Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 751
Filter
1.
J Virol ; : e0023124, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980063

ABSTRACT

African swine fever virus (ASFV) is the causative agent of a contagious disease affecting wild and domestic swine. The function of B169L protein, as a potential integral structural membrane protein, remains to be experimentally characterized. Using state-of-the-art bioinformatics tools, we confirm here earlier predictions indicating the presence of an integral membrane helical hairpin, and further suggest anchoring of this protein to the ER membrane, with both terminal ends facing the lumen of the organelle. Our evolutionary analysis confirmed the importance of purifying selection in the preservation of the identified domains during the evolution of B169L in nature. Also, we address the possible function of this hairpin transmembrane domain (HTMD) as a class IIA viroporin. Expression of GFP fusion proteins in the absence of a signal peptide supported B169L insertion into the ER as a Type III membrane protein and the formation of oligomers therein. Overlapping peptides that spanned the B169L HTMD were reconstituted into ER-like membranes and the adopted structures analyzed by infrared spectroscopy. Consistent with the predictions, B169L transmembrane sequences adopted α-helical conformations in lipid bilayers. Moreover, single vesicle permeability assays demonstrated the assembly of lytic pores in ER-like membranes by B169L transmembrane helices, a capacity confirmed by ion-channel activity measurements in planar bilayers. Emphasizing the relevance of these observations, pore-forming activities were not observed in the case of transmembrane helices derived from EP84R, another ASFV protein predicted to anchor to membranes through a α-helical HTMD. Overall, our results support predictions of viroporin-like function for the B169L HTMD.IMPORTANCEAfrican swine fever (ASF), a devastating disease affecting domestic swine, is widely spread in Eurasia, producing significant economic problems in the pork industry. Approaches to prevent/cure the disease are mainly restricted to the limited information concerning the role of most of the genes encoded by the large (160-170 kba) virus genome. In this report, we present the experimental data on the functional characterization of the African swine fever virus (ASFV) gene B169L. Data presented here indicates that the B169L gene encodes for an essential membrane-associated protein with a viroporin function.

2.
Vet Res ; 55(1): 89, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010163

ABSTRACT

Since the reintroduction of African swine fever virus (ASFV) in Europe in 2007 and its subsequent spread to Asia, wild boar has played a crucial role in maintaining and disseminating the virus. There are significant gaps in the knowledge regarding infection dynamics and disease pathogenesis in domestic pigs and wild boar, particularly at the early infection stage. We aimed to compare domestic pigs and wild boar infected intranasally to mimic natural infection with one of the original highly virulent genotype II ASFV isolates (Armenia 2007). The study involved euthanising three domestic pigs and three wild boar on days 1, 2, 3, and 5 post-infection, while four domestic pigs and four wild boar were monitored until they reached a humane endpoint. The parameters assessed included clinical signs, macroscopic lesions, viremia levels, tissue viral load, and virus shedding in nasal and rectal swabs from day 1 post-infection. Compared with domestic pigs, wild boar were more susceptible to ASFV, with a shorter incubation period and earlier onset of clinical signs. While wild boar reached a humane endpoint earlier than domestic pigs did, the macroscopic lesions were comparatively less severe. In addition, wild boar had earlier viremia, and the virus was also detected earlier in tissues. The medial retropharyngeal lymph nodes were identified as key portals for ASFV infection in both subspecies. No viral genome was detected in nasal or rectal swabs until shortly before reaching the humane endpoint in both domestic pigs and wild boar, suggesting limited virus shedding in acute infections.


Subject(s)
African Swine Fever Virus , African Swine Fever , Genotype , Sus scrofa , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/physiology , African Swine Fever/virology , Swine , Virus Shedding , Viremia/veterinary , Viremia/virology , Viral Load/veterinary , Virulence
3.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000284

ABSTRACT

African swine fever (ASF), caused by the African swine fever virus (ASFV), is one of the most important infectious diseases that cause high morbidity and mortality in pigs and substantial economic losses to the pork industry of affected countries due to the lack of effective vaccines. The need to develop alternative robust antiviral countermeasures, especially anti-ASFV agents, is of the utmost urgency. This study shows that fangchinoline (FAN), a bisbenzylisoquinoline alkaloid found in the roots of Stephania tetrandra of the family Menispermaceae, significantly inhibits ASFV replication in porcine alveolar macrophages (PAMs) at micromolar concentrations (IC50 = 1.66 µM). Mechanistically, the infection of ASFV triggers the AKT/mTOR/NF-κB signaling pathway. FAN significantly inhibits ASFV-induced activation of such pathways, thereby suppressing viral replication. Such a mechanism was confirmed using an AKT inhibitor MK2206 as it inhibited AKT phosphorylation and ASFV replication in PAMs. Altogether, the results suggest that the AKT/mTOR pathway could potentially serve as a treatment strategy for combating ASFV infection and that FAN could potentially emerge as an effective novel antiviral agent against ASFV infections and deserves further in vivo antiviral evaluations.


Subject(s)
African Swine Fever Virus , Antiviral Agents , Benzylisoquinolines , Macrophages, Alveolar , NF-kappa B , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Virus Replication , Animals , Macrophages, Alveolar/virology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Virus Replication/drug effects , African Swine Fever Virus/drug effects , African Swine Fever Virus/physiology , Swine , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , NF-kappa B/metabolism , Benzylisoquinolines/pharmacology , Antiviral Agents/pharmacology , African Swine Fever/virology , African Swine Fever/drug therapy , African Swine Fever/metabolism
4.
Animals (Basel) ; 14(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38998063

ABSTRACT

African swine fever caused by African swine fever virus (ASFV) is an acute, highly contagious swine disease with high mortality. To facilitate effective vaccine development and find more serodiagnostic targets, fully exploring the ASFV antigenic proteins is urgently needed. In this study, the MGF_110-13L was identified as an immunodominant antigen among the seven transmembrane proteins. The main outer-membrane domain of MGF_110-13L was expressed and purified. Two monoclonal antibodies (mAbs; 8C3, and 10E4) against MGF_110-13L were generated. The epitopes of two mAbs were preliminary mapped with the peptide fusion proteins after probing with mAbs by enzyme-linked immunosorbent assay (ELISA) and Western blot. And the two target epitopes were fine-mapped using further truncated peptide fusion protein strategy. Finally, the core sequences of mAbs 8C3 and 10E4 were identified as 48WDCQDGICKNKITESRFIDS67, and 122GDHQQLSIKQ131, respectively. The peptides of epitopes were synthesized and probed with ASFV antibody positive pig sera by a dot blot assay, and the results showed that epitope 10E4 was an antigenic epitope. The epitope 10E4 peptide was further evaluated as a potential antigen for detecting ASFV antibodies. To our knowledge, this is the first report of antigenic epitope information on the antigenic MGF_110-13L protein of ASFV.

5.
Virulence ; 15(1): 2375550, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38973077

ABSTRACT

African swine fever (ASF) is a devastating disease with a high impact on the pork industry worldwide. ASF virus (ASFV) is a very complex pathogen, the sole member of the family Asfaviridae, which induces a state of immune suppression in the host through infection of myeloid cells and apoptosis of lymphocytes. Moreover, haemorrhages are the other main pathogenic effect of ASFV infection in pigs, related to the infection of endothelial cells, as well as the activation and structural changes of this cell population by proinflammatory cytokine upregulation within bystander monocytes and macrophages. There are still many gaps in the knowledge of the role of proteins produced by the ASFV, which is related to the difficulty in producing a safe and effective vaccine to combat the disease, although few candidates have been approved for use in Southeast Asia in the past couple of years.


Subject(s)
African Swine Fever Virus , African Swine Fever , African Swine Fever Virus/pathogenicity , African Swine Fever Virus/immunology , African Swine Fever Virus/physiology , Animals , African Swine Fever/virology , African Swine Fever/immunology , Swine , Virulence
6.
Emerg Microbes Infect ; 13(1): 2377599, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38973388

ABSTRACT

African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), a highly contagious disease that can kill up to 100% of domestic pigs and wild boars. It has been shown that the pigs inoculated with some ASF vaccine candidates display more severe clinical signs and die earlier than do pigs not immunized. We hypothesize that antibody-dependent enhancement (ADE) of ASFV infection may be caused by the presence of some unidentified antibodies. In this study, we found that the ASFV-encoded structural protein A137R (pA137R) can be recognized by the anti-ASFV positive sera, indicating that the anti-pA137R antibodies are induced in the ASFV-infected pigs. Interestingly, our results demonstrated that the anti-pA137R antibodies produced in rabbits or pigs enhanced viral replication of different ASFV strains in primary porcine alveolar macrophages (PAMs), the target cells of ASFV. Mechanistic investigations revealed that anti-pA137R antibodies were able to promote the attachment of ASFV to PAMs and two types of Fc gamma receptors (FcγRs), FcγRII and FcγRIII, mediated the ADE of ASFV infection. Taken together, anti-pA137R antibodies are able to drive ASFV ADE in PAMs. These findings shed new light on the roles of anti-ASFV antibodies and have implications for the pathophysiology of the disease and the development of ASF vaccines.


Subject(s)
African Swine Fever Virus , African Swine Fever , Antibodies, Viral , Antibody-Dependent Enhancement , Macrophages, Alveolar , Receptors, IgG , Animals , African Swine Fever Virus/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/virology , Swine , African Swine Fever/virology , African Swine Fever/immunology , Antibodies, Viral/immunology , Receptors, IgG/immunology , Virus Replication , Rabbits
7.
Viruses ; 16(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38932241

ABSTRACT

African swine fever (ASF) is an acute, hemorrhagic, highly contagious disease in pigs caused by African swine fever virus (ASFV). Our previous study identified that the ASFV MGF300-2R protein functions as a virulence factor and found that MGF300-2R degrades IKKß via selective autophagy. However, the E3 ubiquitin ligase responsible for IKKß ubiquitination during autophagic degradation still remains unknown. In order to solve this problem, we first pulled down 328 proteins interacting with MGF300-2R through immunoprecipitation-mass spectrometry. Next, we analyzed and confirmed the interaction between the E3 ubiquitin ligase TRIM21 and MGF300-2R and demonstrated the catalytic role of TRIM21 in IKKß ubiquitination. Finally, we indicated that the degradation of IKKß by MGF300-2R was dependent on TRIM21. In summary, our results indicate TRIM21 is the E3 ubiquitin ligase involved in the degradation of IKKß by MGF300-2R, thereby augmenting our understanding of the functions of MGF300-2R and offering insights into the rational design of live attenuated vaccines and antiviral strategies against ASF.


Subject(s)
African Swine Fever Virus , I-kappa B Kinase , Ribonucleoproteins , Ubiquitin-Protein Ligases , Ubiquitination , Viral Proteins , Animals , African Swine Fever Virus/metabolism , African Swine Fever Virus/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Swine , I-kappa B Kinase/metabolism , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , African Swine Fever/virology , African Swine Fever/metabolism , Humans , HEK293 Cells , Host-Pathogen Interactions , Virulence Factors/metabolism , Autophagy , Protein Binding
8.
Microorganisms ; 12(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38930438

ABSTRACT

The highly conserved C129R protein of AFSV was utilized in the development of an ASFV recombinant adenovirus vaccine, demonstrating strong immunogenicity. In this study, we immunized 6-week-old female C57BL/6J mice via subcutaneous injection with 10 µg of purified C129R protein. Humoral and cellular immune effects were assessed using ELISA, flow cytometry, and ELISpot assays. Additionally, 19 peptides of the C129R protein were synthesized and screened for the use of bioinformatics. Positive T-cell epitopes were screened using ELISpot. The results indicated a higher proportion of CD4+ and CD8+ T lymphocytes in immunized mice compared to control mice. ELISA analysis revealed a serum titer of approximately 1:1, 638, 400 in the experimental group of mice. Additionally, peptides C11(53-61aa), C14(81-89aa), C16(97-105aa), and C18(116-124aa) from the C129R protein were able to activate mice spleen lymphocytes to produce IFN-γ. These findings suggest that the C129R protein significantly enhances both humoral and cellular immunity in immunized mice. Moreover, peptides C11, C14, C16, and C18 may serve as potential T-cell epitopes for the C129R protein. These results lay the groundwork for the further exploration of ASFV C129R protein and the identification of novel ASF vaccine antigens.

9.
Microorganisms ; 12(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38930494

ABSTRACT

The beta T-cell receptor (TRB) expressed by beta T cells is essential for foreign antigen recognition. The TRB locus contains a TRBV family that encodes three complementarity determining regions (CDRs). CDR1 is associated with antigen recognition and interactions with MHC molecules. In contrast to domestic pigs, African suids lack a 284-bp segment spanning exons 1 and 2 of the TRBV27 gene that contains a sequence encoding CDR1. In this study, we used the African swine fever virus (ASFV) as an example to investigate the effect of deleting the TRBV27-encoded CDR1 on the resistance of domestic pigs to exotic pathogens. We first successfully generated TRBV27-edited fibroblasts with disruption of the CDR1 sequence using CRISPR/Cas9 technology and used them as donor cells to generate gene-edited pigs via somatic cell nuclear transfer. The TRBV-edited and wild-type pigs were selected for synchronous ASFV infection. White blood cells were significantly reduced in the genetically modified pigs before ASFV infection. The genetically modified and wild-type pigs were susceptible to ASFV and exhibited typical fevers (>40 °C). However, the TRBV27-edited pigs had a higher viral load than the wild-type pigs. Consistent with this, the gene-edited pigs showed more clinical signs than the wild-type pigs. In addition, both groups of pigs died within 10 days and showed similar severe lesions in organs and tissues. Future studies using lower virulence ASFV isolates are needed to determine the relationship between the TRBV27 gene and ASFV infection in pigs over a relatively long period.

10.
Vet Sci ; 11(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38921999

ABSTRACT

African swine fever virus (ASFV) is a double-stranded DNA virus with an envelope. ASFV has almost the largest genome among all DNA viruses, and its mechanisms of immune evasion are complex. Better understanding of the molecular mechanisms of ASFV genes will improve vaccine design. A238L, a nonstructural protein of ASFV, inhibits NF-κB activation by suppressing the HAT activity of p300. Whether A238L also affects the transcriptional activity of IRF3 remains unexplored. Here we first confirmed the ability of A238L to suppress NF-κB-activity in L929 cells. A238L inhibits the expression of proinflammatory cytokine genes. In contrast, A238L increased the phosphorylation levels of TBK1 and IRF3 in three different cell lines. A238L increases the IRF3-driven promoter activity and induces IRF3 nuclear translocation. Furthermore, A238L enhanced innate antiviral immunity in the absence or presence of poly d (A:T) or poly (I:C) stimulation, or herpes simplex virus type 1 (HSV-1) or Sendai virus (SeV) infection. This study reveals a previously unrecognized role of A238L in promoting antiviral immune responses by TBK1-IRF3 pathway activation.

11.
J Virol Methods ; 329: 114980, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876256

ABSTRACT

African swine fever virus (ASFV) is the etiological agent of African swine fever (ASF), a disease with detrimental effects on the health, welfare, and production of domestic and wild pigs. The ASF laboratory confirmation is based on the analysis of blood, serum and organ samples. However, testing these samples could not be always convenient, economically feasible or possible. This study describes the validation process of a PCR-based assay targeting a portion of p72 gene, used for the molecular detection of ASFV, from meat juice samples obtained from pigs succumbed to ASFV. More specifically, we investigated the capability of a real-time PCR assay to detect ASFV DNA in meat juices obtained from the diaphragmatic muscle along with the correspondent spleens of 55 ASFV-positive pigs and wild boars sampled from confirmed outbreaks in Romania and from 73 ASFV-negative and regularly slaughtered healthy pigs collected in the Abruzzo region (Italy). The test was able to detect viral DNA in both types of samples, with lower Ct values in spleens (mean=21.11, median=20.61) than meat juices (mean=23.08, median=22.40). However, distributions of Ct values were strongly correlated each other (R2= 0.83, P<0.001). Considering the distribution of the observed Ct values in the 55 positive meat juice samples, a 1:10 dilution would be able to detect 90 % of positive samples, whereas a 1:100 dilution would reduce the detectability to 78 % of more contaminated samples. As meat juice could be obtained easily from muscles and considering the potential use of this test on pooled samples, it could represent a tool to aid the investigation of ASFV spread.

12.
Virus Res ; 346: 199412, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838820

ABSTRACT

African swine fever virus (ASFV) is a large double-stranded DNA virus with a complex structural architecture and encodes more than 150 proteins, where many are with unknown functions. E184L has been reported as one of the immunogenic ASFV proteins that may contribute to ASFV pathogenesis and immune evasion. However, the antigenic epitopes of E184L are not yet characterized. In this study, recombinant E184L protein was expressed in prokaryotic expression system and four monoclonal antibodies (mAbs), designated as 1A10, 2D2, 3H6, and 4C10 were generated. All four mAbs reacted specifically with ASFV infected cells. To identify the epitopes of the mAbs, a series of overlapped peptides of E184L were designed and expressed as maltose binding fusion proteins. Accordingly, the expressed fusion proteins were probed with each E184L mAb separately by using Western blot. Following a fine mapping, the minimal linear epitope recognized by mAb 1A10 was identified as 119IQRQGFL125, and mAbs 2D2, 3H6, and 4C10 recognized a region located between 153DPTEFF158. Alignment of amino acids of E184L revealed that the two linear epitopes are highly conserved among different ASFV isolates. Furthermore, the potential application of the two epitopes in ASFV diagnosis was assessed through epitope-based ELISA using 24 ASFV positive and 18 negative pig serum and the method were able to distinguish positive and negative samples, indicating the two epitopes are dominant antigenic sites. To our knowledge, this is the first study to characterize the B cell epitopes of the antigenic E184L protein of ASFV, offering valuable tools for future research, as well as laying a foundation for serological diagnosis and epitope-based marker vaccine development.


Subject(s)
African Swine Fever Virus , Antibodies, Monoclonal , Antibodies, Viral , Epitope Mapping , Epitopes, B-Lymphocyte , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Antibodies, Monoclonal/immunology , Epitopes, B-Lymphocyte/immunology , Animals , Antibodies, Viral/immunology , Swine , African Swine Fever/immunology , African Swine Fever/virology , Mice , Viral Proteins/immunology , Viral Proteins/genetics , Viral Proteins/chemistry , Antigens, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/chemistry , Mice, Inbred BALB C
13.
Arch Virol ; 169(7): 145, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864875

ABSTRACT

Since 2020, African swine fever (ASF) has affected all pig breeds in Northeast India except Doom pigs, a unique indigenous breed from Assam and the closest relatives of Indian wild pigs. ASF outbreaks result in significant economic losses for pig farmers in the region. Based on sequencing and phylogenetic analysis of the B646L (p72) gene, it has been determined that ASFV genotype II is responsible for outbreaks in this region. Recent studies have shown that MYD88, LDHB, and IFIT1, which are important genes of the immune system, are involved in the pathogenesis of ASFV. The differential expression patterns of these genes in surviving ASFV-infected and healthy Doom breed pigs were compared to healthy controls at different stages of infection. The ability of Doom pigs to withstand common pig diseases, along with their genetic resemblance to wild pigs, make them ideal candidates for studying tolerance to ASFV infection. In the present study, we investigated the natural resistance to ASF in Doom pigs from an endemic area in Northeast India. The results of this study provide important molecular insights into the regulation of ASFV tolerance genes.


Subject(s)
African Swine Fever Virus , African Swine Fever , Disease Outbreaks , Phylogeny , Animals , African Swine Fever/virology , African Swine Fever/epidemiology , African Swine Fever/immunology , African Swine Fever Virus/genetics , African Swine Fever Virus/immunology , India/epidemiology , Swine , Disease Outbreaks/veterinary , Genotype , Myeloid Differentiation Factor 88/genetics , Disease Resistance/genetics
14.
Front Vet Sci ; 11: 1390486, 2024.
Article in English | MEDLINE | ID: mdl-38868498

ABSTRACT

Activation-induced markers (AIMs) are frequently analyzed to identify re-activated human memory T cells. However, in pigs the analysis of AIMs is still not very common. Based on available antibodies, we designed a multi-color flow cytometry panel comprising pig-specific or cross-reactive antibodies against CD25, CD69, CD40L (CD154), and ICOS (CD278) combined with lineage/surface markers against CD3, CD4, and CD8α. In addition, we included an antibody against tumor necrosis factor alpha (TNF-α), to study the correlation of AIM expression with the production of this abundant T cell cytokine. The panel was tested on peripheral blood mononuclear cells (PBMCs) stimulated with phorbol 12-myristate 13-acetate (PMA)/ionomycin, Staphylococcus enterotoxin B (SEB) or PBMCs from African swine fever virus (ASFV) convalescent pigs, restimulated with homologous virus. PMA/ionomycin resulted in a massive increase of CD25/CD69 co-expressing T cells of which only a subset produced TNF-α, whereas CD40L expression was largely associated with TNF-α production. SEB stimulation triggered substantially less AIM expression than PMA/ionomycin but also here CD25/CD69 expressing T cells were identified which did not produce TNF-α. In addition, CD40L-single positive and CD25+CD69+CD40L+TNF-α- T cells were identified. In ASFV restimulated T cells TNF-α production was associated with a substantial proportion of AIM expressing T cells but also here ASFV-reactive CD25+CD69+TNF-α- T cells were identified. Within CD8α+ CD4 T cells, several CD25/CD40L/CD69/ICOS defined phenotypes expanded significantly after ASFV restimulation. Hence, the combination of AIMs tested will allow the identification of primed T cells beyond the commonly used cytokine panels, improving capabilities to identify the full breadth of antigen-specific T cells in pigs.

15.
Vet Res ; 55(1): 73, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849962

ABSTRACT

African swine fever virus (ASFV) causes a devastating disease affecting domestic and wild pigs. ASF was first introduced in Sardinia in 1978 and until 2019 only genotype I isolates were identified. A remarkable genetic stability of Sardinian ASFV isolates was described, nevertheless in 2019 two wild boar isolates with a sustained genomic deletion (4342 base pairs) were identified (7303WB/19, 7212WB/19). In this study, we therefore performed in vitro experiments with monocyte-derived macrophages (moMФ) to unravel the phenotypic characteristics of these deleted viruses. Both 7303WB/19 and 7212WB/19 presented a lower growth kinetic in moMФ compared to virulent Sardinian 26544/OG10, using either a high (1) or a low (0.01) multiplicity of infection (MOI). In addition, flow cytometric analysis showed that both 7303WB/19 and 7212WB/19 presented lower intracellular levels of both early and late ASFV proteins. We subsequently investigated whether deleted virus variants were previously circulating in wild boars in Sardinia. In the four years preceding the last genotype I isolation (February 2015-January 2019), other eight wild boar isolates were collected, all belonging to p72 genotype I, B602L subgroup X, but none of them presented a sustained genomic deletion. Overall, we observed the deleted virus isolates in Sardinia only in 2019, at the end of a strong eradication campaign, and our data suggest that it might possess an attenuated phenotype in vivo. A better understanding of ASFV evolution in endemic territories might contribute to development of effective control measures against ASF.


Subject(s)
African Swine Fever Virus , African Swine Fever , Genotype , Sus scrofa , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/physiology , Swine , Italy , African Swine Fever/virology , Genome, Viral , Phenotype , Sequence Deletion , Macrophages/virology
16.
Front Vet Sci ; 11: 1371774, 2024.
Article in English | MEDLINE | ID: mdl-38933699

ABSTRACT

Introduction: There are no microbiological regulatory limits for viruses in animal feed and feed ingredients. Methods: A performance objective (PO) was proposed in this study to manufacture a spray-dried porcine plasma (SDPP) batch absent of any infectious viral particles. The PO levels of -7.0, -7.2, and -7.3 log TCID50/g in SDPP were estimated for three batch sizes (10, 15, and 20 tons). Results and discussion: A baseline survey on the presence of porcine epidemic diarrhea virus (PEDV) in raw porcine plasma revealed a concentration of -1.0 ± 0.6 log TCID50/mL as calculated using a TCID50-qPCR derived standard curve. The mean African swine fever virus (ASFV) concentration in raw plasma was estimated to be 0.6 log HAD50/mL (0.1-1.4, 95% CI) during a pre-clinical scenario (collected from asymptomatic and undetected viremic pigs). Different processing scenarios (baseline: spray-drying + extended storage) and baseline + ultraviolet (UV) radiation were evaluated to meet the PO levels proposed in this study. The baseline and baseline + UV processing scenarios were >95 and 100% effective in achieving the PO for PEDV by using different batch sizes. For the ASFV in SDPP during a pre-clinical scenario, the PO compliance was 100% for all processing scenarios evaluated. Further research is needed to determine the underlying mechanisms of virus inactivation in feed storage to further advance the implementation of feed safety risk management efforts globally.

17.
Viruses ; 16(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38932205

ABSTRACT

African swine fever (ASF) is a contagious viral disease affecting pigs and wild boars. It typically presents as a hemorrhagic fever but can also manifest in various forms, ranging from acute to asymptomatic. ASF has spread extensively globally, significantly impacting the swine industry. The complex and highly variable character of the ASFV genome makes vaccine development and disease surveillance extremely difficult. The overall trend in ASFV evolution is towards decreased virulence and increased transmissibility. Factors such as gene mutation, viral recombination, and the strain-specificity of virulence-associated genes facilitate viral variations. This review deeply discusses the influence of these factors on viral immune evasion, pathogenicity, and the ensuing complexities encountered in vaccine development, disease detection, and surveillance. The ultimate goal of this review is to thoroughly explore the genetic evolution patterns and variation mechanisms of ASFV, providing a theoretical foundation for advancement in vaccine and diagnostic technologies.


Subject(s)
African Swine Fever Virus , African Swine Fever , Genetic Variation , Genome, Viral , African Swine Fever Virus/genetics , Animals , Swine , African Swine Fever/virology , Virulence , Viral Vaccines/immunology , Viral Vaccines/genetics , Evolution, Molecular , Immune Evasion/genetics , Mutation , Vaccine Development
18.
Virology ; 597: 110145, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38941747

ABSTRACT

African swine fever virus (ASFV), which was first identified in northern China in 2018, causes high mortality in pigs. Since the I73R protein in ASFV is abundantly expressed during the early phase of virus replication, it can be used as a target protein for early diagnosis. In this study, the I73R protein of ASFV was expressed, and we successfully prepared a novel monoclonal antibody (mAb), 8G11D7, that recognizes this protein. Through both indirect immunofluorescence and Western blotting assays, we demonstrated that 8G11D7 can detect ASFV strains. By evaluating the binding of the antibody to a series of I73R-truncated peptides, the definitive epitope recognized by the monoclonal antibody 8G11D7 was determined to be 58 DKTNTIYPP 66. Bioinformatic analysis revealed that the antigenic epitope had a high antigenic index and conservatism. This study contributes to a deeper understanding of ASFV protein structure and function, helping establish ASFV-specific detection method.


Subject(s)
African Swine Fever Virus , African Swine Fever , Antibodies, Monoclonal , Antibodies, Viral , Epitopes , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Animals , Antibodies, Monoclonal/immunology , Swine , Epitopes/immunology , African Swine Fever/virology , African Swine Fever/immunology , African Swine Fever/diagnosis , Antibodies, Viral/immunology , Viral Proteins/immunology , Viral Proteins/genetics , Mice , Antigens, Viral/immunology , Antigens, Viral/genetics , Mice, Inbred BALB C , Epitope Mapping
19.
J Biol Chem ; 300(7): 107453, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852886

ABSTRACT

Identification of a conserved G-quadruplex in E165R of ASFVAfrican swine fever virus (ASFV) is a double-stranded DNA arbovirus with high transmissibility and mortality rates. It has caused immense economic losses to the global pig industry. Currently, no effective vaccines or medications are to combat ASFV infection. G-quadruplex (G4) structures have attracted increasing interest because of their regulatory role in vital biological processes. In this study, we identified a conserved G-rich sequence within the E165R gene of ASFV. Subsequently, using various methods, we verified that this sequence could fold into a parallel G4. In addition, the G4-stabilizers pyridostatin and 5,10,15,20-tetrakis-(N-methyl-4-pyridyl) porphin (TMPyP4) can bind and stabilize this G4 structure, thereby inhibiting E165R gene expression, and the inhibitory effect is associated with G4 formation. Moreover, the G4 ligand pyridostatin substantially impeded ASFV proliferation in Vero cells by reducing gene copy number and viral protein expression. These compelling findings suggest that G4 structures may represent a promising and novel antiviral target against ASFV.


Subject(s)
African Swine Fever Virus , Antiviral Agents , G-Quadruplexes , African Swine Fever Virus/genetics , African Swine Fever Virus/metabolism , Animals , Chlorocebus aethiops , Vero Cells , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Swine , African Swine Fever/virology , African Swine Fever/metabolism , Porphyrins/chemistry , Porphyrins/pharmacology , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Picolinic Acids/metabolism , Virus Replication/drug effects , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/chemistry , Aminoquinolines
20.
Virol Sin ; 39(3): 469-477, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38789040

ABSTRACT

Virus replication relies on complex interactions between viral proteins. In the case of African swine fever virus (ASFV), only a few such interactions have been identified so far. In this study, we demonstrate that ASFV protein p72 interacts with p11.5 using co-immunoprecipitation and liquid chromatography-mass spectrometry (LC-MS). It was found that protein p72 interacts specifically with p11.5 â€‹at sites amino acids (aa) 1-216 of p72 and aa 1-68 of p11.5. To assess the importance of p11.5 in ASFV infection, we developed a recombinant virus (ASFVGZΔA137R) by deleting the A137R gene from the ASFVGZ genome. Compared with ASFVGZ, the infectious progeny virus titers of ASFVGZΔA137R were reduced by approximately 1.0 logs. In addition, we demonstrated that the growth defect was partially attributable to a higher genome copies-to-infectious virus titer ratios produced in ASFVGZΔA137R-infected MA104 â€‹cells than in those infected with ASFVGZ. This finding suggests that MA104 â€‹cells infected with ASFVGZΔA137R may generate larger quantities of noninfectious particles. Importantly, we found that p11.5 did not affect virus-cell binding or endocytosis. Collectively, we show for the first time the interaction between ASFV p72 and p11.5. Our results effectively provide the relevant information of the p11.5 protein. These results extend our understanding of complex interactions between viral proteins, paving the way for further studies of the potential mechanisms and pathogenesis of ASFV infection.


Subject(s)
African Swine Fever Virus , Viral Proteins , Virus Replication , African Swine Fever Virus/genetics , African Swine Fever Virus/physiology , Animals , Swine , Viral Proteins/metabolism , Viral Proteins/genetics , Chlorocebus aethiops , African Swine Fever/virology , African Swine Fever/metabolism , Cell Line , Protein Binding , Chromatography, Liquid , Vero Cells , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...