Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-39031318

ABSTRACT

The bicarbonate-activated hydrogen peroxide (BAP) system is widely studied for organic pollutant degradation in wastewater treatment. Ca2Co2O5, a heterogeneous catalyst containing multivalent cobalt including Co(II) and Co(III), was herein investigated as a BAP activator, and Acid Orange 7 (AO7) was used as a model pollutant. Ca2Co2O5 exhibited good activation performance. The degradation rate and the initial rate constant of the Ca2Co2O5-activated BAP system were 5.4 and 11.2 times as high as the BAP system, respectively. The removal rate of AO7 reached 90.9% in 30 min under optimal conditions (AO7 20 mg/L, Ca2Co2O5 0.2 g/L, H2O2 1 mM, NaHCO3 5 mM, pH 8.5, 25℃). The Ca2Co2O5 catalyst exhibited good stability and recyclability, retaining 85% of AO7 removal rate in the fifth run. Compared to the BAP system, a lower dosage of H2O2 was required and a higher initial concentration of pollutants allowed for effective degradation in the Ca2Co2O5-BAP system. X-ray photoelectron spectroscopy was used to analyze the catalytic mechanism. The analysis showed that the good catalytic performance of Ca2Co2O5 attributes to its high proportion of oxygen vacancies and Co(III) species, and the presence of Ca. The active species O2•-, •OH, and 1O2 are responsible for the degradation, as indicated by the quenching experiments. The degradation mechanism of AO7 was speculated based on UV-Vis spectral analysis and the identification of degradation intermediates. The azo form, naphthalene and benzoic rings in the AO7 structure are destroyed in the decomposition. This research provides a feasible approach to designing effective and reusable BAP activators for pollutant degradation in wastewater treatment.

2.
Membranes (Basel) ; 14(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38921495

ABSTRACT

This study investigated the use of chicken egg white (CEW) waste immobilized on weak acidic nanofiber membranes for removing the anionic acid orange 7 (AO7) dye in batch and continuous flow modes. Different experiments were conducted to evaluate the effectiveness of CEW-modified nanofiber membranes for AO7 removal, focusing on CEW immobilization conditions, adsorption kinetics, and thermodynamics. The CEW-modified nanofiber membrane (namely NM-COOH-CEW) exhibited a maximum AO7 adsorption capacity of 589.11 mg/g within approximately 30 min. The Freundlich isotherm model best represented the equilibrium adsorption data, while the adsorption kinetics followed a pseudo-second-order rate model. Breakthrough curve analysis using the Thomas model and the bed depth service time (BDST) model showed that the BDST model accurately described the curve, with an error percentage under 5%. To investigate AO7 elution efficiency, different concentrations of organic solvents or salts were tested as eluents. The NM-COOH-CEW nanofiber membrane exhibited promising performance as an effective adsorbent for removing AO7 dye from contaminated water.

3.
Sci Rep ; 14(1): 11512, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769357

ABSTRACT

The main goal of this research is to investigate the effectiveness of graphitic carbon nitride (g-C3N4, g-CN) in both bulk and nanosheet forms, which have been surface-modified with silver nanoparticles (Ag NPs), as photocatalysts for the degradation of acid orange 7 (AO7), a model dye. The photodegradation of AO7 dye molecules in water was used to test the potential photocatalytic properties of these powder materials under two different lamps with wavelengths of 368 nm (UV light) and 420 nm (VIS light). To produce Ag NPs (Ag content 0.5, 1.5, and 3 wt%) on the g-CN materials, a new synthesis route based on a wet and low-temperature method was proposed, eliminating the need for reducing agents. The photodegradation activity of the samples increased with increasing silver content, with the best photocatalytic performances achieved for bulk g-CN samples and nanosheet silver-modified samples (with the highest content of 3 wt% Ag) under UV light, i.e., more than 75% and 78%, respectively. The VIS-induced photocatalytic activity of both examined series was higher than that of UV. The highest activities of 92% and 98% were achieved for the 1.5% Ag-modified g-CN bulk and nanosheet materials. This research presents an innovative, affordable, and environmentally friendly chemical approach to synthesizing photocatalysts that can be used for degrading organic pollutants in wastewater treatment.

4.
Chemosphere ; 359: 142261, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714246

ABSTRACT

In this study, we investigated the freezing-induced acceleration of dye bleaching by chloride-activated peroxymonosulfate (PMS). It has been observed that the oxidation of chloride by PMS generates a free chlorine species, such as hypochlorous acid (HOCl), under mild acidic and circumneutral pH condition. This process is the major reason for the enhanced oxidation capacity for electron-rich organic compounds (e.g., phenol) in the chloride-PMS system. However, we demonstrated that the chloride-PMS system clearly reduced the total organic carbon concentration (TOC), whereas the HOCl system did not lead to decrease in TOC. Overall, the chemical reaction is negligible in an aqueous condition if the concentrations of reagents are low, and freezing the solution accelerates the degradation of dye pollutants remarkably. Most notably, the pseudo-first order kinetic rate constant for acid orange 7 (AO7) degradation is approximately 0.252 h-1 with 0.5 mM PMS, 1 mM NaCl, initial pH 3, and a freezing temperature of -20 °C. AO7 degradation is not observed when the solution is not frozen. According to a confocal Raman-microscope analysis and an experiment that used an extremely high dose of reactants, the freeze concentration effect is the main reason for the acceleration phenomenon. Because the freezing phenomenon is spontaneous at high latitudes and at mid-latitudes in winter, and the chloride is ubiquitous elsewhere, the frozen chloride-PMS system has potential as a method for energy-free and eco-friendly technology for the degradation of organic pollutants in cold environments.


Subject(s)
Azo Compounds , Chlorides , Coloring Agents , Freezing , Oxidation-Reduction , Peroxides , Water Pollutants, Chemical , Azo Compounds/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Coloring Agents/chemistry , Peroxides/chemistry , Chlorides/chemistry , Kinetics , Hydrogen-Ion Concentration
5.
Environ Sci Ecotechnol ; 20: 100410, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38572083

ABSTRACT

Energy recovery from low-strength wastewater through anaerobic methanogenesis is constrained by limited substrate availability. The development of efficient methanogenic communities is critical but challenging. Here we develop a strategy to acclimate methanogenic communities using conductive carrier (CC), electrical stress (ES), and Acid Orange 7 (AO7) in a modified biofilter. The synergistic integration of CC, ES, and AO7 precipitated a remarkable 72-fold surge in methane production rate compared to the baseline. This increase was attributed to an altered methanogenic community function, independent of the continuous presence of AO7 and ES. AO7 acted as an external electron acceptor, accelerating acetogenesis from fermentation intermediates, restructuring the bacterial community, and enriching electroactive bacteria (EAB). Meanwhile, CC and ES orchestrated the assembly of the archaeal community and promoted electrotrophic methanogens, enhancing acetotrophic methanogenesis electron flow via a mechanism distinct from direct electrochemical interactions. The collective application of CC, ES, and AO7 effectively mitigated electron flow impediments in low-strength wastewater methanogenesis, achieving an additional 34% electron recovery from the substrate. This study proposes a new method of amending anaerobic digestion systems with conductive materials to advance wastewater treatment, sustainability, and energy self-sufficiency.

6.
Water Res ; 253: 121343, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38422888

ABSTRACT

A dye-sensitized photocatalysis system was developed for degrading persistent organic contaminants using solid waste (i.e., red mud, RM) and peroxymonosulfate (PMS) under visible light. Complete degradation of acid orange 7 (AO7) was achieved in RM suspension with PMS, where the co-existence of amorphous FeO(OH)/α-Fe2O3 was the key factor for PMS activation. The experimental results obtained from photochemical and electrochemical observations confirmed the enhanced PMS activation due to the Fe-OH phase in RM. DFT calculations verified the acceleration of PMS activation due to the high adsorption energy of PMS on FeO(OH) and low energy barrier for generating reactive radicals. Compared to the control experiment without AO7 showing almost no degradation of other organic contaminants (phenol, bisphenol A, 4-chlorophenol, 4-nitrophenol, and benzoic acid), photo-sensitized AO7* enhanced electron transfer in the FeIII/FeII cycle, dramatically enhancing the degradation of organic contaminants via radical (•OH, SO4•-, and O2•-) and non-radical (dye*+ and 1O2) pathways. Therefore, the novel finding of this study can provide new insights for unique PMS activation by heterogeneous Fe(III) containing solid wastes and highlight the importance of sensitized dye on the interaction of PMS with Fe charge carrier for the photo-oxidation of organic contaminants under visible light.


Subject(s)
Azo Compounds , Benzenesulfonates , Ferric Compounds , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Peroxides , Light
7.
J Environ Manage ; 353: 120181, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38271882

ABSTRACT

The substantial development of the dyeing and printing industry has resulted in an increased discharge of dye wastewater containing a large amount of recalcitrant organic pollutants. Furthermore, the landfill disposal of red mud has led to significant environmental pollution such as soil erosion and groundwater contamination. Therefore, this study aimed to promote the resource utilization of red mud by preparing advanced oxidation catalyst, resulting in effective treatment of dye wastewater, and the primary reaction mechanism was revealed. In this study, biochar-loading red mud (RBC) was applied to activate persulfate (PDS) for the degradation of acid orange 7 (AO7) with the initial concentration of 50 mg L-1. The maximum removal rate of 2.45 mg L·min-1 was achieved in 20 min and corresponding with the removal ratio of 98.0% under the PDS concentration of 20 mM (4.76 g L-1). Eventually, the removal ratio of 99.2% was attained within 60 min. The high catalytic efficiency was probably ascribed to the singlet oxygen (1O2) dominant non-radical pathway and RBC-mediated electron transfer mechanism. It was found that Fe(II), specific surface areas and functional groups on the catalyst were highly related to its catalytic efficiency and passivation. RBC had better reusability due to the loading of biochar and the reduction of zero-valent iron. The non-radical pathway mechanism and electron transfer mechanism were proposed for the activation of PDS, and non-radical pathway played a dominant role. Besides, the degradation pathways and toxicity assessment were analyzed. This research proposed a new electron transfer mechanism for activation process of PDS, which can provide a theoretical support for further studies. Overall, this study demonstrated that catalysts synthesized from red mud and biomass exhibit highly efficient activation in degrading the model pollutant AO7 through PDS activation. The catalyst displayed promising reusability and practical applicability, offering potential advancements in both the resource utilization and reduction of red mud.


Subject(s)
Azo Compounds , Benzenesulfonates , Environmental Pollutants , Water Pollutants, Chemical , Wastewater , Charcoal , Iron , Water Pollutants, Chemical/analysis
8.
Chemosphere ; 350: 141083, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160948

ABSTRACT

The present study investigated the potential of a composite prepared from kaolinite clay and moringa seedcake in removing methylene blue (MB) and acid orange-7 (AO-7) dyes from aqueous solutions using batch and column tests. The composite was modified using different chemicals during the synthesis process, and the composites were characterised using different techniques such as FTIR, SEM-EDS and XRD. Characterisation showed the presence of actively charged functional groups and porous structure on the composites prepared. Batch tests were performed to assess the effect of operating conditions such as adsorbent dosage, pH, initial dye concentration and contact time. NaOH-modified and H2SO4/NaOH-modified composites demonstrated the highest adsorption capacities for AO-7 and MB, respectively, and were selected for subsequent studies. The adsorption process of dye was best fitted by the Freundlich isotherm and pseudo-second-order kinetic models suggesting that the sorption of MB and AO-7 onto the composites is a heterogeneous, multilayer chemical adsorption process. Long-term fixed-column tests were conducted with the composites to assess the impact of flow rate, bed depth and initial dye concentration on the dye removal efficiency. Optimum removals of 86 and 94%, respectively at pH 2 and pH 10 were obtained for AO-7 and MB in batch tests, along with adsorption capacities of 205.65 and 230.49 mg/g for AO-7 and MB. Results from the column tests were best explained by the Clark model and the Bed Depth-Service Time model. Competing ions impacted the removal of AO-7, while no significant effect was found for MB. The composites could be reused up to four cycles without significantly affecting the adsorption capacity. The present study thus shows the potential of the composite for removal of both the dyes.


Subject(s)
Azo Compounds , Benzenesulfonates , Coloring Agents , Water Pollutants, Chemical , Clay , Coloring Agents/chemistry , Sodium Hydroxide , Kinetics , Adsorption , Methylene Blue/chemistry , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry
9.
Environ Pollut ; 343: 123226, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38159638

ABSTRACT

Azo dyes, the most common synthetic dyes used in the textile industry, are known xenobiotic compounds and recalcitrant to conventional degradation treatments. As consequence, such contaminants are often discharged into the effluents, treating aquatic ecosystems. Among several processes, the use of zero valent iron (ZVI) represents a suitable alternative to degrade organic molecules containing azo bonds. However, its applications are limited by corrosion and loss of reactivity over the time. To overcome these constraints, ZVI has been coupled to a suitable semiconductor (ZnS) to get a catalytic composite (ZVI-ZnS) active under UV light. The present work deals with the degradation of acid orange (AO7), used as model azo dye, by UV/ZVI-ZnS, as one step treatment and in combination with an adsorption process by biochar. The influence of ZVI-ZnS concentration (0.25, 0.5, 1 and 2 g/L) and reaction time (0-160 min) on degradation of AO7 were investigated. Intermediates formation was monitored by ESI-FT-ICR-MS analysis and the effluent toxicity was assessed by using Artemia franciscana. The experimental results showed that the UV/ZVI-ZnS process at 1 g/L of catalyst allowed to achieve a removal of AO7 up to 97% after 10 min. An increase of the dye relative concentrations as well as the toxicity related to intermediates formations has been observed for treatment time higher than 10 min. The total removal of AO7 together with effluent toxicity reduction was obtained only after the combined treatment (UV/ZVI-ZnS + biochar).


Subject(s)
Charcoal , Iron , Water Pollutants, Chemical , Iron/chemistry , Azo Compounds/chemistry , Ecosystem , Ultraviolet Rays , Water Pollutants, Chemical/analysis , Coloring Agents/toxicity , Coloring Agents/chemistry
10.
Environ Sci Pollut Res Int ; 30(47): 104505-104519, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37702863

ABSTRACT

The development of heterogeneous Co-based catalysts with an effective combination mode of Co/Fe and supporter, a facile synthetic method, and a low treatment cost is an important environment challenge for azo dyes degradation by peroxymonosulfate (PMS) activation. In this study, NaA zeolite supported CoxFey with various molar ratio of Fe/Si and Co/Fe was synthesized by a facile hydrothermal process, and used to activate PMS for Acid Orange 7 (AO7) degradation. NaA zeolite supported Co2Fe1 with the Fe/Si molar ratio of 1:10 showed superior catalytic performance compared with other NaA zeolite supported CoxFey. In a system containing 0.6 g/L catalysts, 4 mM PMS, pH 5 and T = 30℃, 95.8% AO7 and 79.1% COD conversion could be achieved at 20 and 60 min, respectively, and the first order kinetic rate constant reached 0.14795 min-1. Moreover, NaA zeolite supported Co2Fe1/PMS system exhibited excellent catalytic effect in a wide pH range of 3-9. Temperature had an obvious effect on AO7 degradation, and the activation energy was 31.36 kJ/mol. HCO3- demonstrated an obvious depression on AO7 degradation, while Cl-, SO42- and H2PO4- had a relatively poor impact. Quenching experiments showed that both sulfate radicals ([Formula: see text]) and hydroxyl radicals (·OH) were generated in the PMS reaction system, and the [Formula: see text] was the dominant active radical. During 3 cycles experiments, an acceptable AO7 conversion ratio (91.8%) within 30 min arrived, suggesting the good stability of NaA zeolite supported Co2Fe1.


Subject(s)
Zeolites , Oxidation-Reduction , Peroxides , Azo Compounds
11.
Sheng Wu Gong Cheng Xue Bao ; 39(8): 3436-3450, 2023 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-37622371

ABSTRACT

Azo dyes are widely used in textile, paper and packing industries, and have become one of the research hot spots in dye wastewater treatment because of their carcinogenicity, teratogenic mutagenicity, stable structure and degradation difficulty. In this study, the biodecolorization of acid orange 7 (AO7), an azo dye, by different white rot fungi was investigated, and the effect of different conditions on the decolorization rate of the dye was analyzed. At the same time, the degradation liquor was analyzed and the phytotoxicity experiment was performed to deduce the possible degradation pathway of AO7 and assess the toxicity of its degradation products. The results showed that the decolorization rate reached 93.46% in 24 h at pH 4.5, 28 ℃ by Pleurotus eryngii and Trametes versicolor when AO7 concentration was 100 mg/L. The biodegradation pathway of AO7 was initiated by the cleavage of the azo bond of AO7, generating p-aminobenzenesulfonic acid and 1-amino-2-naphthol. Subsequently, the sulfonic acid group of p-aminobenzene sulfonic acid was removed to generate hydroquinone. Moreover, the 1-amino-2-naphthol was de-ringed to generate phthalic acid and p-hydroxybenzaldehyde, and then further degraded into benzoic acid. Finally, hydroquinone and benzoic acid may be further oxidized into other small molecules, carbon dioxide and water. Phytotoxicity experiment showed that the toxicity of AO7 could be reduced by P. eryngii and T. versicolor.


Subject(s)
Hydroquinones , Trametes , Azo Compounds , Benzoic Acid
12.
J Colloid Interface Sci ; 645: 1-11, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37126999

ABSTRACT

Single-atom catalysts can activate peroxymonosulfate (PMS) to enhance its oxidation of organic pollutants in water treatment. We synthesized a series of carbon-supported single-atom transition metal catalysts (MnN@C, FeN@C, CoN@C, NiN@C, and CuN@C) with similar compositions and structures. Their catalytic activity toward PMS activation and oxidation mechanisms were investigated using acid orange 7 (AO7) as a model pollutant. The degradation rate (min-1·mol-1·g·m-2) of AO7 followed order: FeN@C/PMS (7.576 × 103) > MnN@C/PMS (5.104 × 103) > CoN@C/PMS (1.919 × 103) ≫ NiN@C/PMS (0.058 × 103) > CuN@C/PMS (0.035 × 103). Electron transfer mediated by surface-activated PMS was found to be the main regime of AO7 oxidation in the catalytic systems. Density functional theory calculations indicated that the degradation of AO7 was promoted by the intense adsorption of PMS and the electron transfer between AO7 and the surface-activated PMS on the catalyst. The cleavage of the naphthalene ring and the azo group was the primary degradation pathway. The toxicity of the products was significantly reduced. This research provides valuable findings for preparing highly efficient single-atom transition metal catalysts for PMS-based degradation of toxic and refractory organic pollutants from water.

13.
Materials (Basel) ; 16(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37048943

ABSTRACT

A porous CeO2 was synthesized following the addition of guanidine carbonate to a Ce3+ aqueous solution, the subsequent addition of hydrogen peroxide and a final hydrothermal treatment. The optimal experimental parameters for the synthesis of porous CeO2, including the amounts of guanidine carbonate and hydrogen peroxide and the hydrothermal conditions, were determined by taking the adsorption efficiency of acid orange 7 (AO7) dye as the evaluation. A template-free hydrothermal strategy could avoid the use of soft or hard templates and the subsequent tedious procedures of eliminating templates, which aligned with the goals of energy conservation and emission reduction. Moreover, both the guanidine carbonate and hydrogen peroxide used in this work were accessible and eco-friendly raw materials. The porous CeO2 possessed rapid adsorption capacities for AO7 dye. When the initial concentration of AO7 was less than 130 mg/L, removal efficiencies greater than 90.0% were obtained, achieving a maximum value of 97.5% at [AO7] = 100 mg/L and [CeO2] = 2.0 g/L in the first 10 min of contact. Moreover, the adsorption-desorption equilibrium between the porous CeO2 adsorbent and the AO7 molecule was basically established within the first 30 min. The saturated adsorption amount of AO7 dye was 90.3 mg/g based on a Langmuir linear fitting of the experimental data. Moreover, the porous CeO2 could be recycled using a NaOH aqueous solution, and the adsorption efficiency of AO7 dye still remained above 92.5% after five cycles. This study provided an alternative porous adsorbent for the purification of dye wastewater, and a template-free hydrothermal strategy was developed to enable the design of CeO2-based catalysts or catalyst carriers.

14.
Photochem Photobiol Sci ; 22(6): 1445-1462, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36781702

ABSTRACT

The release of industrial dyes into the environment has recently increased, resulting in harmful effects on people and ecosystems. In recent years, the use of adsorbents in photocatalytic nanocomposites has attracted significant interest due to their low cost, efficiency, and eco-friendly physical and chemical characteristics. Herein, Acid Orange 7 (AO7) removal was investigated by photocatalytic degradation using Rice Rusk Biochar (RHB), Tin (IV) Oxide (SnO2), and Iron Oxide (Fe3O4) as heterogeneous nanocomposite. After the preparation of RHB, the nanocomposite was synthesized and characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Powder Diffraction (XRD), Brunauer-Emmett-Teller (BET), and Fourier-Transform Infrared Spectroscopy (FT-IR). To optimize the elimination of AO7 by the One-Factor-At-a-Time (OFAT) method, effective parameters including mixing ratio (RHB:SnO2:Fe3O4), dye concentration, solution pH, and nanocomposite dose were studied. The results showed that the removal efficiency of AO7 after 120 min under the optimal mixing ratio of 1:1.5:0.6, dye concentration of 75 mg/l, solution pH of 4, and nanocomposite dose of 0.7 g/l was 92.37%. Moreover, Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal rates were obtained at 82.22 and 72.22%, respectively. The Average Oxidation State (AOS) and Carbon Oxidation State (COS) of the AO7 solution were increased after the process, indicating biodegradability improvement. Various scavenger effects were studied under optimal conditions, and the results revealed that O2- and H+ reactive species play a crucial role in the photocatalytic degradation of AO7. The reusability and stability of nanocomposite were tested in several consecutive experiments, and the degradation efficiency was reduced from 92 to 79% after five consecutive cycles. It is expected that this research contributes significantly to the utilization of agricultural waste in photocatalytic nanocomposites for the degradation of environmental pollutants.


Subject(s)
Ecosystem , Nanocomposites , Humans , Biomass , Spectroscopy, Fourier Transform Infrared , Charcoal/chemistry , Coloring Agents , Nanocomposites/chemistry , Catalysis
15.
Environ Sci Pollut Res Int ; 30(7): 17449-17458, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36195810

ABSTRACT

A series of FeMn bimetallic ferrocene-based metal-organic frameworks (FeMn-Fc-MOFs) with various molar ratios of Fe and Mn (1:9, 2:8, 4:6, 6:4) were successfully synthesized using a simple hydrothermal synthesis method and employed as an efficient activator on persulfate (PS) activation for water decontamination. Characterizations demonstrated that Fe and Mn were smoothly introduced into ferrocene-based MOFs and various molar ratios of Fe:Mn had some influence on crystallinity and surface structure of FeMn-Fc-MOFs. Within 120 min, Fe4Mn6-Fc-MOFs demonstrated the best catalytic activity among the different molar ratios, and acid orange 7(AO7) degradation rate was up to 92.0%. In addition, electrochemical experiments revealed that Fe4Mn6-Fc-MOFs possessed superior electron transfer capability than other FeMn-Fc-MOFs, leading to better catalytic performance. Moreover, quenching tests and electron paramagnetic resonance (EPR) detection indicated that hydroxyl radicals and sulfate radicals were both responsible for AO7 decomposition. Notably, the redox cycle of Fe(II)/Fe(III) and Mn(II)/Mn(IV) was discovered in the Fe4Mn6-Fc-MOFs/PS system, which was considered as the limiting process for the cleavage of the O-O bond in PS to generate active radicals. Ultimately, the Fe4Mn6-Fc-MOFs exhibits an excellent universality and good cycling stability for 5 continuous runs. This paper broadens the application of ferrocene-based MOFs on heterogeneous PS activation in environmental catalysis.


Subject(s)
Environmental Pollutants , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Ferric Compounds , Metallocenes , Ferrous Compounds , Catalysis
16.
Chinese Journal of Biotechnology ; (12): 3436-3450, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1007968

ABSTRACT

Azo dyes are widely used in textile, paper and packing industries, and have become one of the research hot spots in dye wastewater treatment because of their carcinogenicity, teratogenic mutagenicity, stable structure and degradation difficulty. In this study, the biodecolorization of acid orange 7 (AO7), an azo dye, by different white rot fungi was investigated, and the effect of different conditions on the decolorization rate of the dye was analyzed. At the same time, the degradation liquor was analyzed and the phytotoxicity experiment was performed to deduce the possible degradation pathway of AO7 and assess the toxicity of its degradation products. The results showed that the decolorization rate reached 93.46% in 24 h at pH 4.5, 28 ℃ by Pleurotus eryngii and Trametes versicolor when AO7 concentration was 100 mg/L. The biodegradation pathway of AO7 was initiated by the cleavage of the azo bond of AO7, generating p-aminobenzenesulfonic acid and 1-amino-2-naphthol. Subsequently, the sulfonic acid group of p-aminobenzene sulfonic acid was removed to generate hydroquinone. Moreover, the 1-amino-2-naphthol was de-ringed to generate phthalic acid and p-hydroxybenzaldehyde, and then further degraded into benzoic acid. Finally, hydroquinone and benzoic acid may be further oxidized into other small molecules, carbon dioxide and water. Phytotoxicity experiment showed that the toxicity of AO7 could be reduced by P. eryngii and T. versicolor.


Subject(s)
Hydroquinones , Trametes , Azo Compounds , Benzoic Acid
17.
Water Environ Res ; 94(10): e10796, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36278310

ABSTRACT

Factors affecting the degradation of Acid Orange 7 (AO7) were evaluated and optimized when ferrous was used to catalyze percarbonate in the present study. The optimized conditions included the initial pH values ranging from 3 to 11 for AO7 solution, the initial level of AO7, sodium percarbonate (SPC), and Fe2+ . Some ions and natural organic materials, which commonly exist in natural water, were also tested to evaluate their potential impacts on the degradation of AO7. The degradation efficiency of AO7 was up to 95% under the optimized test conditions, where the ferrous/percarbonate/AO7 molar ratio was 15/10/1 in the 0.285 mmol/l AO7 aqueous solution. The presence of Cl- , SO4 2- , NO3 - , Na+ , and Mg2+ did not affect the removal of AO7. The addition of HCO3 - significantly inhibited its removal, even when the concentration of HCO3 - was low to 0.6 mmol/l. A slight inhibition effect was observed when the added concentration of humic acid ranged from 0.5 to 5 mg/l, whereas the residue of AO7 was significantly enhanced when the level of humic acid was continually increased from 50 to 100 mg/l. Hydroxyl radicals (•OH) were the main reactive intermediates controlling the oxidation of AO7 in the present Fe2+ /SPC system. The produced intermediates through the degradation of AO7 were identified to include 2-coumaranone, 2-naphthol, phthalic acid, phthalimide, N-methylnaphthylamine, and 2-methylphenol. The proposed degradation pathways are consistent with the radical formation and the identified intermediates. PRACTITIONER POINTS: The ferrous/percarbonate system can remove 95% of AO7 under the optimized conditions. AO7 removal was inhibited by adding HCO3 - and humic acid, but not affected by Cl- , SO4 2- , NO3 - , Na+ , and Mg2+ . Hydroxylation, ring opening, and mineralization driven by the generated hydroxyl radicals were derived as the major processes for degrading AO7.


Subject(s)
Humic Substances , Water Pollutants, Chemical , Benzenesulfonates/chemistry , Azo Compounds/chemistry , Carbonates/chemistry , Oxidation-Reduction , Water , Phthalimides , Water Pollutants, Chemical/chemistry
18.
Photochem Photobiol Sci ; 21(12): 2127-2138, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35982381

ABSTRACT

TiO2 particles of high photocatalytic activity immobilised on various substrates usually suffer from low mechanical stability. This can be overcome by the utilisation of an inorganic binder and/or incorporation in a robust hydrophobic matrix based on rare-earth metal oxides (REOs). Furthermore, intrinsic hydrophobicity of REOs may result in an increased affinity of TiO2-REOs composites to non-polar aqueous pollutants. Therefore, in the present work, three methods were used for the fabrication of composite TiO2/CeO2 films for photocatalytic removal of dye Acid Orange 7 and the herbicide monuron, as representing polar and non-polar pollutants, respectively. In the first method, the composition of a paste containing photoactive TiO2 particles and CeCl3 or Ce(NO3)3 as CeO2 precursors was optimised. This paste was deposited on glass by doctor blading. The second method consisted of the deposition of thin layers of CeO2 by spray coating over a particulate TiO2 photocatalyst layer (prepared by drop casting or electrophoresis). Both approaches lead to composite films of similar photoactivity that of the pure TiO2 layer, nevertheless films made by the first approach revealed better mechanical stability. The third method comprised of modifying a particulate TiO2 film by an overlayer based on colloidal SiO2 and tetraethoxysilane serving as binders, TiO2 particles and cerium oxide precursors at varying concentrations. It was found that such an overlayer significantly improved the mechanical properties of the resulting coating. The use of cerium acetylacetonate as a CeO2 precursor showed only a small increase in photocatalytic activity. On the other hand, deposition of SiO2/TiO2 dispersions containing CeO2 nanoparticles resulted in significant improvement in the rate of photocatalytic removal of the herbicide monuron.


Subject(s)
Silicon Dioxide , Water Pollutants
19.
Molecules ; 27(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35956788

ABSTRACT

This work demonstrates the preparation of high-surface-area activated carbon (AC) from Pisum sativum pods using ZnCl2 and KOH as activating agents. The influence of CO2 and N2 gases during the carbonization process on the porosity of AC were studied. The highest specific surface area of AC was estimated at 1300 to 1500 m2/g, which presented characteristics of microporous materials. SEM micrographs revealed that chemical activation using an impregnation reagent ZnCl2 increases the porosity of the AC, which in turn leads to an increase in the surface area, and the SEM image showed that particle size diameter ranged between 48.88 and 69.95 nm. The performance of prepared AC for adsorption of Acid Orange 7 (AO7) dye was tested. The results showed that the adsorption percentage by AC (2.5 g/L) was equal to 94.76% after just 15 min, and the percentage of removal increased to be ~100% after 60 min. The maximum adsorption capacity was 473.93 mg g-1. A Langmuir model (LM) shows the best-fitted equilibrium isotherm, and the kinetic data fitted better to the pseudo-second-order and Film diffusion models. The removal of AO7 dye using AC from Pisum sativum pods was optimized using a response factor model (RSM), and the results were reported.


Subject(s)
Charcoal , Water Pollutants, Chemical , Adsorption , Azo Compounds , Benzenesulfonates , Hydrogen-Ion Concentration , Kinetics , Pisum sativum , Water , Water Pollutants, Chemical/analysis
20.
Environ Sci Pollut Res Int ; 29(52): 78444-78456, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35689772

ABSTRACT

The performance of novel hybrid advanced oxidation, ozone-sono-Fenton process in degradation of acid orange 7 (AO7), as a model of azo dyes was modelled and optimized using response surface methodology (RSM) based on central composite design (CCD). Utilizing a bubbling reactor equipped with an ultrasound probe and in the presence of Fenton reagents, a promising hybrid homogeneous AOP, ozone-sono-Fenton, was investigated. According to the experimental results, the variation trend of degradation efficiency (DE%) with pH, reaction time and Fe2+/H2O2 molar ratio was modelled with the reduced quadratic model. Additionally, the suitability of the model was indicated with close to unity regression coefficient [Formula: see text]. Furthermore, the comparative study of degradation efficiency and COD removal for the individual methods including ozonation, sonication and Fenton reagents as well as their hybrid processes reveals that the novel proposed technique, ozone-sono-Fenton process, is able to rapid and complete degradation of acid orange 7 with initial concentration of 300 mg L-1, 100% in only 12 min. The complete degradation was obtained under optimum conditions such as pH = 6, reaction time = 12 min and Fe2+/H2O2 molar ratio = 0.0040. The kinetics evaluation of the acid orange 7 concentration during the processing implied the first-order reaction. Considering the synergetic effect and cost-effectiveness of the hybrid method, the promising ozone-sono-Fenton method could effectively degrade using a wide range of organic contaminants.


Subject(s)
Ozone , Water Pollutants, Chemical , Azo Compounds , Hydrogen Peroxide , Water Pollutants, Chemical/analysis , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...