, is an important determinant of acetic acid tolerance. This study was performed to identify the alterations occurring in yeast membrane phosphoproteome profile during the adaptive early response to acetic acid stress (following 1 h of exposure to a sub-lethal inhibitory concentration; 50 mM at pH 4.0) and the effect of HRK1 expression on the phosphoproteome. Results from mass spectrometry analysis following the prefractionation and specific enrichment of phosphorylated peptides using TiO2 beads highlight the contribution of processes related with translation, protein folding and processing, transport, and cellular homeostasis in yeast response to acetic acid stress, with particular relevance for changes in phosphorylation of transport-related proteins, found to be highly dependent on the Hrk1 kinase. Twenty different phosphoproteins known to be involved in lipid and sterol metabolism were found to be differently phosphorylated in response to acetic acid stress, including several phosphopeptides that had not previously been described as being phosphorylated. The suggested occurrence of cellular lipid composition remodeling during the short term yeast response to acetic acid was confirmed: Hrk1 kinase-independent reduction in phytoceramide levels and a reduction in phosphatidylcholine and phosphatidylinositol levels under acetic acid stress in the more susceptible hrk1Δ strain were revealed by a lipidomic analysis.

18.
Bioresour Technol ; 245(Pt B): 1461-1468, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28606754

ABSTRACT

The aim of this work was to study the effects of deleting acetate transporter gene ADY2 on growth and fermentation of Saccharomyces cerevisiae in the presence of inhibitors. Comparative transcriptome analysis revealed that three genes encoding plasma membrane carboxylic acid transporters, especially ADY2, were significantly downregulated under the zinc sulfate addition condition in the presence of acetic acid stress, and the deletion of ADY2 improved growth of S. cerevisiae under acetic acid, ethanol and hydrogen peroxide stresses. Consistently, a concomitant increase in ethanol production by 14.7% in the presence of 3.6g/L acetic acid was observed in the ADY2 deletion mutant of S. cerevisiae BY4741. Decreased intracellular acetic acid, ROS accumulation, and plasma membrane permeability were observed in the ADY2 deletion mutant. These findings would be useful for developing robust yeast strains for efficient ethanol production.


Subject(s)
Acetic Acid , Ethanol , Saccharomyces cerevisiae , Fermentation , Saccharomyces cerevisiae Proteins
19.
Appl Environ Microbiol ; 83(13)2017 07 01.
Article in English | MEDLINE | ID: mdl-28432100

ABSTRACT

Haa1 is a transcription factor that adapts Saccharomyces cerevisiae cells to weak organic acid stresses by activating the expression of various genes. Many of these genes encode membrane proteins, such as TPO2 and YRO2 How Haa1 is activated by weak acids is not clear. Here, we show that casein kinase I isoform Hrr25 is an important negative regulator of Haa1. Haa1 is known to be multiply phosphorylated. We found that mutations in HRR25 lead to reduced Haa1 phosphorylation and increased expression of Haa1 target genes and that Hrr25 interacts with Haa1. The other three casein kinase I isoforms, Yck1, Yck2, and Yck3, do not seem to play critical roles in Haa1 regulation. Hrr25 has a 200-residue C-terminal region, including a proline- and glutamine-rich domain. Our data suggest that the C-terminal region of Hrr25 is required for normal inhibition of expression of Haa1 target genes TPO2 and YRO2 and is important for cell growth but is not required for cell morphogenesis. We propose that Hrr25 is an important regulator of cellular adaptation to weak acid stress by inhibiting Haa1 through phosphorylation.IMPORTANCE Our study has revealed the casein kinase I protein Hrr25 to be a negative regulator of Haa1, a transcription factor mediating the cellular response to stresses caused by weak acids. Many studies have focused on the target genes of Haa1 and their roles in weak acid stress responses, but little has been reported on the regulatory mechanism of Haa1. Weak acids, such as acetic acid, have long been used for food preservation by slowing down the growth of fungal species, including S. cerevisiae In the biofuel industry, acetic acid in the lignocellulosic hydrolysates limits the production of ethanol, which is undesirable. By understanding how Haa1 is regulated, we can make advances in the field of food sciences to better preserve food and engineer acetic acid-resistant strains that will increase productivity in the biofuel industry.


Subject(s)
Acids/metabolism , Casein Kinase I/genetics , Casein Kinase I/metabolism , Gene Expression Regulation, Enzymologic , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Transcription Factors/metabolism , Ethanol/metabolism , Gene Expression Regulation, Fungal , Isoenzymes/genetics , Isoenzymes/metabolism , Phosphorylation , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL