Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Fundam Res ; 4(3): 430-441, 2024 May.
Article in English | MEDLINE | ID: mdl-38933199

ABSTRACT

Corona virus disease 2019 (COVID-19) has exerted a profound adverse impact on human health. Studies have demonstrated that aerosol transmission is one of the major transmission routes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pathogenic microorganisms such as SARS-CoV-2 can survive in the air and cause widespread infection among people. Early monitoring of pathogenic microorganism transmission in the atmosphere and accurate epidemic prediction are the frontier guarantee for preventing large-scale epidemic outbreaks. Monitoring of pathogenic microorganisms in the air, especially in densely populated areas, may raise the possibility to detect viruses before people are widely infected and contain the epidemic at an earlier stage. The multi-scale coupled accurate epidemic prediction system can provide support for governments to analyze the epidemic situation, allocate health resources, and formulate epidemic response policies. This review first elaborates on the effects of the atmospheric environment on pathogenic microorganism transmission, which lays a theoretical foundation for the monitoring and prediction of epidemic development. Secondly, the monitoring technique development and the necessity of monitoring pathogenic microorganisms in the atmosphere are summarized and emphasized. Subsequently, this review introduces the major epidemic prediction methods and highlights the significance to realize a multi-scale coupled epidemic prediction system by strengthening the multidisciplinary cooperation of epidemiology, atmospheric sciences, environmental sciences, sociology, demography, etc. By summarizing the achievements and challenges in monitoring and prediction of pathogenic microorganism transmission in the atmosphere, this review proposes suggestions for epidemic response, namely, the establishment of an integrated monitoring and prediction platform for pathogenic microorganism transmission in the atmosphere.

3.
J Microbiol Immunol Infect ; 57(1): 195-199, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37699780

ABSTRACT

We investigated a COVID-19 cluster involved seven case-patients lived in a high-rise building in September 2021. We used a simplified tracer-gas experiment and virus sequencing to establish the link between case-patients. Vertical transmission among vertically aligned apartments on different floors in a building was the most likely route of transmission.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Taiwan/epidemiology , Infectious Disease Transmission, Vertical
4.
New Solut ; 33(4): 236-247, 2024 02.
Article in English | MEDLINE | ID: mdl-38128919

ABSTRACT

There is an urgent need for stronger protection from aerosol-transmissible diseases in healthcare settings-for workers, patients, volunteers, and visitors. Concerned that the Centers for Disease Control and Prevention (CDC) Healthcare Infection Control Practices Advisory Committee (HICPAC) lacks diversity in expertise and experience and has not consulted widely with all concerned parties regarding a planned update to the 2007 Guideline for Isolation Precautions, a workshop was developed to consider the science and lessons learned before and during the COVID-19 pandemic. Sponsored by the New York/New Jersey Occupational Safety and Health Center, Preventing Aerosol-Transmissible Diseases in Healthcare Settings: The Need for Protective Guidelines and Standards was held on October 13, 2023, with these goals: describe current CDC/HICPAC infection prevention guidelines, review current scientific understanding of aerosol-transmissible pathogens, and consider perspectives from a wide range of groups currently excluded from the CDC HICPAC process.


Subject(s)
COVID-19 , Infection Control , Humans , Pandemics/prevention & control , Respiratory Aerosols and Droplets , COVID-19/prevention & control
5.
Risk Anal ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936539

ABSTRACT

Simulated exposure to severe acute respiratory syndrome coronavirus 2 in the environment was demonstrated based on the actual coronavirus disease 2019 cluster occurrence in an office, with a projected risk considering the likely transmission pathways via aerosols and fomites. A total of 35/85 occupants were infected, with the attack rate in the first stage as 0.30. It was inferred that the aerosol transmission at long-range produced the cluster at virus concentration in the saliva of the infected cases on the basis of the simulation, more than 108  PFU mL-1 . Additionally, all wearing masks effectiveness was estimated to be 61%-81% and 88%-95% reduction in risk for long-range aerosol transmission in the normal and fit state of the masks, respectively, and a 99.8% or above decline in risk of fomite transmission. The ventilation effectiveness for long-range aerosol transmission was also calculated to be 12%-29% and 36%-66% reductions with increases from one air change per hour (ACH) to two ACH and six ACH, respectively. Furthermore, the virus concentration reduction in the saliva to 1/3 corresponded to the risk reduction for long-range aerosol transmission by 60%-64% and 40%-51% with and without masks, respectively.

6.
PeerJ ; 11: e16420, 2023.
Article in English | MEDLINE | ID: mdl-38025703

ABSTRACT

During the recent pandemic of COVID-19 (SARS-CoV-2), influential public health agencies such as the World Health Organization (WHO) and the U.S. Centers for Disease Control and Prevention (CDC) have favored the view that SARS CoV-2 spreads predominantly via droplets. Many experts in aerobiology have openly opposed that stance, forcing a vigorous debate on the topic. In this review, we discuss the various proposed modes of viral transmission, stressing the interdependencies between droplet, aerosol, and fomite spread. Relative humidity and temperature prevailing determine the rates at which respiratory aerosols and droplets emitted from an expiratory event (sneezing, coughing, etc.) evaporate to form smaller droplets or aerosols, or experience hygroscopic growth. Gravitational settling of droplets may result in contamination of environmental surfaces (fomites). Depending upon human, animal and mechanical activities in the occupied space indoors, viruses deposited on environmental surfaces may be re-aerosolized (re-suspended) to contribute to aerosols, and can be conveyed on aerial particulate matter such as dust and allergens. The transmission of respiratory viruses may then best be viewed as resulting from dynamic virus spread from infected individuals to susceptible individuals by various physical states of active respiratory emissions, instead of the current paradigm that emphasizes separate dissemination by respiratory droplets, aerosols or by contaminated fomites. To achieve the optimum outcome in terms of risk mitigation and infection prevention and control (IPAC) during seasonal infection peaks, outbreaks, and pandemics, this holistic view emphasizes the importance of dealing with all interdependent transmission modalities, rather than focusing on one modality.


Subject(s)
COVID-19 , Respiratory Aerosols and Droplets , United States , Humans , COVID-19/epidemiology , SARS-CoV-2 , Fomites , Dust
8.
Viruses ; 15(10)2023 10 18.
Article in English | MEDLINE | ID: mdl-37896888

ABSTRACT

SARS-CoV-2 is inactivated in aerosol (its primary mode of transmission) by means of radiated microwaves at frequencies that have been experimentally determined. Such frequencies are best predicted by the mathematical model suggested by Taylor, Margueritat and Saviot. The alignment between such mathematical prediction and the outcomes of our experiments serves to reinforce the efficacy of the radiated microwave technology and its promise in mitigating the transmission of SARS-CoV-2 in its naturally airborne state.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Microwaves , Respiratory Aerosols and Droplets , Models, Theoretical
9.
New Solut ; 33(2-3): 165-173, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37621093

ABSTRACT

On July 20, 2023 a letter was sent to the Director of the Centers for Disease Control and Prevention requesting the agency's Healthcare Infection Control Practice Advisory Committee seek input from more stakeholders and the public, recognize the importance of infectious disease transmission by inhalation of human-generated aerosols, and ensure the application of interventions from all levels of the control hierarchy.


Subject(s)
Infection Control , Public Health , United States , Humans , Centers for Disease Control and Prevention, U.S.
10.
Front Public Health ; 11: 1153303, 2023.
Article in English | MEDLINE | ID: mdl-37469696

ABSTRACT

Introduction: The COVID-19 pandemic continues to ravage the world, and mutations of the SARS-CoV-2 continues. The new strain has become more transmissible. The role of aerosol transmission in the pandemic deserves great attention. Methods: In this observational study, we collected data from market customers and stallholders who had been exposed to the virus in the Qingkou night market on July 31 and were subsequently infected. We analyzed the possible infection zones of secondary cases and aerosol suspension time in ambient air. We described and analyzed the characteristics of the secondary cases and the transmission routes for customers. Results: The point source outbreak of COVID-19 in Qingkou night market contained a cluster of 131 secondary cases. In a less-enclosed place like the Qingkou night market, aerosols with BA.5.2 strain released by patients could suspend in ambient air up to 1 h 39 min and still be contagious. Conclusion: Aerosols with viruses can spread over a relatively long distance and stay in ambient air for a long time in a less enclosed space, but shorter than that under experimental conditions. Therefore, the aerosol suspension time must be considered when identifying and tracing close contact in outbreak investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , COVID-19/epidemiology , Respiratory Aerosols and Droplets
11.
Environ Health Insights ; 17: 11786302231188269, 2023.
Article in English | MEDLINE | ID: mdl-37522029

ABSTRACT

Although it is well established that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be transmitted through aerosols, the mode of long-range aerosol transmission in high-rise buildings remains unclear. In this study, we analyzed an outbreak of coronavirus disease 2019 (COVID-19) that occurred in a high-rise building in China. Our objective was to investigate the plausibility of aerosol transmission of SARS-CoV-2 by testing relevant environmental variables and measuring the dispersion of a tracer gas in the drainage system of the building. The outbreak involved 7 infected families, of which 6 were from vertically aligned flats on different floors. Environmenìtal data revealed that 3 families' bathrooms were contaminated by SARS-CoV-2. In our tracer experiment, we injected tracer gas (CO2) into the dry floor drains and into water-filled toilets in the index case' s bathroom. Our findings showed that the gas could travel through vertical pipes by the dry floor drains, but not through the water of the toilets. This indicates that dry floor drains might facilitate the transmission of viral aerosols through the sewage system. On the basis of circumstantial evidence, long-range aerosol transmission may have contributed to the community outbreak of COVID-19 in this high-rise building. The vertical transmission of diseases through aerosols in high-rise buildings demands urgent attention.

12.
J R Soc Interface ; 20(203): 20230062, 2023 06.
Article in English | MEDLINE | ID: mdl-37340783

ABSTRACT

The mechanistic factors hypothesized to be key drivers for the loss of infectivity of viruses in the aerosol phase often remain speculative. Using a next-generation bioaerosol technology, we report measurements of the aero-stability of several SARS-CoV-2 variants of concern in aerosol droplets of well-defined size and composition at high (90%) and low (40%) relative humidity (RH) upwards of 40 min. When compared with the ancestral virus, the infectivity of the Delta variant displayed different decay profiles. At low RH, a loss of viral infectivity of approximately 55% was observed over the initial 5 s for both variants. Regardless of RH and variant, greater than 95% of the viral infectivity was lost after 40 min of being aerosolized. Aero-stability of the variants correlate with their sensitivities to alkaline pH. Removal of all acidic vapours dramatically increased the rate of infectivity decay, with 90% loss after 2 min, while the addition of nitric acid vapour improved aero-stability. Similar aero-stability in droplets of artificial saliva and growth medium was observed. A model to predict loss of viral infectivity is proposed: at high RH, the high pH of exhaled aerosol drives viral infectivity loss; at low RH, high salt content limits the loss of viral infectivity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Respiratory Aerosols and Droplets
13.
Chiropr Man Therap ; 31(1): 16, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277875

ABSTRACT

BACKGROUND: The emergence of an unprecedented novel severe acute respiratory syndrome coronavirus-2 (SARS-C0V-2), which causes the coronavirus disease 2019 (COVID-19) pandemic, has created new scenarios in basic life support (BLS) management. According to current evidence, SARS-CoV-2 can be transmitted airborne in aerosol particles during resuscitation. Research evidence found an alarming global increase in out-of-hospital cardiac arrests during the COVID-19 pandemic. Healthcare providers are legally obliged to respond to cardiac arrest as soon as possible. Chiropractors will likely encounter potential exercise-related and non-exercise-related cardiac emergencies at some point in their professional lives. They have a duty of care to respond to emergencies such as cardiac arrest. Chiropractors are increasingly involved in providing care, including emergency care, for athletes and spectators at sporting events. Also, exercise-related cardiac arrest in adult patients may occur during exercise testing or rehabilitation with exercise prescriptions in chiropractic and other healthcare settings. Little is known about the COVID-19 BLS guidelines for chiropractors. Knowledge of the current COVID-19-specific adult BLS guidelines is essential to developing an emergency response plan for the on-field and sideline management of exercise-related cardiac arrest and non-athletic, non-exercise-related cardiac arrest. MAIN TEXT: Seven peer-reviewed articles on the COVID-19-specific BLS guidelines, including two updates, were reviewed for this commentary. Responding to the COVID-19 pandemic, the national and international resuscitation organizations recommended interim COVID-19-specific BLS guidelines with precaution, resuscitation, and education strategies. BLS safety is paramount. A precautionary approach with the bare minimum of appropriate personal protective equipment for resuscitation is recommended. There was disagreement among the COVID-19 BLS guidelines on the level of personal protective equipment. All healthcare professionals should also undergo self-directed BLS e-learning and virtual skill e-training. The summarized COVID-19-specific adult BLS guideline strategies and protocols are tabled, respectively. CONCLUSIONS: This commentary provides a practical overview and highlights current evidence-based intervention strategies of the COVID-19-specific adult BLS guidelines that may help chiropractors and other healthcare providers reduce BLS-related exposures to SARS-CoV-2 and the risks of SARS-CoV-2 transmission and maximize the efficacy of resuscitation. This study is relevant to and impacts future COVID-19-related research in areas such as infection prevention and control.


Subject(s)
COVID-19 , Chiropractic , Heart Arrest , Adult , Humans , Emergencies , Health Personnel , Pandemics/prevention & control , SARS-CoV-2
14.
Chin Chem Lett ; : 108378, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37362323

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 has negatively affected people's lives and productivity. Because the mode of transmission of SARS-CoV-2 is of great concern, this review discusses the sources of virus aerosols and possible transmission routes. First, we discuss virus aerosol collection methods, including natural sedimentation, solid impact, liquid impact, centrifugal, cyclone and electrostatic adsorption methods. Then, we review common virus aerosol detection methods, including virus culture, metabolic detection, nucleic acid-based detection and immunology-based detection methods. Finally, possible solutions for the detection of SARS-CoV-2 aerosols are introduced. Point-of-care testing has long been a focus of attention. In the near future, the development of an instrument that integrates sampling and output results will enable the real-time, automatic monitoring of patients.

15.
Clin Chest Med ; 44(2): 215-226, 2023 06.
Article in English | MEDLINE | ID: mdl-37085215

ABSTRACT

Because of the potential for high aerosol transmission during pulmonary function testing and pulmonary procedures, performing these tests and procedures must be considered carefully during the coronavirus disease-2019 (COVID-19) pandemic. Much has been learned about the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by aerosols and the potential for such transmission through pulmonary function tests and pulmonary procedures, and subsequently preventative practices have been enhanced and developed to reduce the risk of transmission of virus to patients and personnel. This article reviews what is known about the potential for transmission of SARS-CoV-2 during pulmonary function testing and pulmonary procedures and the recommended mitigation steps to prevent the spread of COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Respiratory Aerosols and Droplets , Respiratory Function Tests
16.
Int J Infect Dis ; 131: 19-25, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36948451

ABSTRACT

OBJECTIVES: As the world transitions to COVID-19 endemicity, studies focusing on aerosol shedding of highly transmissible SARS-CoV-2 variants of concern (VOCs) are vital for the calibration of infection control measures against VOCs that are likely to circulate seasonally. This follow-up Gesundheit-II aerosol sampling study aims to compare the aerosol shedding patterns of Omicron VOC samples with pre-Omicron variants analyzed in our previous study. DESIGN: Coarse and fine aerosol samples from 47 patients infected with SARS-CoV-2 were collected during various respiratory activities (passive breathing, talking, and singing) and analyzed using reverse transcription-quantitative polymerase chain reaction and virus culture. RESULTS: Compared with patients infected with pre-Omicron variants, comparable SARS-CoV-2 RNA copy numbers were detectable in aerosol samples of patients infected with Omicron despite being fully vaccinated. Patients infected with Omicron also showed a slight increase in viral aerosol shedding during breathing activities and were more likely to have persistent aerosol shedding beyond 7 days after disease onset. CONCLUSION: This follow-up study reaffirms the aerosol shedding properties of Omicron and should guide continued layering of public health interventions even in highly vaccinated populations.


Subject(s)
COVID-19 , Humans , Follow-Up Studies , RNA, Viral , SARS-CoV-2
17.
Sensors (Basel) ; 23(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36904663

ABSTRACT

A healthy and safe indoor environment is an important part of containing the coronavirus disease 2019 (COVID-19) pandemic. Therefore, this work presents a real-time Internet of things (IoT) software architecture to automatically calculate and visualize a COVID-19 aerosol transmission risk estimation. This risk estimation is based on indoor climate sensor data, such as carbon dioxide (CO2) and temperature, which is fed into Streaming MASSIF, a semantic stream processing platform, to perform the computations. The results are visualized on a dynamic dashboard that automatically suggests appropriate visualizations based on the semantics of the data. To evaluate the complete architecture, the indoor climate during the student examination periods of January 2020 (pre-COVID) and January 2021 (mid-COVID) was analyzed. When compared to each other, we observe that the COVID-19 measures in 2021 resulted in a safer indoor environment.


Subject(s)
Air Pollution, Indoor , COVID-19 , Humans , Air Pollution, Indoor/analysis , Respiratory Aerosols and Droplets , Software , Temperature
18.
Environ Sci Technol ; 57(14): 5771-5781, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37000413

ABSTRACT

Using aerosol-based tracers to estimate risk of infectious aerosol transmission aids in the design of buildings with adequate protection against aerosol transmissible pathogens, such as SARS-CoV-2 and influenza. We propose a method for scaling a SARS-CoV-2 bulk aerosol quantitative microbial risk assessment (QMRA) model for impulse emissions, coughing or sneezing, with aerosolized synthetic DNA tracer concentration measurements. With point-of-emission ratios describing relationships between tracer and respiratory aerosol emission characteristics (i.e., volume and RNA or DNA concentrations) and accounting for aerosolized pathogen loss of infectivity over time, we scale the inhaled pathogen dose and risk of infection with time-integrated tracer concentrations measured with a filter sampler. This tracer-scaled QMRA model is evaluated through scenario testing, comparing the impact of ventilation, occupancy, masking, and layering interventions on infection risk. We apply the tracer-scaled QMRA model to measurement data from an ambulatory care room to estimate the risk reduction resulting from HEPA air cleaner operation. Using DNA tracer measurements to scale a bulk aerosol QMRA model is a relatively simple method of estimating risk in buildings and can be applied to understand the impact of risk mitigation efforts.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Respiratory Aerosols and Droplets , Risk Assessment/methods , DNA
19.
Environ Sci Technol ; 57(10): 4231-4240, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36853925

ABSTRACT

Grignard Pure (GP) is a unique and proprietary blend of triethylene glycol (TEG) and inert ingredients designed for continuous antimicrobial treatment of air. TEG has been designated as a ″Safer Chemical" by the US EPA. GP has already received approval from the US EPA under its Section 18 Public Health Emergency Exemption program for use in seven states. This study characterizes the efficacy of GP for inactivating MS2 bacteriophage─a nonenveloped virus widely used as a surrogate for SARS-CoV-2. Experiments measured the decrease in airborne viable MS2 concentration in the presence of different concentrations of GP from 60 to 90 min, accounting for both natural die-off and settling of MS2. Experiments were conducted both by introducing GP aerosol into air containing MS2 and by introducing airborne MS2 into air containing GP aerosol. GP is consistently able to rapidly reduce viable MS2 bacteriophage concentration by 2-3 logs at GP concentrations of 0.04-0.5 mg/m3 (corresponding to TEG concentrations of 0.025 to 0.287 mg/m3). Related GP efficacy experiments by the US EPA, as well as GP (TEG) safety and toxicology, are also discussed.


Subject(s)
Anti-Infective Agents , COVID-19 , Humans , SARS-CoV-2 , Levivirus , Respiratory Aerosols and Droplets
20.
China CDC Wkly ; 5(1): 1-4, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36777470

ABSTRACT

What is already known about this topic?: There is a toilet flush-soil stack-floor drain pathway of aerosol transmission in multistory and high-rise buildings, but the influencing factors are not completely clear. What is added by this report?: The poor airtightness of the connecting parts of the floor drain, as well as pressure fluctuations in the sewage pipe during toilet flushing caused by blockage of the soil stack vent, may lead to the cross-floor transmission of viral aerosols through the soil stack and floor drains. What are the implications for public health practice?: In multistory and high-rise buildings, the bathroom floor drains should be kept sealed, and floor drain connecting parts should be airtight. Furthermore, the soil stack vent should not be blocked. In this way, the cross-floor transmission of viral aerosols can be effectively reduced.

SELECTION OF CITATIONS
SEARCH DETAIL
...