Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 808
Filter
1.
J Environ Sci (China) ; 149: 21-34, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181636

ABSTRACT

During the water treatment process, chlorination and ultraviolet (UV) sterilization can modify microplastics (MPs) and alter their physicochemical properties, causing various changes between MPs and other pollutants. In this study, the impact of chlorination and UV modification on the physicochemical properties of polystyrene (PS) and polyvinyl chloride (PVC) were investigated, and the adsorption behavior of pefloxacin (PEF) before and after modification was examined. The effect of pH, ionic strength, dissolved organic matter, heavy metal ions and other water environmental conditions on adsorption behavior was revealed. The results showed that PS had a higher adsorption capacity of PEF than PVC, and the modification increased the presence of O-containing functional groups in the MPs, thereby enhancing the adsorption capacity of both materials. Chlorination had a more significant impact on the physicochemical properties of MPs compared to UV irradiation within the same time period, leading to better adsorption performance of chlorination. The optimal pH for adsorption was found to be 6, and NaCl, sodium alginate and Cu2+ would inhibit adsorption to varying degrees, among which the inhibition caused by pH was the strongest. Chlorination and UV modification would weaken the inhibitory effect of environmental factors on the adsorption of PEF by MPs. The main mechanisms of adsorption involved electrostatic interaction and hydrogen bonding. The study clarified the effects of modification on the physicochemical properties of MPs, providing reference for subsequent biotoxicity analysis and environmental protection studies.


Subject(s)
Halogenation , Pefloxacin , Polystyrenes , Polyvinyl Chloride , Ultraviolet Rays , Water Pollutants, Chemical , Water Purification , Adsorption , Polyvinyl Chloride/chemistry , Water Pollutants, Chemical/chemistry , Polystyrenes/chemistry , Water Purification/methods , Pefloxacin/chemistry , Hydrogen-Ion Concentration
2.
J Environ Manage ; 370: 122757, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39383753

ABSTRACT

The modified walnut shell biochar (WBC) was prepared through zinc-iron bimetallic oxide modification (ZF@WBC) at 600 °C under oxygen-limited conditions in this study. Through adsorption experiments, characterization analyses, and density functional theory (DFT) calculations, the adsorption properties of ZF@WBC to Pb (II) were investigated and the mechanism underlying such adsorption was elucidated. Characterization results showed that the surface area (375.9709 m2/g) and total pore volume (0.205319 cm3/g) of ZF@WBC were significantly greater than those of walnut shell biochar. The maximum adsorption capacity of ZF@WBC for Pb (II) was found to be 104.26 mg/g, which is 2.57 times higher than that of WBC according to the adsorption experiments conducted. The observed adsorption behavior followed both the pseudo-second-order (PSO) kinetic model and Langmuir isothermal adsorption model, suggesting that chemisorption plays a major role in the absorption process. Based on SEM, XRD, XPS, FTIR characterizations along with DFT calculations performed in this study, it can be concluded that surface complexation, ion exchange, electrostatic attraction, physical absorption are among the main mechanisms responsible for absorption of Pb (II) by ZF@WBC. Furthermore, even in the presence of interfering ions at different concentrations, ZF@WBC exhibited a removal rate above 70% for Pb (II). Therefore, ZF@WBC has great potential as an effective absorbent for removing Pb (II) from wastewater, while also offering opportunities for biomass waste resource utilization.

3.
Int J Biol Macromol ; : 136305, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374712

ABSTRACT

A composite aerogel (CGMA) with high porosity (98.32 %) and multiple active sites was prepared for the adsorption of Pb(II) and Cu(II) by sol-gel combined with freeze-drying process using melamine and (3-Glycidyloxypropyl)trimethoxysilane as cellulose nanofiber modifying materials. Characterized by SEM-EDS, XPS, FTIR, BET, MIP and TG, CGMA has a hierarchical pore structure and abundant adsorption sites. At pH = 6, the adsorption reached equilibrium within 120 min, following the Pseudo second-order kinetic model and the Langmuir model, with maximum capacities of 268.1 mg/g for Pb(II) and 152.6 mg/g for Cu(II). The process was primarily governed by homogeneous chemisorption. The coexisting ion, organic matter, and water quality experiments confirmed the excellent anti-interference properties of CGMA. Competitive adsorption experiments showed that CGMA has excellent selective adsorption performance for Pb(II). After 5 cycles, Pb(II) and Cu(II) adsorption performance decreased to 79.21 % and 83.40 %, respectively. FTIR, XPS, DFT and RDG analysis showed that amino groups and oxygen-containing groups were the main sites of adsorption. CGMA forms coordination bonds and complexes with Pb(II) and Cu(II) via amine and oxygen groups and adsorbs via electron transfer, hydrogen bonding, and van der Waals forces, with Pb(II) being more selective. CGMA has good prospects for application in heavy metal ion treatment.

4.
Sci Rep ; 14(1): 23073, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39367104

ABSTRACT

A large amount of arsenic-containing wastewater discharged by the non-ferrous metal industry will cause serious environmental problems if it is not properly treated. Pyrolysis char of waste tire is a kind of solid waste. Since the surface properties of tire derived char (TC) are affected by tar/ash adhesion during pyrolysis, it is necessary to modify TC to treat wastewater containing As(V) effectively as an adsorbent. At present, most studies on the modification of TC are prepared into activated carbon by high temperature activation in N2 atmosphere. In this study, TC was modified at room temperature and air atmosphere, and Fe(OH)3-TCNaOH adsorbent with particle size of 61-75 µm was obtained under the premise of the removal rate of As(V) and the settling performance of the adsorbent. When the initial concentration of As(V) was 5 mg/L, the removal rate of As(V) by Fe(OH)3-TCNaOH with a particle size of 61-75 µm could reach 90% within 30 min under a wide pH range (3-9). The adsorption of As(V) by Fe(OH)3-TCNaOH was most affected by the coexistence of PO43-, which resulted in the removal rate of As(V) decreased by about 20%. The adsorption mechanism shows that the significant increase in the number of 3-5 nm mesoporous pores of Fe(OH)3-TCNaOH and the formation of H bonds are beneficial to the adsorption of Fe(OH)3-TCNaOH to As(V), and improve the stability of Fe-As complex.

5.
J Colloid Interface Sci ; 679(Pt A): 358-374, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39366265

ABSTRACT

Water pollution and agricultural waste are pressing global issues. Herein, a biomass aerogel derived from waste taro stem microcrystalline cellulose (TS-MCC) was fabricated, in which, the effects of cellulose amount, cross-linker content, pre-freezing protocols on the aerogel's property were studied. The optimized TS-MCC2.0 aerogel exhibited a hierarchical porous structure with good mechanical property (65.04 kPa) and adsorption capacities, with the qm towards microplastics (Polystyrene, PS) and dye (Congo red, CR) being 418.6 mg/g and 951.51 mg/g at 298 K, respectively. Meanwhile, it exhibited good applicability under different pH (3-11) and ionic strength environments, as well as the retained notably simultaneous adsorption ability even under mixed contaminant systems. The mathematical models suggested that the adsorption of PS and CR both fitted pseudo-second-order kinetics, and the adsorption isotherms could be described by the Langmuir and Freundlich models, respectively. Hydrogen bonding, electrostatic attraction, and π-π interactions were inferred as the main adsorption mechanisms towards PS and CR according to Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy analysis. Moreover, the adsorption efficiencies were 92.37 % for PS and 88.34 % for CR after 5 reuse cycles. Therefore, this study provides a green aerogel sorbent for adsorbing microplastics and dyes contaminants.

6.
Small ; : e2406068, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223867

ABSTRACT

Electrochemical upcycling of end-of-life polyethylene terephthalate (PET) using renewable electricity offers a route to generate valuable chemicals while processing plastic wastes. However, it remains a huge challenge to design an electrocatalyst with reliable structure-property relationships for PET valorization. Herein, spinel Co3O4 with rich oxygen vacancies for improved activity toward formic acid (FA) production from PET hydrolysate is reported. Experimental investigations combined with theoretical calculations reveal that incorporation of VO into Co3O4 not only promotes the generation of reactive hydroxyl species (OH*) species at adjacent tetrahedral Co2+ (Co2+ Td), but also induces an electronic structure transition from octahedral Co3+ (Co3+ Oh) to octahedral Co2+ (Co2+ Oh), which typically functions as highly-active catalytic sites for ethylene glycol (EG) chemisorption. Moreover, the enlarged Co-O covalency induced by VO facilitates the electron transfer from EG* to OH* via Co2+ Oh-O-Co2+ Td interaction and the following C─C bond cleavage via direct oxidation with a glyoxal intermediate pathway. As a result, the VO-Co3O4 catalyst exhibits a high half-cell activity for EG oxidation, with a Faradaic efficiency (91%) and productivity (1.02 mmol cm-2 h-1) of FA. Lastly, it is demonstrated that hundred gram-scale formate crystals can be produced from the real-world PET bottles via two-electrode electroreforming, with a yield of 82%.

7.
Environ Technol ; : 1-13, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258839

ABSTRACT

In this work, a kind of novel Chitosan (Cs)-doped zeolite imidazole framework (ZIF-8@Cs) with a larger surface area and a smaller pore size was synthesised via a facial solvothermal approach and applied to remove Cu2+ from mine wastewater. Compared to nondoped ZIF-8, ZIF-8@Cs exhibited a stronger adsorption performance and removal efficiency. The reason was that ZIF-8@Cs doped by the Cs could suppress the aggregation and increase the monodispersity of ZIF-8. Using the high-performance ZIF-8@Cs, as a novel adsorbent, was successfully developed for the efficient removal of Cu2+ from mine wastewater. Various parameters, such as contact time, initial Cu2+ concentration, adsorbent dosage, and pH, were investigated. The results showed that a removal efficiency of 85% was obtained at 4 h contact time for a Cu2+ concentration of 30 mg/L at the optimum pH of 6.0. Equilibrium data were analysed using different isothermal models and kinetic models, analytic results indicated that the capture of Cu2+ by ZIF-8@Cs could favourably comply with the pseudo-first-order kinetic model and Langmuir isotherm model. The single-layer adsorption of Cu2+ on ZIF-8@Cs was dominated by diffusional mass transfer. Additionally, the results of the thermodynamic analysis indicated that the adsorption of Cu2+ by ZIF-8/Cs was a spontaneous, exothermic, and ordered process. Overall, the results reported herein indicated that ZIF-8/Cs with high adsorption efficiency are very attractive and imply a potential practical application for the removal of potentially toxic elements in wastewater.

8.
Molecules ; 29(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39275110

ABSTRACT

Phosphoric acid is used as a chemical activator to prepare coconut shell carbon (PCSC), and for investigating rhodamine B (RhB) adsorption performance. The optimal conditions for the preparation of PCSC (calcined temperature, phosphoric acid concentration), and the influence of adsorption conditions (concentration, pH, etc.) on RhB and the recovery performance of optimal carbon are investigated. Experimental results show that when the amount of PCSC (600 °C, 2 h) is 0.2 g, the initial RhB concentration is 10 mg/L, pH = 6, and the adsorption time is 30 min, it can have 95.84% RhB adsorption efficiency. Liquid ultraviolet spectroscopy also supports this adsorption performance. Characterization data showed that hydroxyl and ester groups, aromatic structures, and PO43- existed on the surface of PCSC, and the amount decreased with increasing calcined temperature. PCSC has a BET (N2) surface area of 408.59 m2/g and has a micropore distribution, EDS-detected P content is 3.91%. SEM showed that the PCSC formed micropores which could better adsorb RhB. The kinetic and thermodynamic analysis of the adsorption of RhB by PCSC showed that the adsorption process was in accord with quasi-secondary kinetic equations and ΔGθ was between -1.65 and -18.75 kJ/mol. The adsorption was a physical adsorption and a spontaneous endothermic reaction, and the obtained PCSC sorption isotherms were classified as Langmuir-type. The RhB adsorption mechanism on PCSC includes pore diffusion, hydrogen bonding, and π-π conjugation. The PCSC prepared by H3PO4 modification has superior adsorption and recycling performance for RhB, providing a reference for the preparation of other biomass carbon materials for the treatment of dye wastewater.

9.
Heliyon ; 10(17): e37497, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39290289

ABSTRACT

Lignin, an abundant natural resource, has not been effectively utilized. In this study, the functionality of lignin was enhanced through amination to produce amine-crosslinked lignin, and its adsorption behavior toward cationic and anionic dyes was investigated. Chemical structure analysis confirmed the successful introduction of amine groups, thereby improving the molecular weight and thermal stability of the optimized amine-crosslinked lignin. Additionally, the amine-crosslinked lignin exhibited a larger specific surface area than kraft lignin, as well as excellent adsorption capacity for both anionic and cationic dyes. Furthermore, it selectively adsorbed anionic and cationic dyes depending on pH conditions. The adsorption kinetics were described using a pseudo-second-order model, and the adsorption isotherms for congo red and methyl green were determined using the Langmuir and Freundlich equations, respectively. Additionally, the reusability and adsorption efficiency of the optimized amine-crosslinked lignin were evaluated, confirming its stable and repeatable adsorption efficiency for congo red and methyl green even after five repeated cycles. The assumed adsorption mechanism was attributed to electrostatic interactions. Therefore, the successful synthesis and excellent adsorption properties of amine-crosslinked lignin suggest its promising potential for environmentally friendly and efficient removal of both cationic and anionic dyes, thereby offering a sustainable solution for wastewater treatment and remediation.

10.
Sci Rep ; 14(1): 21629, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285202

ABSTRACT

Arsenic contamination in aqueous media is a serious environmental problem, especially in developing countries. In this research, the Box-Behnken response surface methodology was used to optimize the most relevant variables affecting arsenic adsorption on the ZnO-halloysite surface, including temperature, adsorbent dosage, pH, contact time, and As (III) initial concentration. The regression analysis indicated that the experimental data were appropriately fitted to a quadratic model with the adjusted R-squared value (R2) of 0.982 for As(III) adsorption capacity and a linear model with R2 of 0.931 for As(III) removal. The p-values for both adsorption capacity and removal efficiency were below 0.05, with F-values of 116.91 and 115.58, respectively, supporting the model's validity. The optimum conditions for maximum removal of As(III) were determined through numerical and graphical optimization using the desirability function. It was found that the optimum conditions for adsorption were pH = 7.99, contact time of 3.99 h, As(III) initial concentration of 49.96 mg/L, and adsorbent dosage of 0.135 g/40 ml. The accuracy of the optimization procedure was confirmed by a confirmatory experiment, which showed a maximum arsenic removal of 91.31% and an adsorption capacity of 12.63 mg/g under optimized conditions. Moreover, XPS analysis was performed at different pH levels to investigate the As (III) adsorption mechanism. The results demonstrated that As(III) adsorption occurs at acidic and neutral pH levels. On the other hand, when pH is increased to 8, As (III) oxidizes to As (V), and then adsorption occurs.

11.
J Colloid Interface Sci ; 678(Pt B): 609-618, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39265333

ABSTRACT

HYPOTHESIS: Host rock weathering and incipient pedogenesis result in the exposition of minerals, e.g., clay minerals in sedimentary limestones. Once exposed, these minerals provide the surfaces for fluid-solid interactions that control the fate of dissolved or suspended compounds such as organic matter and colloids. However, the functional and compositional diversity of organic matter and colloids limits the assessment of reactivity and availability of clay mineral interfaces. Such assessment demands a mobile compound with strong affinity to clay surfaces that is alien to the subsurface. EXPERIMENT: We approached this challenge by using poly(ethylene glycol) (PEG) as interfacial tracer in limestone weathering experiments. FINDINGS: PEG adsorption and transport was dependent on the availability of clay mineral surfaces and carbonate dissolution dynamics. In addition, PEG adsorption featured adsorption-desorption hysteresis which retained PEG mass on clay mineral surfaces. This resulted in different PEG transport for experiments conducted consecutively in the same porous medium. As such, PEG transport was reconstructed with a continuum-scale model parametrized by a Langmuir-type isotherm including hysteresis. Thus, we quantified the influence of exposed clay mineral surfaces on the transport of organic colloids in carbonate media. This renders PEG a suitable model colloid tracer for the assessment of clay surface exposition in porous media.

12.
Appl Radiat Isot ; 213: 111461, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39217857

ABSTRACT

The zirconium metal - organic framework MIP-202(Zr), based on L-aspartic acid, was prepared by hydrothermal method and used for study of ruthenium adsorption from aqueous solutions. The obtained material was characterized by X-ray diffraction (XRD), infra red spectroscopy (IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The batch adsorption experiment was performed for determination of adsorption equilibrium, kinetics and thermodynamics parameters to Ru(III) from aqueous solution on MIP-202(Zr). The data of ruthenium sorption onto MIP-202(Zr) were fitted and analyzed by the Langmuir, Freundlich and Temkin equilibrium isotherm models, while the Langumir adsorption isotherm models fit the best. Kinetic data were analyzed by four kinetic models, and ruthenium sorption on MIP202(Zr) can be describes the best by intra particle diffusion (Weber Morris). Analysis of thermodynamic properties of ruthenium ions sorption onto MIP-202(Zr) shows that the sorption process has a spontaneous and endothermic nature and is energetically beneficial.

13.
Sci Rep ; 14(1): 22214, 2024 09 27.
Article in English | MEDLINE | ID: mdl-39333259

ABSTRACT

This project utilized both field experiment and laboratory analyses to address the gap in understanding regarding the alterations in properties and functions of biochar, and the impact of heavy metal passivation in soil over long-term natural field aging. The study aimed to examine the changes in the physical and chemical characteristics of biochar over an extended period of natural aging. Additionally, it sought to analyze the impact and mechanisms of biochar in reducing of the harmful effects of the heavy metal cadmium (Cd) during the aging process. Both original and aged biochar conformed to the pseudo-second-order kinetics model and the Langmuir model. The aging process enhanced the adsorption of Cd by biochar and mitigated the leaching of Cd2+ into the soil. These findings provide a scientific basis for evaluating biochar's environmental behavior and its potential use in the remediation of soil contaminated with heavy metals.


Subject(s)
Cadmium , Charcoal , Soil Pollutants , Cadmium/chemistry , Charcoal/chemistry , Soil Pollutants/chemistry , Adsorption , Soil/chemistry , Kinetics , Environmental Restoration and Remediation/methods
14.
Chemosphere ; 365: 143320, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303790

ABSTRACT

Short-chain per and polyfluoroalkyl substances (PFAS) have been found to be relatively high in water treatment systems compared to long-chain PFAS because of the unsatisfactory adsorption efficiency of short-chain PFAS. Knowledge about why short-chain PFAS are less removed by porous carbon is very limited. The study focused on providing causal mechanisms that link the low adsorption of short-chain PFAS and proposing an improved method for removing both short- and long-chain PFAS. The long-chain PFAS with higher hydrophobicity diffused more quickly than the short-chain PFAS due to stronger partitioning driving forces. In the initial adsorption stage, therefore, pores of activated carbon were blocked by long-chain PFAS, which makes it difficult for the short-chain PFAS to enter the internal pores. Although several short-chain PFAS diffuse into the pores, the relatively more hydrophilic short-chain congeners cannot be fully adsorbed on activated carbon due to limited positively charged sites. Moreover, compared to larger particle sizes, smaller activated carbon particles have shorter pore channels near the surface, reducing the risk of pore-blocking and ensuring the pores remain accessible for more efficient adsorption. Additionally, these smaller particles offer a greater external surface area and more functional groups, which enhance the adsorption capacity. It indicates that the smaller particle size of activated carbon would have a positive effect on the short-chain PFAS removal.

15.
Int J Biol Macromol ; 280(Pt 2): 135729, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39293615

ABSTRACT

A novel hybrid hydrogel bead (HHBFe) composed of polyvinyl alcohol/sodium alginate/gelatin/quaternary ammonium chitosan (PVA/GA/SA/QCS) and Fe3O4 magnetic nanoparticles was developed through green cross-linking of Ca2+ and tannic acid (TA) combined freeze-thaw method. HHBFe exhibited a good spherical shape, porosity, magnetic properties, and excellent mechanical properties and durability. The adsorption capacity of HHB and HHBFe towards methyl orange (MO), tetracycline (Tc), and Cr (VI) was systematically studied and compared. Results revealed similar adsorption capacities for MO and Cr (VI) between HHB and HHBFe, while the presence of Fe3O4 significantly enhanced Tc adsorption, indicating the versatile adsorption functions of HHBFe. Adsorption kinetic followed the pseudo-second-order model, with external diffusion and intra-particle diffusion controlling process. The adsorption data were consistent with the Langmuir isothermal adsorption model, indicating predominantly monolayer adsorption of pollutants by beads. Notably, the beads exhibited easily regenerated, maintaining 60 % of initial adsorption capacity after 5 cycles, particularly for Tc and Cr (VI). The good adsorption performance of HHBFe can be attributed to the strong interaction between their multi-functional groups including phenolic hydroxyl groups, carboxyl groups, amino groups, etc., and pollutant molecules. The multifunctional HHBFe beads prepared in this study and the results obtained with three completely different types of pollutants provide reliability support for their use in different wastewater treatment fields and even in the field of drug carriers.

16.
Environ Geochem Health ; 46(11): 434, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316166

ABSTRACT

The issue of heavy metal pollution is a critical global concern that requires urgent solution. However, conventional heavy metal adsorbents are too costly to be applied in large-scale engineering. In this study, adsorption behavior and mechanism of sintering red mud (RM-A) and bayer red mud (RM-B) for heavy metals were investigated to address the disposal of red mud as industrial waste and remediation of heavy metal pollution. Batch adsorption experiments were conducted to explore the adsorption performances of RM-A and RM-B under various conditions. Characterization of RM-A and RM-B before and after adsorption by XRD, FTIR and SEM-EDX was applied to investigate the specific adsorption behavior and mechanism. Adsorption experiments of both RM-A and RM-B fitted pseudo-second-order kinetic model and Langmuir isotherm model, with estimated maximum adsorption capacity of 21.96 and 25.19 mg/g for Cd2+, 21.47 and 26.06 mg/g for Cu2+ and 55.47 and 59.65 mg/g for Pb2+, respectively. Precipitation transformation of calcite was the primary adsorption mechanism for RM-A, whereas ion exchange of cancrinite, surface coordination compounds of hematite and minor precipitation transformation of calcite accounted for the adsorption mechanism for RM-B. Overall, RM-A and RM-B exhibited best adsorption performance for Pb2+, with RM-B showing greater adsorption capacity attributed to its higher specific surface area. This study compared the adsorption properties of RM-A and RM-B for the first time and demonstrated that both red muds can be effectively applied to remove heavy metals, thereby contributing to the sustainable industrial waste management and resourceful reuse.


Subject(s)
Industrial Waste , Metals, Heavy , Adsorption , Metals, Heavy/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Environmental Restoration and Remediation/methods
17.
Molecules ; 29(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39203000

ABSTRACT

The low-grade zinc oxide ore was sulfidized to increase the efficiency of flotation, but the effect of pre-sulfidization on the adsorption mechanism of octadecyl amine (ODA) on the smithsonite surface is currently unclear. In this study, the effect of pre-sulfidization on the adsorption mechanism of ODA and the flotation behavior was studied using smithsonite and pre-sulfidized smithsonite as the samples by zeta potential, contact angle measurement, total organic carbon analyzer (TOC), quartz microcrystalline balance (QCM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and micro-flotation tests. Micro-flotation tests showed that the pretreatment of sulfidization could improve the floatability of smithsonite. Zeta potential and contact angle measurements demonstrated that pre-sulfidization could favor the adsorption of ODA, which is further confirmed by the adsorption tests of ODA using TOC and QCM. Furthermore, FTIR and XPS analysis showed that pre-sulfidization changes the adsorption mode of ODA, changing it from physical adsorption to chemical adsorption. These results suggested that the favorable effect of pre-sulfidization on the adsorption of ODA and the flotation of smithsonite might provide important guidance for industrial application.

18.
Polymers (Basel) ; 16(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39204585

ABSTRACT

In addition to filtering some sediments, hydrophobic wood sponges can also absorb many organic solvents, particularly crude oil. The leakage of crude oil poses a serious threat to the marine ecosystem, and oil mixed with water also generates great danger for its use. From the perspective of low cost and high performance, wood sponges exhibit great potential for dealing with crude oil pollution. Wood sponge is a renewable material. With a highly oriented layered structure and a highly compressible three-dimensional porous frame, wood sponges are extremely hydrophobic, making them ideal for oil-water separation. Currently, the most common approach for creating wood sponge is to first destroy the wood cell wall to obtain a porous-oriented layered structure and then enhance the oil-water separation ability via superhydrophobic treatment. Wood sponge prepared using various experimental methods and different natural woods exhibits distinctive properties in regards to robustness, compressibility, fatigue resistance, and oil absorption ability. As an aerogel material, wood sponge offers multi-action (absorption, filtration) and reusable oil-water separation functions. This paper introduces the advantages of the use of wood sponge for oil-water separation. The physical and chemical properties of wood sponge and its mechanism of adsorbing crude oil are explained. The synthesis method and the properties are discussed. Finally, the use of wood sponge is summarized and prospected.

19.
J Hazard Mater ; 478: 135614, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39186844

ABSTRACT

In this study, a high-Si (Si) adsorbent (APR@Sam) was prepared by acid leaching slag (APR) from lead-zinc (Pb-Zn) tailings based on high-temperature alkali melting technology. The synthesized Si-based materials were applied to aqueous solutions contaminated with Pb and cadmium (Cd) to investigate the crucial role of active Si in sequestering heavy metals. The adsorption capacities of APR@Sam and the Si-depleted material (APR@Sam-NSi) were studied under different pH and temperature conditions. The results showed that as the pH increased from 3 to 7, the adsorption capacity increased, the active Si content in the solution increased by 63 %, and the maximum pH of the solution after adsorption was 7.12. After the removal of active Si, the Pb (II) and Cd (II) adsorption capacities of APR@Sam decreased by 45 % and 11.96 %, respectively. OH- promoted the release of Si into the solution, enhancing the material's adsorption efficiency. The reaction mechanism is mainly attributed to surface complexation guided by Si-O and Si-O-Si bonds, metal cation exchange, and bidentate coordination. The results indicated that the Si component is critical for the removal of Pb (II) and Cd (II) by APR@Sam and provide valuable insights into resource recovery strategies from leaching residues.

20.
Bioresour Technol ; 412: 131387, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39214180

ABSTRACT

Due to the serious threat posed by tebuconazole to the aquatic ecosystem, it is imperative to develop a highly efficient adsorbent material for the sustainable remediation of tebuconazole-contaminated water. Herein, a phosphorus (P)-doped biochar from corn straw and H3PO4 was fabricated by one-step pyrolysis for tebuconazole adsorption. Results showed that the P-doped biochar produced at 500℃ (PBC500) possesses a large specific surface area (SSA=869.6 m2/g), abundant surface functional groups, and the highest tebuconazole adsorption capacity (429.6 mg/g). The adsorption of tebuconazole on PBC500 followed pseudo-second-order kinetics and Langmuir adsorption isotherm models. Thermodynamic calculations indicated that the adsorption of tebuconazole by PBC500 was a spontaneous, endothermic process with a random increase. Adsorption mechanism mainly involves pore filling, π-π interactions, hydrogen bonding, and hydrophobic interaction. Moreover, PBC500 demonstrated robust anti-interference capabilities in adsorbing tebuconazole from diverse water sources and exhibited excellent reusability, underscoring its potential for a broad array of practical applications.


Subject(s)
Charcoal , Triazoles , Water Pollutants, Chemical , Zea mays , Zea mays/chemistry , Charcoal/chemistry , Triazoles/chemistry , Adsorption , Water Pollutants, Chemical/isolation & purification , Kinetics , Water Purification/methods , Thermodynamics , Phosphorus , Solutions , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL