ABSTRACT
Clay materials and nanoclays have gained recent popularity in the vaccinology field, with biocompatibility, simple functionalization, low toxicity, and low-cost as their main attributes. As elements of nanovaccines, halloysite nanotubes (natural), layered double hydroxides and hectorite (synthetic) are the nanoclays that have advanced into the vaccinology field. Until now, only physisorption has been used to modify the surface of nanoclays with antigens, adjuvants, and/or ligands to create nanovaccines. Protocols to covalently attach these molecules have not been developed with nanoclays, only procedures to develop adsorbents based on nanoclays that could be extended to develop nanovaccine conjugates. In this review, we describe the approaches evaluated on different nanovaccine candidates reported in articles, the immunological results obtained with them and the most advanced approaches in the preclinical field, while describing the nanomaterial itself. In addition, complex systems that use nanoclays were included and described. The safety of nanoclays as carriers is an important key fact to determine their true potential as nanovaccine candidates in humans. Here, we present the evaluations reported in this field. Finally, we point out the perspectives in the development of vaccine prototypes using nanoclays as antigen carriers.
ABSTRACT
The bacterium Clostridium chauvoei is the causative agent of blackleg in livestock, and vaccination is the most effective means of prevention. The aim of this study was to assess the effect of short-term supplementation with Bacillus toyonensis and Saccharomyces boulardii on the immune response to a C. chauvoei vaccine in sheep. Sheep were vaccinated subcutaneously on day 0 and received a booster dose on day 21, with 2 mL of a commercial vaccine formulated with inactivated C. chauvoei bacterin adsorbed on aluminum hydroxide. Probiotics were orally administered B. toyonensis (3 × 108 cfu) and S. boulardii (3 × 108 cfu) over five days prior to the first and second doses of the vaccine. Sheep supplemented with B. toyonensis and S. boulardii showed significantly higher specific IgG, IgG1, and IgG2 titers (P<0.05), with approximately 24- and 14-fold increases in total IgG levels, respectively, than the nonsupplemented group. Peripheral blood mononuclear cells from the supplemented group had increased mRNA transcription levels of the IFN-γ, IL2, and Bcl6 genes. These results demonstrate an adjuvant effect of short-term supplementation with B. toyonensis and S. boulardii on the immune response against the C. chauvoei vaccine in sheep.
Subject(s)
Bacillus/immunology , Bacterial Vaccines/immunology , Clostridium Infections/veterinary , Clostridium chauvoei/immunology , Saccharomyces boulardii/immunology , Sheep Diseases/prevention & control , Animals , Antibodies, Bacterial/immunology , Clostridium Infections/immunology , Clostridium Infections/prevention & control , Female , Immunoglobulin G/immunology , Immunomodulation , Interferon-gamma/genetics , Interleukin-2/genetics , Probiotics/administration & dosage , Proto-Oncogene Proteins c-bcl-6/genetics , Sheep , Sheep Diseases/immunology , Transcription, GeneticABSTRACT
Spores of the genus Bacillus are molecules capable of increasing the vaccine adjuvanticity. Bovine herpesvirus type 5 (BoHV-5) is responsible for meningoencephalitis that causes important economic losses in cattle. BoHV-5 glycoprotein D (gD) is a target of vaccine antigen and plays an important role in host cell penetration. The present study aimed to evaluate the adjuvanticity of Bacillus toyonensis (B.t) spores, live and heat-killed, associated with a vaccine formulated with aluminum hydroxide (alum) and the recombinant BoHV-5 glycoprotein D (rgD) in an experimental murine model. Six experimental groups of mice were subcutaneously vaccinated on day 0 and received a booster on day 21 of the experiment, with the following vaccine formulations: rgD (40 µg) + live spores (2 × 109 CFU); rgD + killed spores; rgD + live spores + alum (2.0 mg); rgD + killed spores + alum; rgD + alum, and rgD + PBS. Mice from rgD + live spores group showed an increase in rgD IgG titers from the 21st day until the end of the experiment. The groups of live and killed spores, associated to alum, had similar levels of IgG titers with no significant difference between each other; however, by the 14th and 28th day until the end of the experiment, presented higher IgG titers in comparison to the rgD + alum group. Moreover, increased serum levels of IgG1, IgG2a, and IgG2b were detected in mice that received spores in the vaccine formulation. The spores associated with alum groups showed neutralizing BoHV-5 antibodies and high mRNA transcription of the cytokines IFN-γ (66-fold), IL-17 (14-fold), and IL-12 (2.8-fold). In conclusion, our data demonstrated that the B. toyonensis spores, live or killed, associated with alum increased the adjuvanticity for BoHV-5 rgD in mice, suggesting the use of B. toyonensis spores as a promising component for vaccine formulations.