Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 677
Filter
1.
Int J Pharm ; 662: 124488, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032870

ABSTRACT

Currently, Non-Hodgkin Lymphoma (NHL) constitutes 85-90 % of all lymphomas. Clinical treatment of NHL is based on the "4-drug regimen" known as CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone). Rituximab (RTX) is added to increase the effectiveness and selectivity of the treatment and is the first-line standard treatment for NHL patients. However, success is often prevented by the development of drug resistance. In this study, it was aimed to overcome drug resistance by using two novel tumor-targeted derivatives: guanidine-amphiphilic cyclodextrin (ACD) and guanidine-cyclodextrin polymer (PCD) nanoparticles (NP). These constructs display promise in overcoming drug resistance and enhancing the effectiveness of R-CHOP treatment while potentially eliminating the need for corticosteroid. NP were found to be smaller than 200 nm by dynamic light scattering (DLS). Hemolytic activity and cytotoxicity data on L929 cells demonstrated the safety of the newly synthesized CD derivatives. Additional in vitro characterization studies, including surface charge, physical stability, drug loading capacity, drug release profile, and imaging, as well as conventional and 3D cell culture studies were carried out. Compared to drug solutions, the viability of Daudi human lymphoma cells was statistically significantly decreased in both drug-loaded ACD and PCD NP formulations (p < 0.05). Additionally, RTX-conjugated and drug-loaded ACD NPs exhibited the lowest cell viability due to RTX dependent cytotoxicity.

2.
J Liposome Res ; : 1-16, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38988127

ABSTRACT

Liver disorders present a significant global health challenge, necessitating the exploration of innovative treatment modalities. Liposomal nanocarriers have emerged as promising candidates for targeted drug delivery to the liver. This review offers a comprehensive examination of the mechanisms and applications of liposomal nanocarriers in addressing various liver disorders. Firstly discussing the liver disorders and the conventional treatment approaches, the review delves into the liposomal structure and composition. Moreover, it tackles the different mechanisms of liposomal targeting including both passive and active strategies. After that, the review moves on to explore the therapeutic potentials of liposomal nanocarriers in treating liver cirrhosis, fibrosis, viral hepatitis, and hepatocellular carcinoma. Through discussing recent advancements and envisioning future perspectives, this review highlights the role of liposomal nanocarriers in enhancing the effectiveness and the safety of liver disorders and consequently improving patient outcomes and enhances life quality.

3.
Int J Pharm ; 661: 124449, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992734

ABSTRACT

Despite the fact that several rheumatoid arthritis treatments have been utilized, none of them achieved complete joint healing and has been accompanied by several side effects that compromise patient compliance. This study aims to provide an effective safe RA treatment with minimum side effects through the encapsulation of melatonin (MEL) in hyalurosomes and loading these hyalurosomes in collagen thermos-sensitive poloxamer 407 (PCO) hydrogels, followed by their intra-articular administration in AIA model rats. In vitro characterization of MEL-hyalurosomes and PCO hydrogel along with in vivo evaluation of the selected formulation were conducted. Particle size, PDI and EE % of the selected formulation were 71.5 nm, 0.09 and 90 %. TEM micrographs demonstrated that the particles had spherical shape with no aggregation signs. Loading PCO hydrogels with MEL-hyalurosomes did not cause significant changes in pH although it increased its viscosity and injection time. FTIR analysis showed that no interactions were noted among the delivery system components. In vivo results revealed the superior effect of MEL-hyalurosomes PCO hydrogel over MEL-PCO hydrogel and blank PCO hydrogels in improving joint healing, cartilage repair, pannus formation and cell infiltrations. Also, MEL-hyalurosomes PCO hydrogel group showed comparable levels of TNF-α, IL1, MDA, NRF2 and HO-1 with the negative control group. These findings highlight the MEL encapsulation role in augmenting its pharmacological effects along with the synergistic effect of hyaluronic acid in hyalurosomes and collagen in PCO hydrogel in promoting joint healing.

4.
Drug Des Devel Ther ; 18: 2921-2949, 2024.
Article in English | MEDLINE | ID: mdl-39055164

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory condition characterized by recurring inflammation of the intestinal mucosa. However, the existing IBD treatments are ineffective and have serious side effects. The etiology of IBD is multifactorial and encompasses immune, genetic, environmental, dietary, and microbial factors. The nanoparticles (NPs) developed based on specific targeting methodologies exhibit great potential as nanotechnology advances. Nanoparticles are defined as particles between 1 and 100 nm in size. Depending on their size and surface functionality, NPs exhibit different properties. A variety of nanoparticle types have been employed as drug carriers for the treatment of inflammatory bowel disease (IBD), with encouraging outcomes observed in experimental models. They increase the bioavailability of drugs and enable targeted drug delivery, promoting localized treatment and thus enhancing efficacy. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines.


Subject(s)
Drug Delivery Systems , Inflammatory Bowel Diseases , Nanoparticles , Humans , Inflammatory Bowel Diseases/drug therapy , Nanoparticles/chemistry , Animals , Drug Carriers/chemistry , Nanoparticle Drug Delivery System/chemistry , Nanomedicine
5.
J Drug Target ; : 1-19, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38847573

ABSTRACT

The high recurrence rate of hepatocellular carcinoma (HCC) and poor prognosis after medical treatment reflects the necessity to improve the current chemotherapy protocols, particularly drug delivery methods. Development of targeted and efficient drug delivery systems (DDSs), in all active, passive and stimuli-responsive forms for selective delivery of therapeutic drugs to the tumour site has been extended to improve efficacy and reduce the severe side effects. Recent advances in nanotechnology offer promising breakthroughs in the diagnosis, treatment and monitoring of cancer cells. In this review, the specific design of DDSs based on the different nano-particles and their surface engineering is discussed. In addition, the innovative clinical studies in which nano-based DDS was used in the treatment of HCC were highlighted.

6.
Adv Healthc Mater ; : e2400784, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896790

ABSTRACT

Immunotherapy has emerged as a powerful weapon against lung cancer, yet only a fraction of patients respond to the treatment. Poly(I:C) (PIC) effectively triggers both innate and adaptive immunity. It can also induce immunogenic cell death (ICD) in tumor cells. However, its efficacy is hindered by its instability in vivo and limited cellular uptake. To address this, PIC is encapsulated in cRGD-functionalized polymersomes (t-PPIC), which significantly increases its stability and uptake, thus activating dendritic cells (DCs) and inducing apoptosis of lung tumor cells in vitro. In a murine LLC lung tumor model, systemic administration of t-PPIC effectively suppresses tumor growth and leads to survival benefits, with 40% of the mice becoming tumor-free. Notably, t-PPIC provokes stronger apoptosis and ICD in tumor tissue and elicits a more potent stimulation of DCs, recruitment of natural killer (NK) cells, and activation of CD8+ T cells, compared to free PIC and nontargeted PPIC controls. Furthermore, when combined with immune checkpoint inhibitors or radiotherapy, t-PPIC amplifies the antitumor immune response, resulting in complete regression in 60% of the mice. These compelling findings underscore the potential of integrin-targeted polymersomal PIC to enhance antitumor immunity by simultaneously inducing ICD and systemic immune activation.

7.
Life (Basel) ; 14(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38929656

ABSTRACT

In drug development, it is not uncommon that an active substance exhibits efficacy in vitro but lacks the ability to specifically reach its target in vivo. As a result, targeted drug delivery has become a primary focus in the pharmaceutical sciences. Since the approval of Doxil® in 1995, liposomes have emerged as a leading nanoparticle in targeted drug delivery. Their low immunogenicity, high versatility, and well-documented efficacy have led to their clinical use against a wide variety of diseases. That being said, every disease is accompanied by a unique set of physiological conditions, and each liposomal product must be formulated with this consideration. There are a multitude of different targeting techniques for liposomes that can be employed depending on the application. Passive techniques such as PEGylation or the enhanced permeation and retention effect can improve general pharmacokinetics, while active techniques such as conjugating targeting molecules to the liposome surface may bring even further specificity. This review aims to summarize the current strategies for targeted liposomes in the treatment of diseases.

8.
Adv Healthc Mater ; : e2400046, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767575

ABSTRACT

Triple negative breast cancer (TNBC) featuring high relapses and metastasis shows limited clinical therapeutic efficiency with chemotherapy for the extremely complex tumor microenvironment, especially angiogenesis and immunosuppression. Combination of antiangiogenesis and immunotherapy holds promise for effective inhibition of tumor proliferation and invasion, while it remains challenging for specific targeting drug delivery to tumors and metastatic lesions. Here, a multifunctional biomimetic liposome loading Gambogic acid (G/R-MLP) is developed using Ginsenoside Rg3 (Rg3) to substitute cholesterol and cancer cell membrane coating, which is designed to increase long-circulating action by a low immunogenicity and specifically deliver gambogic acid (GA) to tumor site and metastatic lesions by homologous targeting and glucose transporter targeting. After G/R-MLP accumulates in the primary tumors and metastatic nodules, it synergistically enhances the antitumor efficacy of GA, effectively suppressing the tumor growth and lung metastasis by killing tumor cells, inhibiting tumor cell migration and invasion, achieving antiangiogenesis and improving the antitumor immunity. All in all, the strategy combining chemotherapy, antiangiogenesis, and immunotherapy improves therapeutic efficiency and prolonged survival, providing a new perspective for the clinical treatment of TNBC.

9.
Colloids Surf B Biointerfaces ; 239: 113975, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762934

ABSTRACT

Early and accurate cancer diagnosis is crucial for improving patient survival rates. Luminescent nanoparticles have emerged as a promising tool in fluorescence bioimaging for cancer diagnosis. To enhance diagnostic accuracy, ligands promoting endocytosis into cancer cells are commonly incorporated onto nanoparticle surfaces. Folic acid (FA) is one such ligand, known to specifically bind to folate receptors (FR) overexpressed in various cancer cells such as cervical and ovarian carcinoma. Therefore, surface modification of luminescent nanoparticles with FA can enhance both luminescence efficiency and diagnostic accuracy. In this study, luminescent europium-doped hydroxyapatite (EuHAp) nanocrystals were prepared via hydrothermal method and subsequently modified with (3-Aminopropyl)triethoxysilane (APTES) followed by FA to target FR-positive human cervical adenocarcinoma cell line (HeLa) cells. The sequential grafting of APTES and then FA formed a robust covalent linkage between the nanocrystals and FA. Rod-shaped FA-modified EuHAp nanocrystals, approximately 100 nm in size, exhibited emission peaks at 589, 615, and 650 nm upon excitation at 397 nm. Despite a reduction in photoluminescence intensity following FA modification, fluorescence microscopy revealed a remarkable 120-fold increase in intensity compared to unmodified EuHAp, attributed to the enhanced uptake of FA-modified EuHAp. Additionally, confocal microscope observations confirmed the specificity and the internalization of FA-modified EuHAp nanocrystals in HeLa cells. In conclusion, the modification of EuHAp nanocrystals with FA presents a promising strategy to enhance the diagnostic potential of cancer bioimaging probes.


Subject(s)
Durapatite , Europium , Folic Acid , Nanoparticles , Humans , Folic Acid/chemistry , Europium/chemistry , Nanoparticles/chemistry , HeLa Cells , Durapatite/chemistry , Luminescence , Microscopy, Fluorescence , Propylamines/chemistry , Particle Size , Luminescent Agents/chemistry
10.
ACS Nano ; 18(22): 14441-14456, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38758604

ABSTRACT

The active targeting drug delivery system based on special types of endogenous cells such as macrophages has emerged as a promising strategy for tumor therapy, owing to its tumor homing property and biocompatibility. In this work, the active tumor-targeting drug delivery system carrying doxorubicin-loaded nanoparticles (DOX@MPF127-MCP-1, DMPM) on macrophage (RAW264.7) surfaces via the mediation of interaction with the CCR2/MCP-1 axis was exploited. Initially, the amphiphilic block copolymer Pluronic F127 (PF127) was carboxylated to MPF127 at the hydroxyl terminus. Subsequently, MPF127 was modified with MCP-1 peptide to prepare MPF127-MCP-1 (MPM). The DOX was wrapped in MPM to form DMPM nanomicelles (approximately 100 nm) during the self-assembly process of MPM. The DMPM spontaneously bound to macrophages (RAW264.7), which resulted in the construction of an actively targeting delivery system (macrophage-DMPM, MA-DMPM) in vitro and in vivo. The DOX in MA-DMPM was released in the acidic tumor microenvironment (TME) in a pH-responsive manner to increase DOX accumulation and enhance the tumor treatment effect. The ratio of MA-DMPM homing reached 220% in vitro compared with the control group, indicating that the MA-DMPM was excellently capable of tumor-targeting delivery. In in vivo experiments, nonsmall cell lung cancer cell (NCI-H1299) tumor models were established. The results of the fluorescence imaging system (IVIS) showed that MA-DMPM demonstrated tremendous tumor-targeting ability in vivo. The antitumor effects of MA-DMPM in vivo indicated that the proportion of tumor cell apoptosis in the DMPM-treated group was 63.33%. The findings of the tumor-bearing mouse experiment proved that MA-DMPM significantly suppressed tumor cell growth, which confirmed its immense potential and promising applications in tumor therapy.


Subject(s)
Doxorubicin , Macrophages , Nanoparticles , Poloxamer , Tumor Microenvironment , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Animals , Tumor Microenvironment/drug effects , Mice , Poloxamer/chemistry , Nanoparticles/chemistry , Macrophages/metabolism , Macrophages/drug effects , RAW 264.7 Cells , Drug Delivery Systems , Humans , Drug Carriers/chemistry , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Mice, Inbred BALB C , Chemokine CCL2/metabolism
11.
Int J Pharm X ; 7: 100249, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38689601

ABSTRACT

Breast cancer, the most common cancer among women, caused over 500,000 deaths in 2020. Conventional treatments are expensive and have severe side effects. Drug repurposing is a novel approach aiming to reposition clinically approved non-cancer drugs into newer cancer treatments. Atorvastatin calcium (ATR Ca) which is used for the treatment of hypercholesterolemia has potential to modulate cell growth and apoptosis. The study aimed at utilizing gelucire-based solid lipid nanoparticles (SLNs) and lactoferrin (Lf) as targeting ligand to enhance tumor targeting of atorvastatin calcium for effective management of breast cancer. Lf-decorated-ATR Ca-SLNs showed acceptable particle size and PDI values <200 nm and 0.35 respectively, entrapment efficiency >90% and sustained drug release profile with 78.97 ± 12.3% released after 24 h. In vitro cytotoxicity study on breast cancer cell lines (MCF-7) showed that Lf-decorated-ATR Ca-SLNs obviously improved anti-tumor activity by 2 to 2.5 folds compared to undecorated ATR Ca-SLNs and free drug. Further, In vivo study was also carried out using Ehrlich breast cancer model in mice. Caspase-3 apoptotic marker revealed superior antineoplastic and apoptosis-inducing activity in the groups treated with ATR Ca-SLNs either decorated/ undecorated with Lf in dosage 10 mg/kg/day p < 0.001 with superior activity for lactoferrin-decorated formulation.

12.
Artif Cells Nanomed Biotechnol ; 52(1): 270-277, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38696132

ABSTRACT

Spherical gold/polyacrylic acid (Au/PAA) polymer-inorganic Janus nanoparticles (JNPs) with simultaneous therapeutic and targeting functions were fabricated. The obtained Au/PAA JNPs were further selectively functionalized with folic acid (FA) and thiol PEG amine (SH-PEG-NH2) on Au sides to provide superior biocompatibility and active targeting, while the other PAA sides were loaded with 5-aminolevulinic acid (5-ALA) to serve as a photosensitizer (PS) for photodynamic therapeutic (PDT) effects on MCF-7 cancer cells. The PS loading of 5-ALA was found to be 83% with an average hydrodynamic size and z-potential of 146 ± 0.8 nm and -6.40 mV respectively for FA-Au/PAA-ALA JNPs. The in vitro PDT study of the JNPs on MCF-7 breast cancer cells under 636 nm laser irradiation indicated the cell viability of 24.7% ± 0.5 for FA-Au/PAA-ALA JNPs at the IC50 value of 0.125 mM. In this regard, the actively targeted FA-Au/PAA-ALA JNPs treatment holds great potential for tumour therapy with high cancer cell-killing efficacy.


Subject(s)
Aminolevulinic Acid , Breast Neoplasms , Gold , Photochemotherapy , Photosensitizing Agents , Humans , MCF-7 Cells , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Aminolevulinic Acid/chemistry , Aminolevulinic Acid/pharmacology , Gold/chemistry , Gold/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Nanoparticles/chemistry , Acrylic Resins/chemistry , Female , Folic Acid/chemistry , Cell Survival/drug effects
13.
J Drug Target ; : 1-19, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38748872

ABSTRACT

Breast cancer presents a significant global health challenge, ranking highest incidence rate among all types of cancers. Functionalised nanocarriers offer a promising solution for precise drug delivery by actively targeting cancer cells through specific receptors, notably folate receptors. By overcoming the limitations of passive targeting in conventional therapies, this approach holds the potential for enhanced treatment efficacy through combination therapy. Encouraging outcomes from studies like in vitro and in vivo, underscore the promise of this innovative approach. This review explores the therapeutic potential of FA (Folic acid) functionalised nanocarriers tailored for breast cancer management, discussing various chemical modification techniques for functionalization. It examines FA-conjugated nanocarriers containing chemotherapeutics to enhance treatment efficacy and addresses the pharmacokinetic aspect of these functionalised nanocarriers. Additionally, the review integrates active targeting via folic acid with theranostics, photothermal therapy, and photodynamic therapy, offering a comprehensive management strategy. Emphasising rigorous experimental validation for practical utility, the review underscores the need to bridge laboratory research to clinical application. While these functionalised nanocarriers show promise, their credibility and applicability in real-world settings necessitate thorough validation for effective clinical use.

14.
Nanomedicine ; 58: 102751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705222

ABSTRACT

Active targeting can enhance precision and efficacy of drug delivery systems (DDS) against cancers. Riboflavin (RF) is a promising ligand for active targeting due to its biocompatibility and high riboflavin-receptor expression in cancers. In this study, RF-targeted 4-arm polyethylene glycol (PEG) stars conjugated with Paclitaxel (PTX), named PEG PTX RF, were evaluated as a targeted DDS. In vitro, PEG PTX RF exhibited higher toxicity against tumor cells compared to the non-targeted counterpart (PEG PTX), while free PTX displayed the highest acute toxicity. In vivo, all treatments were similarly effective, but PEG PTX RF-treated tumors showed fewer proliferating cells, pointing to sustained therapy effects. Moreover, PTX-treated animals' body and liver weights were significantly reduced, whereas both remained stable in PEG PTX and PEG PTX RF-treated animals. Overall, our targeted and non-targeted DDS reduced PTX's adverse effects, with RF targeting promoted drug uptake in cancer cells for sustained therapeutic effect.


Subject(s)
Drug Delivery Systems , Paclitaxel , Polyethylene Glycols , Riboflavin , Paclitaxel/pharmacology , Paclitaxel/chemistry , Riboflavin/pharmacology , Riboflavin/chemistry , Animals , Humans , Mice , Polyethylene Glycols/chemistry , Cell Line, Tumor , Mice, Inbred BALB C , Polymers/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Mice, Nude , Neoplasms/drug therapy , Neoplasms/pathology , Xenograft Model Antitumor Assays , Female
15.
Front Nutr ; 11: 1379982, 2024.
Article in English | MEDLINE | ID: mdl-38798768

ABSTRACT

Zein is the main vegetable protein from maize. In recent years, Zein has been widely used in pharmaceutical, agriculture, food, environmental protection, and other fields because it has excellent biocompatibility and biosafety. However, there is still a lack of systematic review and research on Zein-based nano-delivery systems. This paper systematically reviews preparation and modification methods of Zein-based nano-delivery systems, based on the basic properties of Zein. It discusses the preparation of Zein nanoparticles and the influencing factors in detail, as well as analyzing the advantages and disadvantages of different preparation methods and summarizing modification methods of Zein nanoparticles. This study provides a new idea for the research of Zein-based nano-delivery system and promotes its application.

16.
Pharmaceutics ; 16(4)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38675140

ABSTRACT

Over the past few decades, photodynamic therapy (PDT) has evolved as a minimally invasive treatment modality offering precise control over cancer and various other diseases. To address inherent challenges associated with PDT, researchers have been exploring two promising avenues: the development of intelligent photosensitizers activated through light-induced energy transfers, charges, or electron transfers, and the disruption of photosensitive bonds. Moreover, there is a growing emphasis on the bioorthogonal delivery or activation of photosensitizers within tumors, enabling targeted deployment and activation of these intelligent photosensitive systems in specific tissues, thus achieving highly precise PDT. This concise review highlights advancements made over the last decade in the realm of light-activated or bioorthogonal photosensitizers, comparing their efficacy and shaping future directions in the advancement of photodynamic therapy.

17.
Small ; : e2400919, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639010

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly aggressive and uncommon subtype of breast cancer with a poor prognosis. It is crucial to prioritise the creation of a nanotherapeutic method that is highly selective and actively targeting TNBC. This study explores a new nanosystem, Cu9S8-SNAP@PM (C-S@P), composed of Cu9S8-SNAP coated with a platelet membrane (PM). The purpose of this nanosystem is to cure TNBC using multimodal therapy. The utilisation of PM-coated nanoparticles (NPs) enables active targeting, leading to the efficient accumulation of C-S@P within the tumour. The Cu9S8 component within these NPs serves the potential to exert photothermal therapy (PTT) and chemodynamic therapy (CDT). Simultaneously, the S-Nitroso-N-Acetylvanicillamine (SNAP) component enables nitric oxide (NO) gas therapy (GT). Furthermore, when exposed to NIR-II laser light, Cu9S8 not only increases the temperature of the tumour area for PTT, but also boosts CDT and stimulates the release of NO through thermal reactions to improve the effectiveness of GT. Both in vitro and in vivo experimental results validate that C-S@P exhibits minimal side effects and represents a multifunctional nano-drug targeted at tumors for efficient treatment. This approach promises significant potential for TNBC therapy and broader applications in oncology.

18.
Front Oncol ; 14: 1296091, 2024.
Article in English | MEDLINE | ID: mdl-38660132

ABSTRACT

Cancer is a severe disease that results in death in all countries of the world. A nano-based drug delivery approach is the best alternative, directly targeting cancer tumor cells with improved drug cellular uptake. Different types of nanoparticle-based drug carriers are advanced for the treatment of cancer, and to increase the therapeutic effectiveness and safety of cancer therapy, many substances have been looked into as drug carriers. Lipid-based nanoparticles (LBNPs) have significantly attracted interest recently. These natural biomolecules that alternate to other polymers are frequently recycled in medicine due to their amphipathic properties. Lipid nanoparticles typically provide a variety of benefits, including biocompatibility and biodegradability. This review covers different classes of LBNPs, including their characterization and different synthesis technologies. This review discusses the most significant advancements in lipid nanoparticle technology and their use in medicine administration. Moreover, the review also emphasized the applications of lipid nanoparticles that are used in different cancer treatment types.

19.
Life (Basel) ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672759

ABSTRACT

The specific interaction between cell surface receptors and corresponding antibodies has driven opportunities for developing targeted cancer therapies using nanoparticle systems. It is challenging to design and develop such targeted nanomedicines using antibody ligands, as the final nanoconjugate's specificity hinges on the cohesive functioning of its components. The multicomponent nature of antibody-conjugated nanoparticles also complicates the characterization process. Regardless of the type of nanoparticle, it is essential to perform physicochemical characterization to establish a solid foundation of knowledge and develop suitable preclinical studies. A meaningful physicochemical evaluation of antibody-conjugated nanoparticles should include determining the quantity and orientation of the antibodies, confirming the antibodies' integrity following attachment, and assessing the immunoreactivity of the obtained nanoconjugates. In this review, the authors describe the various techniques (electrophoresis, spectroscopy, colorimetric assays, immunoassays, etc.) used to analyze the physicochemical properties of nanoparticles functionalized with antibodies and discuss the main results.

20.
J Nanobiotechnology ; 22(1): 198, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649957

ABSTRACT

Heat shock protein 90 (HSP90) is overexpressed in numerous cancers, promotes the maturation of numerous oncoproteins and facilitates cancer cell growth. Certain HSP90 inhibitors have entered clinical trials. Although less than satisfactory clinical effects or insurmountable toxicity have compelled these trials to be terminated or postponed, these results of preclinical and clinical studies demonstrated that the prospects of targeting therapeutic strategies involving HSP90 inhibitors deserve enough attention. Nanoparticulate-based drug delivery systems have been generally supposed as one of the most promising formulations especially for targeting strategies. However, so far, no active targeting nano-formulations have succeeded in clinical translation, mainly due to complicated preparation, complex formulations leading to difficult industrialization, incomplete biocompatibility or nontoxicity. In this study, HSP90 and CD44-targeted A6 peptide functionalized biomimetic nanoparticles (A6-NP) was designed and various degrees of A6-modification on nanoparticles were fabricated to evaluate targeting ability and anticancer efficiency. With no excipients, the hydrophobic HSP90 inhibitor G2111 and A6-conjugated human serum albumin could self-assemble into nanoparticles with a uniform particle size of approximately 200 nm, easy fabrication, well biocompatibility and avoidance of hepatotoxicity. Besides, G2111 encapsulated in A6-NP was only released less than 5% in 12 h, which may avoid off-target cell toxicity before entering into cancer cells. A6 peptide modification could significantly enhance uptake within a short time. Moreover, A6-NP continues to exert the broad anticancer spectrum of Hsp90 inhibitors and displays remarkable targeting ability and anticancer efficacy both in hematological malignancies and solid tumors (with colon tumors as the model cancer) both in vitro and in vivo. Overall, A6-NP, as a simple, biomimetic and active dual-targeting (CD44 and HSP90) nanomedicine, displays high potential for clinical translation.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , HSP90 Heat-Shock Proteins , Hyaluronan Receptors , Leukemia, Myeloid, Acute , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Humans , Hyaluronan Receptors/metabolism , Animals , Cell Line, Tumor , Mice , Colonic Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Nanoparticles/chemistry , Drug Delivery Systems/methods , Mice, Nude , Mice, Inbred BALB C , Peptides/chemistry , Peptides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...