ABSTRACT
Malaria is caused by apicomplexan parasites of the Plasmodium genus. Plasmodium chabaudi is an excellent animal model for the study of human malaria caused by P. falciparum. Merozoites invade erythrocytes but are also found in other host cells including macrophages from the spleen and liver. Methodologies for obtaining merozoites usually involve treatment with protease inhibitors. However, merozoites obtained in this way may have their enzymatic profile altered and, therefore, are not ideal for cell-interaction assays. We report the obtainment of P. chabaudi merozoites naturally egressed from a synchronous erythrocyte population infected with schizonts forms. Merozoites had their infectivity and ultrastructure analyzed. Interaction assays were performed with mice erythrocytes and classically activated mice peritoneal macrophages, a very well-established classic model. Obtained merozoites were able to kill mice and efficiently infect erythrocytes. Interestingly, a lower merozoite:erythrocyte ratio resulted in a higher percentage of infected erythrocytes. We describe a simpler method for obtaining viable and infective merozoites. Classically activated macrophages killed merozoites, suggesting that these host cells may not serve as reservoirs for these parasites. These findings have implications for our understanding of P. chabaudi merozoite biology and may improve the comprehension of their host-parasite relationship.
ABSTRACT
Infection by Schistosoma parasites culminates in a chronic granulomatous disease characterized by intense tissue fibrosis. Along the course of schistosomiasis, diverse leukocytes are recruited for inflammatory foci. Innate immune cell accumulation in Th2-driven granulomas around Schistosoma eggs is associated with increased collagen deposition, while monocytes and macrophages exert critical roles during this process. Monocytes are recruited to damaged tissues from blood, produce TGF-ß and differentiate into monocyte-derived macrophages (MDMs), which become alternatively activated by IL-4/IL-13 signaling via IL-4Rα (AAMs). AAMs are key players of tissue repair and wound healing in response to Schistosoma infection. Alternative activation of macrophages is characterized by the activation of STAT6 that coordinates the transcription of Arg1, Chi3l3, Relma, and Mrc1. In addition to these markers, monocyte-derived AAMs also express Raldh2 and Pdl2. AAMs produce high levels of IL-10 and TGF-ß that minimizes tissue damage caused by Schistosoma egg accumulation in tissues. In this review, we provide support to previous findings about the host response to Schistosoma infection reusing public transcriptome data. Importantly, we discuss the role of monocytes and macrophages with emphasis on the mechanisms of alternative macrophage activation during schistosomiasis.
ABSTRACT
Macrophages host Leishmania major infection, which causes cutaneous Leishmaniasis in humans. In the murine model, resistance to infection depends on the host immunity mediated by CD4 T-cell cytokines and macrophages. In association to other stimuli, the Th1 cytokine IFN-γ induces NO-mediated microbial killing by M1/classically-activated macrophages. By contrast, the Th2 cytokine IL-4 promotes M2/alternatively activated macrophages, which express arginase-1 and shelter infection. Other cytokines, such as RANKL, might also participate in the crosstalk between T cells and macrophages to restrict parasite infection. RANKL and its receptor RANK are known to play an essential role in bone remodeling, by inducing osteoclatogenesis. It has also been shown that RANKL stimulates antigen-presenting cells, such as DCs and macrophages, to enhance T cell responses. Here we investigated how RANKL directly modulates the effector macrophage phenotypes and immunity to L. major parasites. We found that inflammatory peritoneal macrophages from B6 mice express RANK and M2 features, such as CD301 (MGL) and CD206 (mannose receptor). Nonetheless, treatment with RANKL or IFN-γ induced macrophage differentiation into more mature F40/80hi macrophages able to produce IL-12 and TNF-α. In parallel, macrophages treated with RANKL, IFN-γ, or RANKL along with IFN-γ progressively downregulated the expression of the M2 hallmarks MGL, arginase-1, and CCL17. Moreover, a synergism between IFN-γ and RANKL enhanced inducible NO synthase (iNOS) expression and NO production by macrophages. These results are consistent with the idea that RANKL helps IFN-γ to induce a M2-like to M1 phenotype shift. Accordingly, concomitant treatment with RANKL and IFN-γ promoted macrophage-mediated immunity to L. major, by inducing NO and ROS-dependent parasite killing. Furthermore, by cooperating with IFN-γ, endogenous RANKL engages CD4 T-cell help toward L. major-infected macrophages to upregulate M1 and Th1 cytokine responses. Therefore, RANKL, in combination with IFN-γ, is a potential local therapeutic tool to improve immune responses in Leishmaniasis, by skewing M2-like into effector M1 macrophages.
Subject(s)
Cell Differentiation/immunology , Macrophage Activation , Macrophages/immunology , Macrophages/parasitology , RANK Ligand/immunology , Animals , Leishmania major , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Signal TransductionABSTRACT
As key cells, able to host and kill Leishmania parasites, inflammatory monocytes/macrophages are potential vaccine and therapeutic targets to improve immune responses in Leishmaniasis. Macrophage phenotypes range from M1, which express NO-mediated microbial killing, to M2 macrophages that might help infection. Resistance to Leishmaniasis depends on Leishmania species, mouse strain, and both innate and adaptive immunity. C57BL/6 (B6) mice are resistant and control infection, whereas Leishmania parasites thrive in BALB/c mice, which are susceptible to develop cutaneous lesions in the course of infection with Leishmania major, but not upon infection with Leishmania braziliensis. Here, we investigated whether a deficit in early maturation of inflammatory monocytes into macrophages in BALB/c mice underlies increased susceptibility to L. major versus L. braziliensis parasites. We show that, after infection with L. braziliensis, monocytes are recruited to peritoneum, differentiate into macrophages, and develop an M1 phenotype able to produce proinflammatory cytokines in both B6 and BALB/c mice. Nonetheless, more mature macrophages from B6 mice expressed inducible NO synthase (iNOS) and higher NO production in response to L. braziliensis parasites, whereas BALB/c mice developed macrophages expressing an incomplete M1 phenotype. By contrast, monocytes recruited upon L. major infection gave rise to immature macrophages that failed to induce an M1 response in BALB/c mice. Overall, these results are consistent with the idea that resistance to Leishmania infection correlates with improved maturation of macrophages in a mouse-strain and Leishmania-species dependent manner. All-trans retinoic acid (ATRA) has been proposed as a therapy to differentiate immature myeloid cells into macrophages and help immunity to tumors. To prompt monocyte to macrophage maturation upon L. major infection, we treated B6 and BALB/c mice with ATRA. Unexpectedly, treatment with ATRA reduced proinflammatory cytokines, iNOS expression, and parasite killing by macrophages. Moreover, ATRA promoted an M1 to M2 transition in bone marrow-derived macrophages from both strains. Therefore, ATRA uncouples macrophage maturation and development of M1 phenotype and downmodulates macrophage-mediated immunity to L. major parasites. Cautions should be taken for the therapeutic use of ATRA, by considering direct effects on innate immunity to intracellular pathogens.
ABSTRACT
American cutaneous leishmaniasis (ACL) is a chronic infectious disease caused by different protozoan species of Leishmania, and it is endemic in both tropical and subtropical countries. Using immunohistochemistry, we investigate the density of CD68+, lysozyme+, CD1a+, factor XIIIa+, CD4+, CD8+, CD56+, interferon (IFN)-γ+, and inducible NO synthase (iNOS+) cells. These cells were analyzed from 22 biopsy samples obtained from the lesions of ACL patients, whose infection was caused by Leishmania (Viannia) spp. Histopathological analysis showed dense mononuclear inflammatory infiltration in the dermis, which was composed of lymphocytes, macrophages, plasma cells, and discrete tissue parasitism. Granulomatous reactions were also present in the majority of cases. The density of the activated macrophages was higher than that of inactivated macrophages in the lesions. The density of Langerhans cells (CD1a+) was lower than that of dermal dendrocytes (factor XIIIa+). The density of CD8+ T lymphocytes was higher than that of CD4+ T lymphocytes. The cellular density of these immunological markers in relation to the species of Leishmania demonstrated that L. (Viannia) sp. lesions had higher IFN-γ expression than that Leishmania (Viania) braziliensis lesions. The evaluation of these markers, according to disease progression, did not reveal any significant differences. L. (Viannia) sp. infection leads to a favorable immune response in the host, as predominantly represented by lysozyme+, factor XIIIa+, CD8+ T cells, and the expression of (IFN)-γ+ at the lesion site.