Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
2.
J Physiol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847391

ABSTRACT

Fluid and enzyme secretion from exocrine glands is initiated by Ca2+ signalling in acinar cells and is activated by external neural or hormonal signals. A wealth of information has been derived from studies in acutely isolated exocrine cells but Ca2+ signalling has until recently not been studied in undisrupted intact tissue in live mice. Our in vivo observations using animals expressing genetically encoded Ca2+ indicators in specific cell types in exocrine glands revealed both similarities to and differences from the spatiotemporal characteristics previously reported in isolated cells. These in vivo studies facilitate further understanding of how both neuronal and hormonal input shapes Ca2+ signalling events in a physiological setting and how these signals are translated into the stimulation of fluid secretion and exocytosis.

3.
Heliyon ; 10(11): e31296, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828311

ABSTRACT

Acute pancreatitis (AP) is an inflammatory disease characterized by localized pancreatic injury and a systemic inflammatory response. Fatty acids (FAs), produced during the breakdown of triglycerides (TGs) in blood and peripancreatic fat, escalate local pancreatic inflammation to a systemic level by damaging pancreatic acinar cells (PACs) and triggering M1 macrophage polarization. This paper provides a comprehensive analysis of lipases' roles in the onset and progression of AP, as well as the effects of long-chain fatty acids (LCFAs) on the function of pancreatic acinar cells (PACs). Abnormalities in the function of PACs include Ca2+ overload, premature trypsinogen activation, protein kinase C (PKC) expression, endoplasmic reticulum (ER) stress, and mitochondrial and autophagic dysfunction. The study highlights the contribution of long-chain saturated fatty acids (LC-SFAs), especially palmitic acid (PA), to M1 macrophage polarization through the activation of the NLRP3 inflammasome and the NF-κB pathway. Furthermore, we investigated lipid lowering therapy for AP. This review establishes a theoretical foundation for pro-inflammatory mechanisms associated with FAs in AP and facilitating drug development.

4.
Anat Histol Embryol ; 53(3): e13051, 2024 May.
Article in English | MEDLINE | ID: mdl-38741549

ABSTRACT

Our research aimed to provide complete histological, histochemical and ultrastructural features of the lacrimal gland of the one-humped camel (Camelus dromedarius) as well as novel insights into its adaptability to the Egyptian desert. Our study was applied to 20 fresh lacrimal glands collected from 10 camels instantly after their slaughtering. The results revealed that the gland was a compound tubulo-acinar gland, and its acini were enclosed by a thick connective tissue capsule that was very rich in elastic and collagen fibres. The gland acini had irregular lumens and were composed of conical to pyramidal cells. The nuclei of secretory cells were found in the basal part, and the cytoplasm was eosinophilic and granular. The glandular tissue consisted of serous and mucous acini and seromucous secretory cells. Histochemically, there was a significant amount of neutral mucopolysaccharides in the acini in which mucous cells had a significant periodic acid-Schiff (PAS)-positive reaction, whereas seromucous cells had a mild PAS-positive reaction. Ultrastructurally, the lacrimal cells had numerous secretory vesicles with contents of moderately to highly electron-dense cytoplasm. The nuclear envelope consisted of two prominent membranes surrounding the peri-nuclear cisterna. The acinar cells had numerous electron-lucent and moderately electron-dense secretory granules, mainly situated on the apical surface, and secreted their contents into the lumen. The luminal surface of the mucous secretory cells represents the remains of secretory granules discharged by the merocrine mechanism. In conclusion, the mucous secretion is believed to aid in the washing and moistening of the eyeball, particularly in dry, hot and dusty environments.


Subject(s)
Camelus , Lacrimal Apparatus , Animals , Camelus/anatomy & histology , Lacrimal Apparatus/anatomy & histology , Lacrimal Apparatus/ultrastructure , Lacrimal Apparatus/cytology , Male , Secretory Vesicles/ultrastructure , Acinar Cells/ultrastructure , Acinar Cells/cytology , Female , Microscopy, Electron, Transmission/veterinary , Periodic Acid-Schiff Reaction/veterinary
5.
Front Immunol ; 15: 1353695, 2024.
Article in English | MEDLINE | ID: mdl-38765004

ABSTRACT

Objectives: This study aimed to analyze active compounds and signaling pathways of CH applying network pharmacology methods, and to additionally verify the molecular mechanism of CH in treating AP. Materials and methods: Network pharmacology and molecular docking were firstly used to identify the active components of CH and its potential targets in the treatment of AP. The pancreaticobiliary duct was retrogradely injected with sodium taurocholate (3.5%) to create an acute pancreatitis (AP) model in rats. Histological examination, enzyme-linked immunosorbent assay, Western blot and TUNEL staining were used to determine the pathway and mechanism of action of CH in AP. Results: Network pharmacological analysis identified 168 active compounds and 276 target proteins. In addition, there were 2060 targets associated with AP, and CH had 177 targets in common with AP. These shared targets, including STAT3, IL6, MYC, CDKN1A, AKT1, MAPK1, MAPK3, MAPK14, HSP90AA1, HIF1A, ESR1, TP53, FOS, and RELA, were recognized as core targets. Furthermore, we filtered out 5252 entries from the Gene Ontology(GO) and 186 signaling pathways from the Kyoto Encyclopedia of Genes and Genomes(KEGG). Enrichment and network analyses of protein-protein interactions predicted that CH significantly affected the PI3K/AKT signaling pathway, which played a critical role in programmed cell death. The core components and key targets showed strong binding activity based on molecular docking results. Subsequently, experimental validation demonstrated that CH inhibited the phosphorylation of PI3K and AKT in pancreatic tissues, promoted the apoptosis of pancreatic acinar cells, and further alleviated inflammation and histopathological damage to the pancreas in AP rats. Conclusion: Apoptosis of pancreatic acinar cells can be enhanced and the inflammatory response can be reduced through the modulation of the PI3K/AKT signaling pathway, resulting in the amelioration of pancreatic disease.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Pancreatitis , Signal Transduction , Animals , Pancreatitis/drug therapy , Pancreatitis/metabolism , Pancreatitis/pathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Rats , Signal Transduction/drug effects , Male , Disease Models, Animal , Apoptosis/drug effects , Rats, Sprague-Dawley , Protein Interaction Maps
6.
Apoptosis ; 29(5-6): 920-933, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38625481

ABSTRACT

BACKGROUND: Severe acute pancreatitis (SAP) is a serious gastrointestinal disease that is facilitated by pancreatic acinar cell death. The protective role of human placental mesenchymal stem cells (hP-MSCs) in SAP has been demonstrated in our previous studies. However, the underlying mechanisms of this therapy remain unclear. Herein, we investigated the regularity of acinar cell pyroptosis during SAP and investigated whether the protective effect of hP-MSCs was associated with the inhibition of acinar cell pyroptosis. METHODS: A mouse model of SAP was established by the retrograde injection of sodium taurocholate (NaTC) solution in the pancreatic duct. For the hP-MSCs group, hP-MSCs were injected via the tail vein and were monitored in vivo. Transmission electron microscopy (TEM) was used to observe the pyroptosis-associated ultramorphology of acinar cells. Immunofluorescence and Western blotting were subsequently used to assess the localization and expression of pyroptosis-associated proteins in acinar cells. Systemic inflammation and local injury-associated parameters were evaluated. RESULTS: Acinar cell pyroptosis was observed during SAP, and the expression of pyroptosis-associated proteins initially increased, peaked at 24 h, and subsequently showed a decreasing trend. hP-MSCs effectively attenuated systemic inflammation and local injury in the SAP model mice. Importantly, hP-MSCs decreased the expression of pyroptosis-associated proteins and the activity of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in acinar cells. CONCLUSIONS: Our study demonstrates the regularity and important role of acinar cell pyroptosis during SAP. hP-MSCs attenuate inflammation and inhibit acinar cell pyroptosis via suppressing NLRP3 inflammasome activation, thereby exerting a protective effect against SAP.


Subject(s)
Acinar Cells , Disease Models, Animal , Inflammasomes , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , NLR Family, Pyrin Domain-Containing 3 Protein , Pancreatitis , Pyroptosis , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mice , Acinar Cells/metabolism , Acinar Cells/pathology , Inflammasomes/metabolism , Mesenchymal Stem Cells/metabolism , Pancreatitis/metabolism , Pancreatitis/therapy , Pancreatitis/pathology , Humans , Female , Mesenchymal Stem Cell Transplantation/methods , Placenta/metabolism , Pregnancy , Male , Mice, Inbred C57BL
7.
Cureus ; 16(3): e55426, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38571842

ABSTRACT

Acute pancreatitis, marked by sudden inflammation of the pancreas, presents a complex spectrum of causative factors including gallstone obstruction, alcohol abuse, and viral infections. Recent studies have illuminated the emergence of vaccine-induced acute pancreatitis, notably associated with COVID-19 vaccinations, presenting diverse mechanisms ranging from direct viral-mediated injury to autoimmune reactions. Understanding this link is pivotal for public health, yet challenges persist in identifying and managing cases post-vaccination. Comprehensive literature reviews employing the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement outline the potential pathways and mechanisms leading to vaccine-induced pancreatitis, emphasizing the need for deeper investigations into underlying health conditions and modifications to vaccine components. Notably, the rare occurrences of vaccine-induced pancreatitis extend beyond COVID-19 vaccines, with reports also documenting associations with measles, mumps, and rubella (MMR), human papillomavirus (HPV), and other viral vaccinations. Mechanistically, hypotheses such as molecular mimicry and immunologic injury have been proposed, necessitating ongoing vigilance and exploration. Regulatory agencies play a crucial role in monitoring and communicating vaccine safety concerns, emphasizing transparency to address potential risks and maintain public trust. Understanding and communicating these rare adverse events with transparency remain integral for informed vaccination policies and to allay concerns surrounding vaccine safety.

8.
Oral Dis ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38569076

ABSTRACT

OBJECTIVES: Salivary gland injury is one of the most common complications of radiotherapy in head-and-neck cancers. This study investigated the mechanism by which rapamycin prevents irradiation (IR)-induced injury in the parotid glands. MATERIALS AND METHODS: Miniature pigs either received (a) no treatment (NT), (b) IR in the right parotid gland for 5 consecutive days (IR), or intraperitoneal administration of rapamycin (Rap) 1 h prior to IR (IR + Rap). Tissues were collected at three distinct time points (24 h, 4 weeks, and 16 weeks) after IR. Histological analyses, western blot, and real-time reverse transcriptase-polymerase chain reaction were performed to explore the mechanisms of IR-induced injury in the parotid gland. RESULTS: Rapamycin treatment maintained parotid salivary flow 16 weeks post-IR, preserved the number of acinar cells, and reduced parotid tissue fibrosis, as well as reduced apoptosis levels, decreased cleaved caspase-3 expression, and increased the Bcl-2/Bax ratio in the parotid glands. Autophagy marker LC3B was upregulated by rapamycin after IR, while P62 expression was downregulated. Rapamycin reduced the expression of pro-inflammatory factors and the mesenchymal tissue fibrosis following IR. CONCLUSIONS: Rapamycin maintains gland homeostasis after IR by decreasing apoptosis, reducing the expression of pro-inflammatory factors, and enhancing autophagy.

9.
Integr Zool ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644525

ABSTRACT

Musk secreted by male forest musk deer (Moschus berezovskii) musk glands is an invaluable component of medicine and perfume. Musk secretion depends on musk gland maturation; however, the mechanism of its development remains elusive. Herein, using single cell multiome ATAC + gene expression coupled with several bioinformatic analyses, a dynamic transcriptional cell atlas of musk gland development was revealed, and key genes and transcription factors affecting its development were determined. Twelve cell types, including two different types of acinar cells (Clusters 0 and 10) were identified. Single-nucleus RNA and single-nucleus ATAC sequencing analyses revealed that seven core target genes associated with musk secretion (Hsd17b2, Acacb, Lss, Vapa, Aldh16a1, Aldh7a1, and Sqle) were regulated by 12 core transcription factors (FOXO1, CUX2, RORA, RUNX1, KLF6, MGA, NFIC, FOXO3, ETV5, NR3C1, HSF4, and MITF) during the development of Cluster 0 acinar cells. Kyoto Encyclopedia of Genes and Genomes enrichment showed significant changes in the pathways associated with musk secretion during acinar cell development. Gene set variation analysis also revealed that certain pathways associated with musk secretion were enriched in 6-year-old acinar cells. A gene co-expression network was constructed during acinar cell development to provide a precise understanding of the connections between transcription factors, genes, and pathways. Finally, intercellular communication analysis showed that intercellular communication is involved in musk gland development. This study provides crucial insights into the changes and key factors underlying musk gland development, which serve as valuable resources for studying musk secretion mechanisms and promoting the protection of this endangered species.

10.
Front Cell Dev Biol ; 12: 1380564, 2024.
Article in English | MEDLINE | ID: mdl-38550379

ABSTRACT

Mouse models of diet-induced type 2 diabetes mellitus provide powerful tools for studying the structural and physiological changes that are related to the disease progression. In this study, diabetic-like glucose dysregulation was induced in mice by feeding them a western diet, and light and transmission electron microscopy were used to study the ultrastructural changes in the pancreatic acinar cells. Acinar necrosis and vacuolization of the cytoplasm were the most prominent features. Furthermore, we observed intracellular and extracellular accumulation of lipid compounds in the form of lipid droplets, structural enlargement of the cisternae of the rough endoplasmic reticulum (RER), and altered mitochondrial morphology, with mitochondria lacking the typical organization of the inner membrane. Last, autophagic structures, i.e., autophagosomes, autolysosomes, and residual bodies, were abundant within the acinar cells of western diet-fed mice, and the autolysosomes contained lipids and material of varying electron density. While diets inducing obesity and type 2 diabetes are clearly associated with structural changes and dysfunction of the endocrine pancreas, we here demonstrate the strong effect of dietary intervention on the structure of acinar cells in the exocrine part of the organ before detectable changes in plasma amylase activity, which may help us better understand the development of non-alcoholic fatty pancreas disease and its association with endo- and exocrine dysfunction.

11.
Technol Health Care ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38393937

ABSTRACT

BACKGROUND: Danshen Chuanxiong Injection (DCI) has demonstrated significant clinical efficacy in the treatment of acute pancreatitis (AP); however, the precise molecular mechanisms underlying its therapeutic effects remain incompletely understood. OBJECTIVE: In this study, we employed network pharmacology analysis to comprehensively investigate the active components, potential targets, and signaling pathways involved in DCI-mediated treatment of AP. METHODS: We utilized the mouse pancreatic acinar cell line 266-6 to establish an cholecystokinin (CCK)-induced AP cell injury model and evaluated cell viability using the Cell counting kit-8 assay. Western blotting and quantitative PCR were employed to determine the expression levels of key target proteins and genes. RESULTS: Network pharmacology analysis identified a total of 144 active components and 430 potential targets within DCI. By integrating data from public databases, we identified 762 AP-related genes. Among these, we identified 93 potential targets that may be involved in the therapeutic effects of DCI for AP. These targets were significantly enriched in biological processes such as oxidative stress, regulation of cytokine production, leukocyte migration, and the TNF signaling pathway. Molecular docking studies revealed a high binding affinity between the active components and the key targets AKT1 and NFKBA, indicative of potential interaction. Additionally, CCK-induced acinar cell injury led to upregulation of AKT1, NFKBA, and P53 proteins, as well as TNF, IL6, and MMP9 genes. Conversely, treatment with DCI dose-dependently attenuated CCK-induced acinar cell injury and restored the expression levels of the aforementioned proteins and genes. CONCLUSION: Overall, this study provides a comprehensive understanding of the molecular mechanisms underlying the therapeutic effects of DCI in the treatment of AP. Our findings confirm the protective effect of DCI against CCK-induced acinar cell injury and its regulation of key targets.

12.
Dev Biol ; 509: 1-10, 2024 May.
Article in English | MEDLINE | ID: mdl-38311164

ABSTRACT

Saliva is vital to oral health, fulfilling multiple functions in the oral cavity. Three pairs of major salivary glands and hundreds of minor salivary glands contribute to saliva production. The secretory acinar cells within these glands include two distinct populations. Serous acinar cells secrete a watery saliva containing enzymes, while mucous acinar cells secrete a more viscous fluid containing highly glycosylated mucins. Despite their shared developmental origins, the parotid gland (PG) is comprised of only serous acinar cells, while the sublingual gland (SLG) contains predominantly mucous acinar cells. The instructive signals that govern the identity of serous versus mucous acinar cell phenotypes are not yet known. The homeobox transcription factor Nkx2.3 is uniquely expressed in the SLG. Disruption of the Nkx2.3 gene was reported to delay the maturation of SLG mucous acinar cells. To examine whether Nkx2.3 plays a role in directing the mucous cell phenotype, we analyzed SLG from Nkx2.3-/- mice using RNAseq, immunostaining and proteomic analysis of saliva. Our results indicate that Nkx2.3, most likely in concert with other transcription factors uniquely expressed in the SLG, is a key regulator of the molecular program that specifies the identity of mucous acinar cells.


Subject(s)
Proteomics , Transcription Factors , Mice , Animals , Transcription Factors/genetics , Salivary Glands , Sublingual Gland , Parotid Gland , Homeodomain Proteins/genetics
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167088, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401696

ABSTRACT

Acute pancreatitis (AP) can lead to death; however, there is no specific treatment for AP. Screening of drugs for AP treatment is rarely performed. Compounds were screened in a primary pancreatic acinar cell and peritoneal macrophage coculture system. Compounds were used in vitro and in vivo. Compound targets were predicted and validated. Among the 18 nitrogen-containing heterocycles, Z10 was shown to decrease the cerulein plus lipopolysaccharide (CL)-induced secretion of both acinar digestive enzymes and macrophage cytokines. Z10 was also shown to ameliorate CL-induced or sodium taurocholate-induced AP in mice. Proteomics analysis and enzyme linked immunosorbent assay (ELISA) revealed that Z10 decreased the levels of D-dopachrome tautomerase (Ddt) within macrophages and those in the extracellular milieu under CL treatment. Z10 also decreased Ddt expression in AP mice. Moreover, exogenous Ddt induced cytokine and digestive enzyme secretion, which could be inhibited by Z10. Ddt knockdown inhibited CL-induced cytokine secretion. Medium from CL-treated macrophages induced the release of amylase by acinar cells, and Ddt knockdown medium decreased amylase secretion. The target of Z10 was predicted to be ERK2. Z10 increased the thermostability of ERK1/2 but not ERK1 K72A/ERK2 K52A. The docking poses of ERK1 and ERK2 with Z10 were similar. Z10 inhibited ERK1/2 phosphorylation, and Ddt levels and cytokines were regulated by ERK1/2 during AP. Additionally, Z10 could not further inhibit cytokines under ERK1/2 knockdown with CL. Thus, this study revealed that Z10-mediated ERK1/2 inhibition decreased Ddt expression and secretion by macrophages. Ddt inhibition decreased cytokine release and digestive enzyme secretion.


Subject(s)
Pancreatitis , Mice , Animals , Pancreatitis/chemically induced , Pancreatitis/drug therapy , Pancreatitis/metabolism , Acute Disease , Cytokines , Amylases/adverse effects , Pyrazoles
14.
Dev Cell ; 59(3): 326-338.e5, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38237591

ABSTRACT

During organ formation, progenitor cells need to acquire different cell identities and organize themselves into distinct structural units. How these processes are coordinated and how tissue architecture(s) is preserved despite the dramatic cell rearrangements occurring in developing organs remain unclear. Here, we identified cellular rearrangements between acinar and ductal progenitors as a mechanism to drive branching morphogenesis in the pancreas while preserving the integrity of the acinar-ductal functional unit. Using ex vivo and in vivo mouse models, we found that pancreatic ductal cells form clefts by protruding and pulling on the acinar basement membrane, which leads to acini splitting. Newly formed acini remain connected to the bifurcated branches generated by ductal cell rearrangement. Insulin growth factor (IGF)/phosphatidylinositol 3-kinase (PI3K) pathway finely regulates this process by controlling pancreatic ductal tissue fluidity, with a simultaneous impact on branching and cell fate acquisition. Together, our results explain how acinar structure multiplication and branch bifurcation are synchronized during pancreas organogenesis.


Subject(s)
Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases , Mice , Animals , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Pancreas , Acinar Cells/metabolism , Morphogenesis/physiology , Intercellular Signaling Peptides and Proteins/metabolism
15.
J Physiol ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38197224

ABSTRACT

An increase in intracellular [Ca2+ ] in exocrine acinar cells resident in the salivary glands or pancreas is a fundamental event that drives fluid secretion and exocytosis of proteins. Stimulation with secretagogues initiates Ca2+ signals with precise spatiotemporal properties thought to be important for driving physiological output. Both in vitro, in acutely isolated acini, and in vivo, in animals expressing genetically encoded indicators, individual cells appear specialized to initiate Ca2+ signals upon stimulation. Furthermore, these signals appear to spread to neighbouring cells. These properties are present in the absence of a conventional pacemaker mechanism dependent on the cyclical activation of Ca2+ -dependent or Ca2+ -conducting plasma membrane ion channels. In this article, we propose a model for 'pacing' intracellular Ca2+ signals in acinar cells based on the enhanced sensitivity of a subpopulation of individual cells and the intercellular diffusion through gap junctions of inositol 1,4,5-trisphosphate and Ca2+ to neighbouring cells.

16.
J Anat ; 244(2): 343-357, 2024 02.
Article in English | MEDLINE | ID: mdl-37837237

ABSTRACT

Tlx1 encodes a transcription factor expressed in several craniofacial structures of developing mice. The role of Tlx1 in salivary gland development was examined using morphological and immunohistochemical analyses of Tlx1 null mice. Tlx1 is expressed in submandibular and sublingual glands but not parotid glands of neonatal and adult male and female C57Bl/6J (Tlx1+/+ ) mice. TLX1 protein was localized to the nuclei of terminal tubule cells, developing duct cells and mesenchymal cells in neonatal submandibular and sublingual glands, and to nuclei of duct cells and connective tissue cells in adult glands. Occasionally, TLX1 was observed in nuclei of epithelial cells in or adjacent to the acini. Submandibular glands were smaller and sublingual glands were larger in size in mutant mice (Tlx1-/- ) compared to wild-type mice. Differentiation of terminal tubule and proacinar cells of neonatal Tlx1-/- submandibular glands was abnormal; expression of their characteristic products, submandibular gland protein C and parotid secretory protein, respectively, was reduced. At 3 weeks postnatally, terminal tubule cells at the acinar-intercalated duct junction were poorly developed or absent in Tlx1-/- mice. Granular convoluted ducts in adult mutant mice were decreased, and epidermal growth factor and nerve growth factor expression were reduced. Along with normal acinar cell proteins, adult acinar cells of Tlx1-/- mice continued to express neonatal proteins and expressed parotid proteins not normally present in submandibular glands. Sublingual gland mucous acinar and serous demilune cell differentiation were altered. Tlx1 is necessary for proper differentiation of submandibular and sublingual gland acinar cells, and granular convoluted ducts. The mechanism(s) underlying Tlx1 regulation of salivary gland development and differentiation remains unknown.


Subject(s)
Sublingual Gland , Submandibular Gland , Mice , Animals , Male , Female , Submandibular Gland/metabolism , Sublingual Gland/chemistry , Sublingual Gland/metabolism , Parotid Gland/metabolism , Epidermal Growth Factor/metabolism , Nerve Growth Factors/metabolism , Homeodomain Proteins/metabolism
17.
Cell Rep ; 42(12): 113457, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37995187

ABSTRACT

While programmed cell death plays important roles during morphogenetic stages of development, post-differentiation organ growth is considered an efficient process whereby cell proliferation increases cell number. Here we demonstrate that early postnatal growth of the pancreas unexpectedly involves massive acinar cell elimination. Measurements of cell proliferation and death in the human pancreas in comparison to the actual increase in cell number predict daily elimination of 0.7% of cells, offsetting 88% of cell formation over the first year of life. Using mouse models, we show that death is associated with mitosis, through a failure of dividing cells to generate two viable daughters. In p53-deficient mice, acinar cell death and proliferation are reduced, while organ size is normal, suggesting that p53-dependent developmental apoptosis triggers compensatory proliferation. We propose that excess cell turnover during growth of the pancreas, and presumably other organs, facilitates robustness to perturbations and supports maintenance of tissue architecture.


Subject(s)
Acinar Cells , Tumor Suppressor Protein p53 , Animals , Mice , Humans , Acinar Cells/metabolism , Tumor Suppressor Protein p53/metabolism , Pancreas/metabolism , Cell Differentiation , Apoptosis/physiology
18.
Cell Rep Med ; 4(12): 101304, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38035885

ABSTRACT

Bile acids are altered and associated with prognosis in patients with acute pancreatitis (AP). Here, we conduct targeted metabolomic analyses to detect bile acids changes in patients during the acute (n = 326) and the recovery (n = 133) phases of AP, as well as in healthy controls (n = 60). Chenodeoxycholic acid (CDCA) decreases in the acute phase, increases in the recovery phase, and is associated with pancreatic necrosis. CDCA and its derivative obeticholic acid exhibit a protective effect against acinar cell injury in vitro and pancreatic necrosis in murine models, and RNA sequencing reveals that the oxidative phosphorylation pathway is mainly involved. Moreover, we find that overexpression of farnesoid X receptor (FXR, CDCA receptor) inhibits pancreatic necrosis, and interfering expression of FXR exhibits an opposite phenotype in mice. Our results possibly suggest that targeting CDCA is a potential strategy for the treatment of acinar cell necrosis in AP, but further verification is needed.


Subject(s)
Bile Acids and Salts , Pancreatitis, Acute Necrotizing , Humans , Mice , Animals , Pancreatitis, Acute Necrotizing/drug therapy , Acute Disease , Receptors, Cytoplasmic and Nuclear , Chenodeoxycholic Acid/pharmacology , Chenodeoxycholic Acid/therapeutic use
19.
Cell Metab ; 35(12): 2119-2135.e5, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37913768

ABSTRACT

The rising pancreatic cancer incidence due to obesity and type 2 diabetes is closely tied to hyperinsulinemia, an independent cancer risk factor. Previous studies demonstrated reducing insulin production suppressed pancreatic intraepithelial neoplasia (PanIN) pre-cancerous lesions in Kras-mutant mice. However, the pathophysiological and molecular mechanisms remained unknown, and in particular it was unclear whether hyperinsulinemia affected PanIN precursor cells directly or indirectly. Here, we demonstrate that insulin receptors (Insr) in KrasG12D-expressing pancreatic acinar cells are dispensable for glucose homeostasis but necessary for hyperinsulinemia-driven PanIN formation in the context of diet-induced hyperinsulinemia and obesity. Mechanistically, this was attributed to amplified digestive enzyme protein translation, triggering of local inflammation, and PanIN metaplasia in vivo. In vitro, insulin dose-dependently increased acinar-to-ductal metaplasia formation in a trypsin- and Insr-dependent manner. Collectively, our data shed light on the mechanisms connecting obesity-driven hyperinsulinemia and pancreatic cancer development.


Subject(s)
Carcinoma in Situ , Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulins , Pancreatic Neoplasms , Mice , Animals , Proto-Oncogene Proteins p21(ras)/metabolism , Receptor, Insulin/metabolism , Diabetes Mellitus, Type 2/metabolism , Pancreatic Neoplasms/metabolism , Acinar Cells/metabolism , Acinar Cells/pathology , Carcinoma in Situ/metabolism , Carcinoma in Situ/pathology , Inflammation/metabolism , Hyperinsulinism/complications , Metaplasia/metabolism , Metaplasia/pathology , Obesity/metabolism , Insulins/metabolism
20.
Cell Metab ; 35(11): 1944-1960.e7, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37898119

ABSTRACT

Human pancreatic plasticity is implied from multiple single-cell RNA sequencing (scRNA-seq) studies. However, these have been invariably based on static datasets from which fate trajectories can only be inferred using pseudotemporal estimations. Furthermore, the analysis of isolated islets has resulted in a drastic underrepresentation of other cell types, hindering our ability to interrogate exocrine-endocrine interactions. The long-term culture of human pancreatic slices (HPSs) has presented the field with an opportunity to dynamically track tissue plasticity at the single-cell level. Combining datasets from same-donor HPSs at different time points, with or without a known regenerative stimulus (BMP signaling), led to integrated single-cell datasets storing true temporal or treatment-dependent information. This integration revealed population shifts consistent with ductal progenitor activation, blurring of ductal/acinar boundaries, formation of ducto-acinar-endocrine differentiation axes, and detection of transitional insulin-producing cells. This study provides the first longitudinal scRNA-seq analysis of whole human pancreatic tissue, confirming its plasticity in a dynamic fashion.


Subject(s)
Endocrine Cells , Single-Cell Gene Expression Analysis , Humans , Pancreas , Cell Differentiation
SELECTION OF CITATIONS
SEARCH DETAIL
...