Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Acta Trop ; 248: 107033, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37783284

ABSTRACT

Acanthamoeba castellanii is an opportunistic free-living amoeba (FLA) pathogen which can cause fatal central nervous system (CNS) infection, granulomatous amoebic encephalitis (GAE) and potentially blinding ocular infection, Acanthamoeba keratitis (AK). Acanthamoeba species remain a challenging protist to treat due to the unavailability of safe and effective therapeutic drugs and their ability to protect themselves in the cyst stage. Natural products and their secondary metabolites play a pivotal role in drug discovery against various pathogenic microorganisms. In the present study, the ethyl acetate extract of Myristica cinnamomea King fruit was evaluated against A. castellanii (ATCC 50492), showing an IC50 of 45.102 ± 4.62 µg/mL. Previously, the bio-guided fractionation of the extract resulted in the identification of three active compounds, namely Malabaricones (A-C). The isolated and thoroughly characterized acylphenols were evaluated for their anti-amoebic activity against A. castellanii for the first time. Among tested compounds, Malabaricone B (IC50 of 101.31 ± 17.41 µM) and Malabaricone C (IC50 of 49.95 ± 6.33 µM) showed potent anti-amoebic activity against A. castellanii trophozoites and reduced their viability up-to 75 and 80 %, respectively. Moreover, both extract and Malabaricones also significantly (p < 0.05) inhibit the encystation and excystation of A. castellanii, while showed minimal toxicity against human keratinocyte cells (HaCaT cells) at lower tested concentrations. Following that, the explanation of the possible mechanism of action of purified compounds were assessed by detection of the state of chromatin. Hoechst/PI 33342 double staining showed that necrotic cell death occurred in A. castellanii trophozoites after 8 h treatment of Malabaricones (A-C). These findings demonstrate that Malabaricones B and C could serve as promising therapeutic options against A. castellanii infections.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba castellanii , Amebiasis , Amebicides , Myristica , Animals , Humans , Amebicides/pharmacology , Fruit , Amebiasis/drug therapy , Trophozoites
2.
Plants (Basel) ; 12(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37111813

ABSTRACT

The genus Myristica is a medicinally important genus belonging to the Myristicaceae. Traditional medicinal systems in Asia have employed plants from the genus Myristica to treat a variety of ailments. Acylphenols and dimeric acylphenols are a rare group of secondary metabolites, which, to date, have only been identified in the Myristicaceae, in particular, in the genus Myristica. The aim of the review would be to provide scientific evidence that the medicinal properties of the genus Myristica could be attributed to the acylphenols and dimeric acylphenols present in the various parts of its plants and highlight the potential in the development of the acylphenols and dimeric acylphenols as pharmaceutical products. SciFinder-n, Web of Science, Scopus, ScienceDirect, and PubMed were used to conduct the literature search between 2013-2022 on the phytochemistry and the pharmacology of acylphenols and dimeric acylphenols from the genus Myristica. The review discusses the distribution of the 25 acylphenols and dimeric acylphenols within the genus Myristica, their extraction, isolation, and characterization from the respective Myristica species, the structural similarities and differences within each group and between the different groups of the acylphenols and dimeric acylphenols, and their in vitro pharmacological activities.

3.
Tropical Biomedicine ; : 79-84, 2021.
Article in English | WPRIM (Western Pacific) | ID: wpr-904578

ABSTRACT

@#The NS2B/NS3 protease is crucial for the pathogenesis of the DENV. Therefore, the inhibition of this protease is considered to be the key strategy for the development of new antiviral drugs. In the present study, malabaricones C (3) and E (4), acylphenols from the fruits of Myristica cinnamomea King, have been respectively identified as moderate (27.33 ± 5.45 μM) and potent (7.55 ± 1.64 μM) DENV-2 NS2B/NS3 protease inhibitors, thus making this the first report on the DENV-2 NS2B/NS3 protease inhibitory activity of acylphenols. Based on the molecular docking studies, compounds 3 and 4 both have π-π interactions with Tyr161. While compound 3 has hydrogen bonding interactions with Gly151, Gly153 and Tyr161, compound 4 however, forms hydrogen bonds with Ser135, Asp129, Phe130 and Ile86 instead. The results from the present study suggests that malabaricones C (3) and E (4) could be employed as lead compounds for the development of new dengue antivirals from natural origin.

4.
Bioorg Med Chem Lett ; 26(15): 3785-92, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27236720

ABSTRACT

A new acylphenol, malabaricone E (1) together with the known malabaricones A-C (2-4), maingayones A and B (5 and 6) and maingayic acid B (7) were isolated from the ethyl acetate extract of the fruits of Myristica cinnamomea King. Their structures were determined by 1D and 2D NMR techniques and LCMS-IT-TOF analysis. Compounds 3 (1.84±0.19 and 1.76±0.21µM, respectively) and 4 (1.94±0.27 and 2.80±0.49µM, respectively) were identified as dual inhibitors, with almost equal acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibiting potentials. The Lineweaver-Burk plots of compounds 3 and 4 indicated that they were mixed-mode inhibitors. Based on the molecular docking studies, compounds 3 and 4 interacted with the peripheral anionic site (PAS), the catalytic triad and the oxyanion hole of the AChE. As for the BChE, while compound 3 interacted with the PAS, the catalytic triad and the oxyanion hole, compound 4 only interacted with the catalytic triad and the oxyanion hole.


Subject(s)
Acetylcholinesterase/metabolism , Biological Products/pharmacology , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Myristicaceae/chemistry , Animals , Biological Products/chemistry , Biological Products/isolation & purification , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
5.
Fitoterapia ; 111: 12-7, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27072985

ABSTRACT

Giganteone E (1), a new dimeric acylphenol was isolated as a minor constituent from the bark of Myristica maxima Warb. The structure of 1 was established on the basis of 1D and 2D NMR techniques and LCMS-IT-TOF analysis. Malabaricones A-C (2-4), giganteones A and C (5 and 6), maingayones A and B (7 and 8), maingayic acid B (9) and ß-sitosteryl oleate (10) were also characterized in this plant for the first time. Compound 10 was identified for the first time in the Myristicaceae. Compounds 2 and 5 were active against human prostate cancer cell-lines, thus making this the first report on the prostate cancer inhibiting potential of acylphenols and dimeric acylphenols. Compounds 1, 4, 5, 7 and 8 exhibited potent DPPH free radical scavenging activity. This is the first report on their free radical scavenging capacity.


Subject(s)
Myristicaceae/chemistry , Phenols/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor/drug effects , Free Radical Scavengers/isolation & purification , Free Radical Scavengers/pharmacology , Humans , Male , Molecular Structure , Phenols/isolation & purification , Prostatic Neoplasms/pathology , Resorcinols/isolation & purification , Resorcinols/pharmacology
6.
Molecules ; 21(3): 391, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-27102164

ABSTRACT

Malabaricones A-C (1-3) and giganteone A (4) were isolated from the bark of Myristica cinnamomea King. Their structures were elucidated and characterized by means of NMR and MS spectral analyses. These isolates were evaluated for their anti-quorum sensing activity using quorum sensing biosensors, namely Escherichia coli [pSB401] and Escherichia coli [pSB1075], whereby the potential of giganteone A (4) as a suitable anti-quorum sensing agent was demonstrated.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biosensing Techniques , Biphenyl Compounds/pharmacology , Quorum Sensing/drug effects , Resorcinols/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Biphenyl Compounds/chemistry , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Humans , Myristicaceae/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Resorcinols/chemistry , Resorcinols/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...