Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
J Environ Manage ; 365: 121634, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943752

ABSTRACT

The impact of NaOH-modified biochar on the release of NH3 and H2S from laying hens' manure was examined for 44 days, using a small-scale simulated aerobic composting system. The findings revealed that the NaOH-modified biochar reduced NH3 and H2S emissions by 40.63% and 77.78%, respectively, compared to the control group. Moreover, the emissions of H2S were significantly lower than those of the unmodified biochar group (p < 0.05). The increased specific surface area and microporous structure of the biochar, as well as the higher content of alkaline and oxygenated functional groups, were found to facilitate the adsorption of NH3 and H2S. This enhanced adsorption capability was the primary reason for the significant reduction in NH3 emissions. Furthermore, during the high-temperature phase of composting, there was a notable alteration in the microbial community. The abundance of Limnochordaceae, Savagea, and IMCC26207 increased significantly which aided in the conversion of H2S to stable sulfate. These microorganisms also influenced the abundance of functional genes involved in sulfur metabolism, thereby inhibiting cysteine synthesis, along with the decomposition and conversion of sulfate to sulfite. This led to a significant decrease in H2S emissions. This study provides valuable data for the selection of deodorizers in the composting process of egg-laying hens. The results have significant implications for the application of NaOH-modified biochar for odor reduction in aerobic composting processes.

2.
Environ Technol ; : 1-10, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820584

ABSTRACT

The conventional aeration method is compulsorily continuous ventilation or aeration at equal intervals, and a uniform aeration rate does not vary during composting. A dynamic on-demand aeration approach based on the diverse oxygen consumption of microorganisms at different composting stages could solve the problems of insufficient oxygen supply or excessive aeration. This study aims to design an aerobic composting system with dynamic aeration, investigate the effects of dynamic aeration on the temperature rise and physicochemical characteristics during the aerobic composting of corn straw and pig manure, and optimise the control parameters of oxygen concentration. Higher temperatures and longer high-temperature durations were achieved under dynamic aeration, thereby accelerating the decomposition of organic compounds. Dynamic aeration effectively reduced the aeration frequency, the convective latent heat and moisture losses, and the power consumption in the middle and later stages of composting. The dynamic aeration regulated according to the oxygen concentration of 14%-17% in the exhaust was optimum. Under the optimal conditions, the period above 50 ℃ lasted 8.5 days, and the highest temperature, organic matter removal, and seed germination index reached 65.82 ℃, 37.59%, and 74.59%, respectively. The power consumption was decreased by 33.58% compared to the traditional intermittent aeration. Dynamic aeration would be a competitive approach for improving aerobic composting characteristics and reducing the power consumption and the hot exhaust gas emissions, especially in the cooling maturation stage, which was of great significance for realising the low-cost production of composting at scale and promoting the blossom of the organic fertiliser industry.

3.
Heliyon ; 10(7): e29123, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38601639

ABSTRACT

Overuse of sulfonamides in aquaculture and agriculture leads to residual drugs that cause serious pollution of the environment. However, the residues of sulfonamides in the environment are not unique, and the existing microbial degradation technology has a relatively low degradation rate of sulfonamides. Therefore, in this study, a Pseudomonas stutzeri strain (DLY-21) with the ability to degrade four common SAs was screened and isolated from aerobic compost. Under optimal conditions, the DLY-21 strain degraded four sulfonamides simultaneously within 48 h, and the degradation rates were all over 90%, with the average degradation rates of SAs being sulfoxide (SDM) ≈ sulfachloropyridazine (SCP) > sulfa quinoxaline (SQ) > sulfadiazine (SQ). In addition, the main compounds of the strain DLY-21-degrading SAs were identified by LC-MS analysis. On this basis, four detailed reaction pathways for SA degradation were deduced. This is the first report of the use of a P. stutzeri strain to degrade four sulfonamide antibiotics (SQ, SDM, SCP, and SM1), which can improve the removal efficiency of sulfonamide antibiotic pollutants and thus ameliorate environmental pollution. The results showed that DLY-21 had a good degradation effect on four SAs (SQ, SDM, SCP, and SM1).

4.
Bioresour Technol ; 399: 130575, 2024 May.
Article in English | MEDLINE | ID: mdl-38479629

ABSTRACT

Aerobic kitchen waste composting can contribute to greenhouse gas (GHGs) emissions and global warming. This study investigated the effects of biochar and zeolite on GHGs emissions during composting. The findings demonstrated that biochar could reduce N2O and CH4 cumulative releases by 47.7 %and 47.9 %, respectively, and zeolite could reduce the cumulative release of CO2 by 28.4 %. Meanwhile, the biochar and zeolite addition could reduce the abundance of potential core microorganisms associated with GHGs emissions. In addition, biochar and zeolite reduced N2O emissions by regulating the abundance of nitrogen conversion functional genes. Biochar and zeolite were shown to reduce the impact of bacterial communities on GHGs emissions. In summary, this study revealed that biochar and zeolite can effectively reduce GHG emissions during composting by altering the compost microenvironment and regulating microbial community structure. Such findings are valuable for facilitating high-quality resource recovery of organic solid waste.


Subject(s)
Composting , Greenhouse Gases , Zeolites , Greenhouse Gases/analysis , Zeolites/chemistry , Soil/chemistry , Methane/analysis , Charcoal , Nitrogen/analysis , Nitrous Oxide/analysis
5.
Sci Total Environ ; 923: 171460, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38442764

ABSTRACT

This study investigated the impact of adding enzyme inducer (MnSO4) on humic substance (HS) formation during straw composting. The results demonstrated that both enzyme inducer treatment group (Mn) and functional microorganism treatment group (F) led to an increase in the content of HS compared to the treatment group without enzyme inducer and functional microorganism (CK). Interestingly, the enzyme inducer exhibited a higher promoting effect on HS (57.80 % ~ 58.58 %) than functional microbial (46.54 %). This was because enzyme inducer stimulated the growth of key microorganisms and changed the interaction relationship between microorganisms. The structural equation model suggested that the enzyme inducer promoted the utilization of amino acids by the fungus and facilitated the conversion of precursors to humic substance components. These findings provided a direction for improving the quality of composting products from agricultural straw waste. It also provided theoretical support for adding MnSO4 to compost.


Subject(s)
Composting , Oryza , Humic Substances/analysis , Soil , Amino Acids , Manure
6.
Chemosphere ; 353: 141657, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452978

ABSTRACT

In order to explore the effects of micro-nano bubble water (MNBW) on compost maturation and the microbial community in cow manure and straw during aerobic composting, we conducted composting tests using tap water with 12 mg/L (O12), 15 mg/L (O15), 18 mg/L (O18), and 21 mg/L (O21) dissolved oxygen in MNBW, as well as tap water with 9 mg/L dissolved oxygen as a control (CK). The results showed that O21 increased the maximum compost temperature to 64 °C, which was higher than the other treatments. All treatments met the harmless standards for compost. The seed germination index (GI) was largest under O21 and 15.1% higher than that under CK, and the non-toxic compost degree was higher. Redundancy analysis showed that the temperature, C/N, pH, and GI were important factors that affected the microbial community composition. The temperature, C/N, and pH were significantly positively correlated with Firmicutes and Actinobacteria (p < 0.05). Firmicutes was the dominant phylum in the mesophilic stage (2-6 days) and it accounted for a large proportion under O21, where the strong thermophilic metabolism increased the production of heat and prolonged the high temperature period. The bacterial genus Ammoniibacillus in Firmicutes accounted for a large proportion under O21 and it accelerated the decomposition of substrates. Therefore, the addition of MNBW changed the microbial community to affect the maturation of the compost, and the quality of the compost was higher under O21.


Subject(s)
Composting , Microbiota , Animals , Cattle , Female , Nitrogen/analysis , Bacteria/metabolism , Firmicutes , Manure/microbiology , Oxygen , Soil
7.
Waste Manag ; 178: 155-167, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38401429

ABSTRACT

Aerobic composting stands as a widely-adopted method for treating organic solid waste (OSW), simultaneously producing organic fertilizers and soil amendments. This biologically-driven biochemical reaction process, however, presents challenges due to its complex non-linear metabolism and the heterogeneous nature of the solid medium. These characteristics inherently limit the simulation accuracy and efficiency optimization in aerobic composting. Recently, significant efforts have been made to simulate and control composting process parameters, as well as predicting and optimizing composting product quality. Notably, the integration of machine learning (ML) in aerobic composting of organic waste has garnered considerable attention for its applicability and predictive capability in exploring the complex non-linear relationships of organic waste composting parameters. Despite numerous studies on ML applications in OSW composting, a systematic review of research findings in this field is lacking. This study offers a systematic overview of the application level, current status, and versatility of ML in OSW composting. It spans various aspects, such as compost maturity, environmental pollutants, nutrients, moisture, heat loss, and microbial metabolism. The survey reveals that ML-intervention predominantly focuses on compost maturity and environmental pollutants, followed by nutrients, moisture, heat loss, and microbial activity. The most commonly employed predictive models and optimization algorithms are artificial neural networks (47%) and genetic algorithms (10%). These demonstrate high prediction accuracy and maximize composting efficiency in the simulation and prediction of organic waste composting, alongside regulation of key parameters. Deep neural networks and ensemble learning models prove effective in achieving superior predictive performance by selecting feature variables in compost maturity and pollutant residue prediction of organic waste composting in a simpler and more objective manner.


Subject(s)
Composting , Environmental Pollutants , Soil , Solid Waste/analysis , Machine Learning
8.
Sci Total Environ ; 919: 170217, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38307274

ABSTRACT

In recent, soil microplastic pollution arising from organic fertilizers has been of a great increasing concern. In response to this concern, this review presents a comprehensive analysis of the occurrence and evolution of microplastics in organic fertilizers, their ingress into the soil, and the subsequent impacts. Organic fertilizers are primarily derived from solid organic waste generated by anthropocentric activities including urban (daily-life, municipal wastes and sludge), agricultural (manure, straw), and industrial (like food industrial waste etc.) processes. In order to produce organic fertilizer, the organic solid wastes are generally treated by aerobic composting or anaerobic digestion. Currently, microplastics have been widely detected in the raw materials and products of organic fertilizer. During the process of converting organic solid waste materials into fertilizer, intense oxidation, hydrolysis, and microbial actions significantly alter the physical, chemical, and surface biofilm properties of the plastics. After the organic fertilizer application, the abundances of microplastics significantly increased in the soil. Additionally, the degradation of these microplastics often promotes the adsorption of organic pollutants and affects their retention time in the soil. These microplastics, covered by biofilms, also significantly alter soil ecology due to the unique properties of the biofilm. Furthermore, the biofilms also play a role in the degradation of microplastics in the soil environment. This review offers a new perspective on the soil environmental processes involving microplastics from organic fertilizer sources and highlights the challenges associated with further research on organic fertilizers and microplastics.

9.
J Hazard Mater ; 465: 133456, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38211525

ABSTRACT

Aerobic composting increases the content of soluble nutrients and facilitates the safe treatment of livestock manure. Although different taxa play crucial roles in maintaining ecological functionality, the succession patterns of community composition and assembly of rare and abundant subcommunities during aerobic composting under antibiotic stress and their contributions to ecosystem functionality remain unclear. Therefore, this study used 16 S rRNA gene sequencing technology to reveal the response mechanisms of diverse microbial communities and the assembly processes of abundant and rare taxa to amoxicillin during aerobic composting. The results indicated that rare taxa exhibited distinct advantages in terms of diversity, community composition, and ecological niche width compared with abundant taxa, highlighting their significance in maintaining ecological community dynamics. In addition, deterministic (heterogeneous selection) and stochastic processes (dispersal limitation) play roles in the community succession and functional dynamics of abundant and rare subcommunities. The findings of this study may contribute to a better understanding of the relative importance of deterministic and stochastic assembly processes in composting systems, and the ecological functions of diverse microbial communities, ultimately leading to improved ecological environment.


Subject(s)
Composting , Microbiota , Amoxicillin , RNA, Ribosomal
10.
Bioresour Technol ; 395: 130335, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242237

ABSTRACT

This study presented the effects of hydrochar on humification, heavy metals (HMs) bioavailability and bacterial community succession during composting. Results indicated that hydrochar addition led to elevated composting temperature, 7.3% increase in humic acid (HA), and 52.9% increase in ratio of humic acid to fulvic acid. The diethylene triamine pentacetic acid extractable Zn, Cu, Pb, and Ni were reduced by 19.2%, 36.3%, 37.8%, and 27.1%, respectively, in hydrochar-involved composting system. Furthermore, main mechanisms driving the reduced HMs bioavailability by hydrochar addition were revealed. The addition of hydrochar significantly modified the microbial community structure. Correlation analysis and microbial analysis demonstrated that relative abundance of bacterial groups connected with humification and HMs passivation were increased. Consequently, the HA formation was promoted and the HMs bioavailability were reduced through bacterial bioremediation and HA complexation. This study demonstrates the addition of hydrochar as a promising strategy to mitigate the HMs bioavailability during composting.


Subject(s)
Composting , Metals, Heavy , Microbiota , Humic Substances , Soil/chemistry , Biological Availability , Manure , Metals, Heavy/analysis
11.
J Environ Manage ; 351: 119673, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043316

ABSTRACT

Amending biochar or MnO2 is a common strategy to regulate humification during manure composting. However, how these additives affect the formation, spectrum characteristics (UV-vis, FTIR, EEM) of humic substances (HSs) in silkworm-excrement (SE) compost and their electron transfer capacities (ETC) remains unclear. Thus, the SE composting pilot separately added with 10% corncob biochar (CB) (w/w) and 0.5% MnO2 (w/w) was run to investigate the effects. The results revealed that adding 10% CB slightly affected the HA/FA (humic acids/fulvic acids) ratios, UV-vis and FTIR spectra of the final SE-compost HSs and EEM components in the FA, but remarkably improved fulvic-like (C1)/quinone-like (C3) substances and reduced humic-like (C2)/protein-like substances (C4) in the HA. Meanwhile, 0.5% MnO2 had a noticeable positive effect on the aromatization of SE-compost FA and HA but only weak impact on SUVAs and EEM components in these HSs except C4 in the FA. Moreover, 10% CB obviously reduced EAC/EDC of FA and HA in the final SE compost by 31.1%/22.0% and 19.7%/24.0%, while MnO2 improved EDC of these HSs by 6.5%/9.1% (FA/HA). These results showed MnO2 can be used as a useful amendment to enhance the promotion effect of SE-compost HA in the soil remediation other than CB. Further investigation is suggested to focus on the effects of adding MnO2 on SE-compost HSs enhancing soil remediation and its effect on ETC derived from other manure compost.


Subject(s)
Bombyx , Charcoal , Composting , Animals , Humic Substances/analysis , Manure , Electrons , Manganese Compounds , Oxides , Soil
12.
Bioresour Technol ; 393: 130079, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37993066

ABSTRACT

Greenhouse gas (GHG) emissions from manure management processes deserve more attention. Using three industrial-scale experiments, this study comprehensively evaluated the effects of different aeration coupled with semi-permeable membrane-covered strategies on the structure and function of bacterial communities and their impact on GHG emissions during dairy manure aerobic composting. The succession of the bacterial communities tended to be consistent for similar aeration strategies. Ruminiclostridium and norank_f__MBA03 were significantly positively correlated with the methane emission rate, and forced aeration coupled with semi-permeable membrane-covered decreased GHG emissions by inhibiting these taxa. Metabolism was the most active function of the bacterial communities, and its relative abundance accounted for 75.69%-80.23%. The combined process also enhanced carbohydrate metabolism and amino acid metabolism. Therefore, forced aeration coupled with semi-permeable membrane-covered represented a novel strategy for reducing global warming potential by regulating the structure and function of the bacterial communities during aerobic composting of dairy manure.


Subject(s)
Composting , Greenhouse Gases , Greenhouse Gases/analysis , Manure , Global Warming , Bacteria , Methane/analysis , Soil , Nitrous Oxide/analysis
13.
Environ Sci Pollut Res Int ; 31(5): 7111-7121, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38157178

ABSTRACT

Vegetable waste (VW) is a potential organic fertilizer resource. As an important way to utilize vegetable wastes, aerobic composting of VW generally has the problems of long fermentation cycle and incomplete decomposition of materials. In this study, 0.3-1.2% of potassium persulfate (KPS) was added to promote the maturity of compost. The results showed that the addition of KPS promoted the degradation of materials, accelerated the temperature rise of compost. KPS also promoted the formation of humic substances (HS). Compared with the control, HS contents of treatments with KPS addition increased by 7.81 ~ 17.52%. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM) analysis reveal the mechanism of KPS affecting the composting process: KPS stimulated the degradation of various organic substances such as lignin at high temperature stage, and the degradation of lignin could accelerate the release and decomposition of other components; KPS made the structure of the material looser, with more voids and pores, and more specific surface area of the material, which was more suitable for microbial degradation activities. Therefore, the addition of KPS can promote the decomposition of organic matter in the early stage of composting, accelerate the process of thermophilic phase, and shorten the composting process and improve product maturity.


Subject(s)
Composting , Potassium Compounds , Sulfates , Soil , Vegetables , Lignin , Humic Substances/analysis
14.
Sci Total Environ ; 913: 169522, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38141992

ABSTRACT

In this study, an organic wastewater treatment process based on aerobic composting technology was developed in order to explore the transition of wastewater treatment from pollutants removal to resource recovery. The novelty of the process focuses towards the microbial metabolic heat that is often ignored during the composting, and taking advantage of this heat for wastewater evaporation to achieve zero-discharge treatment. Meanwhile, this process can retain the wastewater's nutrients in the composting substrate to realize the recovery of resources. This study determined the optimum condition for the process (initial water content of 50 %, C/N ratio of 25:1, ventilation rate of 3 m3/h), and 69.9 % of the total heat generated by composting was used for wastewater treatment under the condition. The HA/FA ratio of composting substrate increased from 0.07 to 0.53 after wastewater treatment, and the retention ratio of TOC and TN was 52.3 % and 61.7 %, respectively, which proved the high recycling value of the composting products. Thermoduric and thermophilic bacteria accounted for 44.3 % of the community structure at the maturation stage, which played a pivotal role in both pollutant removal and resource recovery.


Subject(s)
Composting , Environmental Pollutants , Water Purification , Wastewater , Soil
15.
Environ Technol ; : 1-14, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100615

ABSTRACT

Biochar addition plays an important role in manure composting, but its driving mechanism on microbial succession and humification process of human excreta composting is still unclear. In the present study, the mechanism of biochar addition was explored by analysing the humification process and microbial succession pattern of human excreta aerobic composting without and with 10% biochar (HF and BHF). Results indicated that BHF improved composting temperature, advanced the thermophilic phase by 1 d, increased the germination index by 49.03%, promoted the growth rate of humic acid content by 17.46%, and raised the compost product with the ratio of humic acid to fulvic acid (HA/FA) by 16.19%. Biochar regulated the diversity of fungi and bacteria, increasing the relative abundance of Planifilum, Meyerozyma and Melanocarpus in the thermophilic phase, and Saccharomonospora, Flavobacterium, Thermomyces and Remersonia in the mature phase, which accelerates the humification. Bacterial communities' succession had an obvious correlation with the total carbon, total nitrogen, and temperature (P < 0.05), while the succession of fungal communities was influenced by the HA/FA and pH (P < 0.05). This study could provide a reference for the improvement of on-site human excreta harmless by extending the thermophilic phase, and facilitating the humification in human excreta compost with biochar addition.

16.
Environ Technol ; : 1-11, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37953714

ABSTRACT

This work aims to investigate the effective removal of oil in food waste (FW). Two bacteria, Bacillus subtilis and Bacillus glycinifermentans, were obtained under high temperature conditions and named YZQ-2 and YZQ-5, respectively. The oil degradation rate of two bacteria was explored under different pH value, temperature, and NaCl concentration. In addition, the lipase and emulsifying activity were evaluated. The maximum oil degradation rate was 83.41 ± 0.86% and the maximum lipase activity reached 89.73 ± 20.89 U L-1 with YZQ-2. The fermentation broth of YZQ-2 displayed exceptional emulsification activity. Subsequently, YZQ-2 and YZQ-5 were added to aerobic FW composting. The moisture content of the compost treated with inoculated strains decreased at a faster rate during the first three days of composting. The microbial quantity increased rapidly in the first three days, and the oil degradation rate reached 39.96% after five days. Due to the excellent adaptability to high temperature and ability to degrade oil, strains YZQ-2 and YZQ-5 exhibit superior potential for various applications.

17.
Microbiol Spectr ; 11(6): e0205323, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37905797

ABSTRACT

IMPORTANCE: With the development of animal husbandry in China, the production of a large amount of livestock and poultry manure has become one of the main agricultural pollution sources. High-temperature aerobic composting stands out as one of the most crucial methods for the safe and resourceful utilization of livestock and poultry manure, serving as an essential link between crop cultivation, animal breeding, and sustainable agricultural development. Numerous studies have demonstrated that the addition of exogenous multifunctional bacterial agents to compost reduces not only harmful emissions but also sequesters or increases essential nutrients. However, these efficacies depend on the specific functions of the bacteriophage itself, the harmonization and complementarity within the colony, and its ability to adapt to the environment. In recent years, relatively few studies have been conducted on actinomycetes. This experiment provides excellent actinomycete resources for the production of high-efficiency and high-quality compost compound microbial agents of manure and straw.


Subject(s)
Actinobacteria , Composting , Animals , Actinomyces , Manure , Animal Husbandry , Poultry , Livestock , Soil
18.
Environ Sci Pollut Res Int ; 30(52): 112104-112116, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37824054

ABSTRACT

Aerobic composting, especially semipermeable membrane-covered aerobic fermentation, is known to be an effective method for recycling and reducing vegetable waste. However, this approach has rarely been applied to the aerobic composting of vegetable waste; in addition, the product characteristics and GHG emissions of the composting process have not been studied in-depth. This study investigated the effect of using different structural ventilation systems on composting efficiency and greenhouse gas emissions in a semipermeable membrane-covered vegetable waste compost. The results for the groups (MV1, MV2, and MV3) with bottom ventilation plus multichannel ventilation and the group (BV) with single bottom ventilation were compared here. The MV2 group effectively increased the average temperature by 19.06% whilst also increasing the degradation rate of organic matter by 30.81%. Additionally, the germination index value reached more than 80%, 3 days in advance. Compared to those of the BV group, the CH4, N2O, and NH3 emissions of MV2 were reduced by 32.67%, 21.52%, and 22.57%, respectively, with the total greenhouse gas emissions decreasing by 24.17%. Overall, this study demonstrated a multichannel ventilation system as a new method for improving the composting efficiency of vegetable waste whilst reducing gas emissions.


Subject(s)
Composting , Greenhouse Gases , Composting/methods , Greenhouse Gases/analysis , Vegetables , Methane/analysis , Temperature , Soil/chemistry
19.
Bioresour Technol ; 388: 129731, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37704090

ABSTRACT

Composting, reliant on microorganisms, effectively treats kitchen waste. However, it is difficult to precisely understand the specific role of key microorganisms in the composting process by relying solely on experimental research. This study aims to employ machine learning models to explore key microbial genera and to optimize composting systems. After introducing a novel microbiome preprocessing approach, Stacking models were constructed (R2 is about 0.8). The SHAP method (SHapley Additive exPlanations) identified Bacillus, Acinetobacter, Thermobacillus, Pseudomonas, Psychrobacter, and Thermobifida as prominent microbial genera (Shapley values ranging from 3.84 to 1.24). Additionally, microbial agents were prepared to target the identified key genera, and experiments demonstrated that the composting quality score was 76.06 for the treatment and 70.96 for the control. The exogenous agents enhanced decomposition and improved compost quality in later stages. In summary, this study opens up a new avenue to identifying key microorganisms and optimizing the biological treatment process.


Subject(s)
Composting , Microbiota , Soil
20.
Bioresour Technol ; 388: 129763, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37704091

ABSTRACT

Low composting temperature and long maturation periods are two major problems during food waste composting. In this study, a novel array-based electric field-assisted aerobic composting (Pin-EAC) process was tested on food waste compost. Pin-EAC increase the composting temperature to 69.3 °C, and improved the germination index by 15%. The Pin-EAC took at least 40% less time to reach the standard compost maturity. The fluorescent spectroscopy results showed that Pin-EAC could increase humic acid and fulvic acid by 33% and 37%, respectively. Pin-EAC could increase the diversity of thermophilic bacteria during composting. The co-occurrence network shown that Pin-EAC are more closely related to oxygen and temperature. This work has initially shown that the use of an electric field could improve food waste composting quality, suggesting that the Pin-EAC process is an effective strategy for high-water and high-oil organic solid waste aerobic composting.

SELECTION OF CITATIONS
SEARCH DETAIL
...