Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.768
Filter
1.
Pest Manag Sci ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39072976

ABSTRACT

BACKGROUND: Acrylamide-based bait has super water absorption making it highly attractive to subterranean termites that are lured by wood with high water content. This study investigated the control efficiency of these baits on subterranean termites. In particular, we evaluated the water-absorption capacity, attractiveness to subterranean termites, and control efficiency of these baits on subterranean termites through wooden blocks (Populus deltoides and three types of particleboards). RESULTS: The results indicated a substantial water absorption capacity of acrylamide (70.6%; control: 14.8%) and a strong attraction for feeding subterranean termites (P. deltoides: 198 highest; 81 lowest subterranean termites individuals; combination of neem leaves and walnut shells: 168 highest; 36 lowest subterranean termites individuals). When acrylamide was combined with boric acid at the highest concentration, it resulted in the lowest wood consumption rates (P. deltoides: 24.1%; control: 63.8%, combination of neem leaves and walnut shells: 32.5%; control: 62.1%). CONCLUSIONS: In conclusion, this research supports the commercial viability of employing innovative acrylamide-based toxic baits and particleboards for subterranean termite management. © 2024 Society of Chemical Industry.

2.
Gels ; 10(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39057438

ABSTRACT

Hydrogels, composed of hydrophilic homopolymer or copolymer networks, have structures similar to natural living tissues, making them ideal for applications in drug delivery, tissue engineering, and biosensors. Since Wichterle and Lim first synthesized hydrogels in 1960, extensive research has led to various types with unique features. Responsive hydrogels, which undergo reversible structural changes when exposed to stimuli like temperature, pH, or specific molecules, are particularly promising. Temperature-sensitive hydrogels, which mimic biological processes, are the most studied, with poly(N-isopropylacrylamide) (PNIPAm) being prominent due to its lower critical solution temperature of around 32 °C. Additionally, pH-responsive hydrogels, composed of polyelectrolytes, change their structure in response to pH variations. Despite their potential, conventional hydrogels often lack mechanical strength. The double-network (DN) hydrogel approach, introduced by Gong in 2003, significantly enhanced mechanical properties, leading to innovations like shape-deformable DN hydrogels, organic/inorganic composites, and flexible display devices. These advancements highlight the potential of hydrogels in diverse fields requiring precise and adaptable material performance. In this review, we focus on advancements in the field of responsive acrylamide-based hydrogels with IPN structures, emphasizing the recent research on DN hydrogels.

3.
Toxics ; 12(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39058136

ABSTRACT

Obesity and environmental toxins are risk factors for breast cancer; however, there is limited knowledge on how these risk factors interact to promote breast cancer. Acrylamide, a probable carcinogen and obesogen, is a by-product in foods prevalent in the obesity-inducing Western diet. Acrylamide is metabolized by cytochrome P450 2E1 (CYP2E1) to the genotoxic epoxide, glycidamide, and is associated with an increased risk for breast cancer. To investigate how acrylamide and obesity interact to increase breast cancer risk, female mice were fed a low-fat (LFD) or high-fat diet (HFD) and control water or water supplemented with acrylamide at levels similar to the average daily exposure in humans. While HFD significantly enhanced weight gain in mice, the addition of acrylamide did not significantly alter body weights compared to respective controls. Mammary epithelial cells from obese, acrylamide-treated mice had increased DNA strand breaks and oxidative DNA damage compared to all other groups. In vitro, glycidamide-treated COMMA-D cells showed significantly increased DNA strand breaks, while acrylamide-treated cells demonstrated significantly higher levels of intracellular reactive oxygen species. The knockdown of CYP2E1 rescued the acrylamide-induced oxidative stress. These studies suggest that long-term acrylamide exposure through foods common in the Western diet may enhance DNA damage and the CYP2E1-induced generation of oxidative stress in mammary epithelial cells, potentially enhancing obesity-induced breast cancer risk.

4.
Avicenna J Phytomed ; 14(1): 78-89, 2024.
Article in English | MEDLINE | ID: mdl-38948176

ABSTRACT

Objective: Acrylamide (ACR) is a neurotoxic agent whose damage could be attenuated by antioxidants administration. Crocetin is a saffron-derived antioxidant that has neuroprotective effects. This study evaluates the protective effects of trans-sodium crocetinate (TSC) and its water-soluble derivative, Bis-N-(N-methylpyprazinyl) crocetinate (BMPC) against ACR neurotoxicity. Materials and Methods: PC12 cells were treated with TSC and BMPC (1.95, 3.9, 7.81, 15.62, 31.25, 62.5, 125, 250, 500, and 1000 µM) for 24 hr. ACR was then added at a concentration of 6.5 mM (IC50), and cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide. In the in vivo study, male Wistar rats were treated with ACR (50 mg/kg, intraperitoneal (i.p.)) for 11 days alone or in combination with TSC and BMPC (2.5, 5, and 10 mg/kg, i.p.) or vitamin E (200 IU/kg, i.p.). Motor impairments were then evaluated. The cerebral cortex of sacrificed rats was taken for the malondialdehyde (MDA) and glutathione (GSH) levels measurement. Results: In vitro studies showed that TSC at a concentration of 7.81 µM and BMPC at concentrations of 3.9, 7.81, and 15.62 µM exhibited the lowest toxicity in acrylamide administration. In the in vivo study, pretreatment with 2.5, 5, and 10 mg/kg of TSC ameliorated behavioral impairments, but BMPC could not attenuate them. GSH and MDA were improved by 2.5, 5, and 10 mg/kg TSC and 2.5 mg/kg BMPC. Conclusion: TSC and BMPC administration improved behavioral index and oxidative stress injuries in Wistar rats exposed to ACR through MDA reduction and GSH content enhancement in the cerebral cortex.

5.
Article in English | MEDLINE | ID: mdl-38962889

ABSTRACT

The objective of the present study was to optimize the microwave-assisted synthesis of the acrylamide graft copolymer of Acacia nilotica gum (AM-co-ANG). Furthermore, graft copolymer was used for the formulation of a nanoparticulate system using a novel top to bottom solvent antisolvent technique for the delivery of melatonin. Grafting of ANG was optimized by using 32 factorial design, where concentrations of polymer and monomer (acrylamide) were used as independent variables and swelling index in acidic (0.1 N HCl) and basic (1 N NaOH) pH. Grafted polymers were further used to develop and optimize nanoparticulate system using concentration of the graft copolymer and concentration of drug as independent variables. The size of the nanoformulation and entrapment efficiency were selected as dependent variables. Difference in infrared spectrum and absorbance maxima in the ultraviolet region confirm that grafting has taken place. Porous structure and a higher contact angle confirmed hydrophobic nature of AM-co-ANG as compared with the native polymer. Acrylamide graft copolymers show more swelling in 1 N NaOH as compared with 0.1 N HCl. In vitro toxicity studies in hepatic (HepG2 cell line), brain (SHSY5Y cell line), and skin (HaCaT cell line) cells easily predict that synthesized polymer have no cytotoxicity. The entrapment efficiency ranged from 55.24 ± 1.35% to 73.21 ± 1.83%. A nonlinear correlation was observed between independent and dependent variables, as confirmed by multivariate analysis of variance, surface regression, and the correlation report. The prepared formulations were able to release drug up to 12 h. The regression coefficient easily predicted that most of the formulations followed Baker-Lonsdale drug release kinetics.

6.
Environ Res ; 259: 119533, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960354

ABSTRACT

The degradation of persistent and refractory pollutants, particularly plastic and resins manufacturing wastewater, poses a significant challenge due to their high toxicity and high concentrations. This study developed a novel hybrid ACoO3 (A = La, Ce, Sr)/PMS perovskite system for the treatment of multicomponent (MCs; ACN, ACM and ACY) from synthetic resin manufacturing wastewater. Synthesized perovskites were characterized by various techniques i.e., BET, XRD, FESEM with EDAX, FTIR, TEM, XPS, EIS, and Tafel analysis. Perovskite LaCoO3 exhibited the highest degradation of MCs i.e., ACN (98.7%), ACM (86.3%), and ACY (56.4%), with consumption of PMS (95.2%) under the optimal operating conditions (LaCoO3 dose 0.8 g/L, PMS dose 2 g/L, pH 7.2 and reaction temperature 55 °C). The quantitative contribution (%) of reactive oxygen species (ROS) reveals that SO4•- are the dominating radical species, which contribute to ACN (58.3% for SO4•- radicals) and ACM degradation (46.4% for SO4•- radicals). The tafel plots and EIS spectra demonstrated that perovskites LaCoO3 have better charge transfer rates and more reactive sites that are favorable for PMS activation. Further, four major degradation pathways were proposed based on Fukui index calculations, as well as GC-MS characterization of intermediate byproducts. Based on a stability and reusability study, it was concluded that LaCoO3 perovskites are highly stable, and minimal cobalt leaching occurs (0.96 mg/L) after four cycles. The eco-toxicity assessment performed using QSAR model indicated that the byproducts of the LaCoO3/PMS system are non-toxic nature to common organism (i.e., fish, daphnids and green algae). In addition, the cost of the hybrid LaCoO3/PMS system in a single cycle was estimated to be $34.79 per cubic meter of resin wastewater.

7.
Front Nutr ; 11: 1446690, 2024.
Article in English | MEDLINE | ID: mdl-38983801
8.
Article in English | MEDLINE | ID: mdl-38972620

ABSTRACT

Acrylamide (ACR), a ubiquitous compound with diverse route of exposure, has been demonstrated to have detrimental effects on human and animal health. The mechanisms underlying its toxicity is multifaceted and not fully elucidated. This study aims to provide further insight into novel pathways underlying ACR toxicity by leveraging on Drosophila melanogaster as a model organism. The concentrations of acrylamide (25, 50 and 100 mg/kg) and period of exposure (7-days) used in this study was established through a concentration response curve. ACR exposure demonstrably reduced organismal viability, evidenced by decline in survival rate, offspring emergence and deficits in activity, sleep and locomotory behaviors. Using a high-resolution respirometry assay, the role of mitochondria respiratory system in ACR-mediated toxicity in the flies was investigated. Acrylamide caused dysregulation in mitochondrial bioenergetics and respiratory capacity leading to an impaired OXPHOS activity and electron transport, ultimately contributing to the pathological process of ACR-toxicity. Furthermore, ACR exacerbated apoptosis and induced oxidative stress in D. melanogaster. The up-regulation of mRNA transcription of Reaper, Debcl and Dark genes and down-regulation of DIAP1, an ubiquitylation catalyzing enzyme, suggests that ACR promotes apoptosis through disruption of caspase and pro-apoptotic protein ubiquitination and a mitochondria-dependent pathway in Drosophila melanogaster. Conclusively, this study provides valuable insights into the cellular mechanism underlying ACR-mediated toxicity. Additionally, our study reinforces the utility of D. melanogaster as a translational tool for elucidating the complex mechanisms of ACR toxicity.

9.
Avicenna J Phytomed ; 14(2): 177-188, 2024.
Article in English | MEDLINE | ID: mdl-38966625

ABSTRACT

Objective: The present study examined effects of resistance training (RT) and resveratrol (RES) alone and together on acrylamide (AC)-induced memory impairment in rats. Materials and Methods: Animals were divided into 6 groups: (1) Control group which received normal saline intraperitoneally (ip) daily for 8 weeks; (2) Scopolamine (SCO) group which received SCO (1 mg/kg/day, ip) for 8 weeks; (3) AC group which received AC (5 mg/kg/day, ip) for 8 weeks; (4) AC + RT group which received AC (5 mg/kg/day, ip) for 8 weeks and performed RT (5 days a week for 8 weeks); (5) AC + RES group which received AC (5 mg/kg/day, ip) and RES (1 mg/kg/day, ip) for 8 weeks; and (6) AC + RT + RES group which received AC (5 mg/kg/day, ip) and RES (1 mg/kg/day, ip) for 8 weeks and performed RT (5 days a week for 8 weeks). On day 53, animal training began in the Morris Water Maze (MWM) and 24 hr after the last training, the probe test was performed. Results: RT and RES alone did not significantly affect escape latency or traveled distance increased by AC. However, concomitant RES and RT treatment significantly reduced these parameters compared to the AC group. Co-treatment with RES and RT also significantly increased the time spent in the target quadrant compared to the AC group. Lipid peroxidation was reduced in the AC+RES and AC+RT+RES groups compared to the AC group. Conclusion: It seems that daily co-treatment with RES and RT for 8 weeks ameliorates the memory-impairing effects of AC.

10.
Article in English | MEDLINE | ID: mdl-39008692

ABSTRACT

Processed plant-based foods, particularly high carbohydrate-containing foods, are among the greatest contributors to dietary acrylamide, a probable human carcinogen, uptake. Between 2009 and 2020, five surveys were conducted to determine acrylamide in high carbohydrate-containing foods in Canada. These surveys included sampling of potato and sweet potato chips, French fries, and frozen potato/sweet potato products, as a follow-up to our earlier surveys from 2002 - 2008. Samples were analyzed using isotope dilution (13C3-acrylamide) with LC-MS/MS. The highest mean acrylamide levels were found in sweet potato chips. Among potato chips (57 to 4660 ng g-1), one brand consistently showed the highest concentrations with wide variability. Acrylamide concentrations decreased over time in ready-to-eat French fries (from 480 to 358 ng g-1), and one brand showed a clear reduction temporally. Wide variations were observed among brands, among lots/outlets of same brands, and among different food chains. Acrylamide levels in potato chips decreased between 2009 and 2016 (504.3 ng g-1) relative to the period 2002 - 2008 (1096.9 ng g-1). The acrylamide trends observed in the products measured in the latest study indicate that food producers may have adopted mitigation strategies.

11.
Chem Biodivers ; : e202401102, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008802

ABSTRACT

Acrylamide is formed during heating of starchy foods at high temperature and induces reproductive toxicity. Our study is designed to evaluate the chemical constitution and anti-infertility effect of Lycium shawii seeds extract on female rats. Nutritional profile was estimated, and major active compounds were isolated and identified. Biological evaluation of Lycium shawii extract on female rats was performed and measured by prolactin, follicular stimulating hormone, luteinizing hormone, estradiol, progesterone, tumor necrosis factor-α, interleukin-6, heme oxygenase-1, nuclear respiratory factor-2, malondialdehyde, glutathione, DNA fragmentation and ovarian architecture parameters. Data revealed that presence of ɤ-tocopherol, vitamin C, magnesium and thirty-eight bioactive compounds in the fractions of Lycium shawii. Major constituents from GC/MS, were 9, 12-octadecadienoic acid (Z, Z), methyl ester, 2,7-Octadiene-1,6-diol and 2,6-dimethyl hydroxy linalool but further five compounds (i.e. lupenone, betulin, lupeol acetate, stigmasterol and ß-sitosterol-D-glucoside) were isolated and identified. Treatment of rats with the seeds extract post acrylamide administration ameliorated female sex hormones, oxidative stress, inflammation, DNA damage, and ovarian structure. In conclusion, Lycium shawii petroleum ether seeds fraction may be considered as a nutraceutical agent for improving infertility disorders, oxidative stress and inflammation due to its richness with biologically active phenolic and flavonoids compounds.

12.
Mol Biol Rep ; 51(1): 817, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012451

ABSTRACT

BACKGROUND: Nitrile Hydratase (NHase) is one of the most important industrial enzyme widely used in the petroleum exploitation field. The enzyme, composed of two unrelated α- and ß-subunits, catalyzes the conversion of acrylonitrile to acrylamide, releasing a significant amount of heat and generating the organic solvent product, acrylamide. Both the heat and acrylamide solvent have an impact on the structural stability of NHase and its catalytic activity. Therefore, enhancing the stress resistance of NHase to toxic substances is meaningful for the petroleum industry. METHODS AND RESULTS: To improve the thermo-stability and acrylamide tolerance of NHase, the two subunits were fused in vivo using SpyTag and SpyCatcher, which were attached to the termini of each subunit in various combinations. Analysis of the engineered strains showed that the C-terminus of ß-NHase is a better fusion site than the N-terminus, while the C-terminus of α-NHase is the most suitable site for fusion with a larger protein. Fusion of SpyTag and SpyCatcher to the C-terminus of ß-NHase and α-NHase, respectively, led to improved acrylamide tolerance and a slight enhancement in the thermo-stability of one of the engineered strains, NBSt. CONCLUSION: These results indicate that in vivo ligation of different subunits using SpyTag/SpyCatcher is a valuable strategy for enhancing subunit interaction and improving stress tolerance.


Subject(s)
Hydro-Lyases , Rhodococcus , Rhodococcus/enzymology , Rhodococcus/genetics , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , Hydro-Lyases/chemistry , Enzyme Stability , Stress, Physiological , Acrylamide/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Protein Subunits/metabolism , Protein Subunits/genetics
13.
Chem Biodivers ; : e202401023, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39015085

ABSTRACT

A set of novel naphthalene derivatives was synthesized via investment of the electrophilic reaction center of the easily obtainable starting substance, 2-cyano-3-(naphthalen-1-yl)acryloyl chloride (1), with various nitrogen nucleophiles and assessed as potential antitumor agents. The chemical structures of these derivatives were completely specified using several spectral and elemental analyses. The antiproliferative efficacy of the discovered compounds against the human cancer cell lines HepG2 and MCF-7 was investigated. Compounds 12b and 9 have more potent anticancer activity versus MCF-7 breast cancer. DFT calculations for the synthesized compounds were studied to determine molecular geometry, frontier orbital analysis, and molecular electrostatic potential. Compound 2 has the lowest energy gap, the highest softness, and the lowest hardness molecule. Also, the electrophilicity values of the studied molecules provide evidence for their biological effectiveness, as compound 9 had significant antiproliferative activity and a high value of electrophilicity (ω) (0.190 eV).

14.
Nutrients ; 16(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38999779

ABSTRACT

Changing eating habits and an increase in consumption of thermally processed products have increased the risk of the harmful impact of chemical substances in food on consumer health. A 2002 report by the Swedish National Food Administration and scientists at Stockholm University on the formation of acrylamide in food products during frying, baking and grilling contributed to an increase in scientific interest in the subject. Acrylamide is a product of Maillard's reaction, which is a non-enzymatic chemical reaction between reducing sugars and amino acids that takes place during thermal processing. The research conducted over the past 20 years has shown that consumption of acrylamide-containing products leads to disorders in human and animal organisms. The gastrointestinal tract is a complex regulatory system that determines the transport, grinding, and mixing of food, secretion of digestive juices, blood flow, growth and differentiation of tissues, and their protection. As the main route of acrylamide absorption from food, it is directly exposed to the harmful effects of acrylamide and its metabolite-glycidamide. Despite numerous studies on the effect of acrylamide on the digestive tract, no comprehensive analysis of the impact of this compound on the morphology, innervation, and secretory functions of the digestive system has been made so far. Acrylamide present in food products modifies the intestine morphology and the activity of intestinal enzymes, disrupts enteric nervous system function, affects the gut microbiome, and increases apoptosis, leading to gastrointestinal tract dysfunction. It has also been demonstrated that it interacts with other substances in food in the intestines, which increases its toxicity. This paper summarises the current knowledge of the impact of acrylamide on the gastrointestinal tract, including the enteric nervous system, and refers to strategies aimed at reducing its toxic effect.


Subject(s)
Acrylamide , Dietary Exposure , Gastrointestinal Tract , Humans , Acrylamide/toxicity , Acrylamide/adverse effects , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Dietary Exposure/adverse effects , Animals , Gastrointestinal Microbiome/drug effects , Food Contamination , Gastrointestinal Diseases/chemically induced , Maillard Reaction , Epoxy Compounds
15.
J Sci Food Agric ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989963

ABSTRACT

BACKGROUND: Extrusion cooking of cereal-legume flour mixture is an innovative strategy to introduce nutrient-enriched ready-to-eat snacks to the market. However, this thermal process triggers the formation of compounds that could impact safety aspects of these products. Maillard reaction markers and the end products known as melanoidins were evaluated to assess the toxicological and bioactive profiles of extruded snacks from corn-plus-common-bean-flour combinations. Different molecular weight fractions were isolated and purified to analyze their antioxidant activity and to investigate the role of melanoidins. RESULTS: The snack formulated with an 84:16 ratio of corn:common bean flours exhibited an enhanced toxicological profile. It displayed the lowest levels of acrylamide and furanic compounds, along with reduced blockage of lysine residues in the protein. Extrusion increased the antioxidant activity of uncooked flours (30 to 64%) and total phenolic compounds (26 to 50%), and decreased the available lysine (-72.7 to -79.5%). During the fractionation process, it was established that compounds within the range of 3-10 kDa made the greatest contribution to antioxidant activity. The fraction greater than 10 kDa, which included melanoidins, displayed 7 to 33% lower antioxidant activity. The purification of the fraction greater than 10 kDa revealed that pure melanoidins represented approximately one-third of the antioxidant activity in that fraction. Non-covalent adducts linked to the melanoidin core therefore had a relevant role in the antioxidant action of formulated snacks. CONCLUSION: This investigation illustrates the importance of considering both potential risks and associated benefits of compounds formed during the Maillard reaction while developing new extruded snacks. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

16.
Food Chem Toxicol ; 191: 114850, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986831

ABSTRACT

Food emulsifiers like glycerol monostearate (G) and Tween 80 (TW) are commonly used to help formation and maintain stability of emulsions. However, certain food contaminants and emulsifiers often co-occur in the same food item due to food culture and cooking methods. For this reason, the present study investigated interaction of toxic effect of emulsifiers (G and TW) and process contaminants (acrylamide (AA) and benzo [a]pyrene (BAP)) on zebrafish. Adult zebrafish were exposed to emulsifiers, food contaminants, or the combination through diet for 2 h and 7 days. Oxidative stress and inflammation caused by food contaminants were increased when food emulsifiers were present. These combined treatments also induced more severe morphological changes than the contaminant alone treatments. In the gut, disruption of villi structure and increased number of goblet cells was observed and in the liver there were increased lipid deposition, infiltration of immune cells, glycogen depletion and focal necrosis. Increased accumulation of AA and BAP in the liver and gut were detected after addition of emulsifiers, suggesting that emulsifiers can enhance absorption of diet-borne contaminants. Our results showed food emulsifiers and contaminants can interact synergistically and increase risk.

17.
Int J Biol Macromol ; 276(Pt 1): 133745, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986991

ABSTRACT

Acrylamide, a Maillard reaction product, formed in fried food poses a serious concern to food safety due to its neurotoxic and carcinogenic nature. A "Green Approach" using L-Asparaginase enzyme from GRAS-status bacteria synergized with hydrocolloid protective coating could be effective in inhibiting acrylamide formation. To fill this void, the present study reports a new variant of type-II L-asparaginase (AsnLb) from Levilactobacillus brevis NKN55, a food-grade bacterium isolated using a unique metabolite profiling approach. The recombinant AsnLb enzyme was characterized to study acrylamide inhibition ability and showed excellent specificity towards L-asparagine (157.2 U/mg) with Km, Vmax of 0.833 mM, 4.12 mM/min respectively. Pretreatment of potato slices with AsnLb (60 IU/mL) followed by zein-pectin nanocomplex led to >70% reduction of acrylamide formation suggesting synergistic effect of this dual component system. The developed strategy can be employed as a sustainable treatment method by food industries for alleviating acrylamide formation and associated health hazard in fried foods.

18.
Article in English | MEDLINE | ID: mdl-39028331

ABSTRACT

Acrylamide (ACR) is a toxic, probably carcinogenic compound commonly found in fried foods and used in the production of many industrial consumer products. ACR-induced acute kidney injury is mediated through several signals. In this research, we investigated, for the first time, the therapeutic effects of phytochemicals apocynin (APO) and/or umbelliferone (UMB) against ACR-induced nephrotoxicity in rats and emphasized the underlying molecular mechanism. To achieve this goal, five groups of rats were randomly assigned: the control group received vehicle (0.5% CMC; 1 ml/rat), ACR (40 mg/kg, i.p.), ACR + APO (100 mg/kg, P.O.), ACR + UMB (50 mg/kg, P.O.), and combination group for 10 days. In ACR-intoxicated rats, there was a significant reduction in weight gain while the levels of blood urea, uric acid, creatinine, and Kim-1 were elevated, indicating renal injury. Histopathological injury was also observed in the kidneys of ACR-intoxicated rats, confirming the biochemical data. Moreover, MDA, TNF-α, and IL-1ß levels were raised; and GSH and SOD levels were decreased. In contrast, treatment with APO, UMB, and their combination significantly reduced the kidney function biomarkers, prevented tissue damage, and decreased inflammatory cytokines and MDA. Mechanistically, it suppressed the expression of NLRP-3, ASC, GSDMD, caspase-1, and IL-1ß, while it upregulated Nrf-2 and HO-1 in the kidneys of ACR-intoxicated rats. In conclusion, APO, UMB, and their combination prevented ACR-induced nephrotoxicity in rats by attenuating oxidative injury and inflammation, suppressing NLRP-3 inflammasome signaling, enhancing antioxidants, and upregulating Nrf-2 and HO-1 in the kidneys of ACR-induced rats.

19.
Food Chem ; 460(Pt 1): 140478, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39032302

ABSTRACT

Southern Chile native potatoes are an interesting raw material to produce novel snacks like colored potato chips. These novel products should be comprehensively evaluated for the presence of undesirable compounds such as acrylamide, 5-hydroxymethylfurfural and furan, the main neoformed contaminants in starchy rich fried foods. This study evaluated the neoformed contaminant levels and oil content on chips made from eleven Chilean potato accessions and compared them with commercial samples. The neoformed contaminant contents were related to Maillard reaction precursor levels (reducing sugars and asparagine) and secondary metabolites (phenolic compounds and carotenoids). Neoformed contaminants correlated well among them and were weakly correlated with reducing sugars and asparagine. Acrylamide level in native potato chips ranged from 738.2 to 1998.6 µg kg-1 while from 592.6 to 2390.5 µg kg-1 in commercial samples. Thus, there is need to implement neoformed contaminant mitigation strategies at different steps of the production chain of colored potato chips.

20.
Food Chem ; 460(Pt 1): 140494, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39043073

ABSTRACT

Acrylamide (AA) is produced through the reaction between sugars and amino acids present in starchy foods cooked at high temperature. It is classified as probably carcinogenic to humans. In 2019, the European Commission reported a list of foods for monitoring the presence of AA, which includes cereal snacks. This study presents the development and validation of an analytical approach for detecting AA in popcorn and corn-based snacks. It includes solid-liquid extraction and clean-up with dispersive solid phase extraction followed by analysis through liquid chromatography coupled with tandem mass spectrometry. The proposed method was characterized in terms of recoveries (84-105%), and precision (< 16.1%). Limits of quantification were 17 and 60 µg kg-1 for corn and popcorn, respectively. Sustainability of the methodology was evaluated using AGREEprep and BAGI, providing values of 0.43 and 65.0, respectively. Twenty-four corn-based products were analyzed, with AA levels from 219 to 418 µg kg-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...