Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Divers ; 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37658910

ABSTRACT

Listeria monocytogenes is an important human and animal pathogen able to cause an infection named listeriosis and is mainly transmitted through contaminated food. Among its virulence traits, the ability to form biofilms and to survive in harsh environments stand out and lead to the persistence of L. monocytogenes for long periods in food processing environments. Virulence and biofilm formation are phenotypes regulated by quorum sensing (QS) and, therefore, the control of L. monocytogenes through an anti-QS strategy is promising. This study aimed to identify, by in silico approaches, proteins secreted by lactic acid bacteria (LAB) potentially able to interfere with the agr QS system of L. monocytogenes. The genome mining of Lacticaseibacillus rhamnosus GG and Lactobacillus acidophilus NCFM revealed 151 predicted secreted proteins. Concomitantly, the three-dimensional (3D) structures of AgrB and AgrC proteins of L. monocytogenes were modeled and validated, and their active sites were predicted. Through protein-protein docking and molecular dynamic, Serine-type D-Ala-D-Ala carboxypeptidase and L,D-transpeptidase, potentially secreted by L. rhamnosus GG and L. acidophilus NCFM, respectively, were identified with high affinity to AgrB and AgrC proteins, respectively. By inhibiting the translocation of the cyclic autoinducer peptide (cyclic AIP) via AgrB, and its recognition in the active site of AgrC, these LAB proteins could disrupt L. monocytogenes communication by impairing the agr QS system. The application of the QS inhibitors predicted in this study can emerge as a promising strategy in controlling L. monocytogenes in food processing environment and as an adjunct to antibiotic therapy for the treatment of listeriosis.

2.
Int J Biol Macromol ; 123: 600-608, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30414418

ABSTRACT

In this work, we evaluated the ability of Punica granatum sarcotesta lectin (PgTeL) to impair the growth and viability of the Staphylococcus aureus clinical isolates 8325-4 (non-resistant) and LAC USA300 (MRSA strain). The effects of this lectin on aggregating, hemolytic activity, biofilm-forming ability, and expression of virulence genes (hla, rnaIII, and spa) were also investigated. PgTeL showed antibacterial activity against 8325-4 and LAC USA300 strains by interfering with both the growth (MIC50 of 6.25 and 12.5 µg/mL, respectively) and survival (MBC values of 25.0 and 50.0 µg/mL, respectively). Culture growth started only at the ninth (8325-4) and tenth (LAC USA300) hour in the presence of PgTeL at MIC50, while growth was detected since the first hour in the control. The lectin caused markedly altered cell morphology in both the strains. Although, at the MIC50, PgTeL caused structural alterations, most cells were still viable, while at the MBC it promoted cell injury and death. PgTeL showed anti-aggregation effect and exhibited antibiofilm activity against both the isolates. However, the lectin did not interfere with the hemolytic activity of LAC USA300 and with the expression of hla, rnaIII, and spa genes. In conclusion, PgTeL is a lectin with multiple inhibitory effects on S. aureus clinical isolates.


Subject(s)
Biofilms/drug effects , Lectins/chemistry , Lythraceae/chemistry , Staphylococcus aureus/drug effects , Biofilms/growth & development , Cell Aggregation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Lectins/pharmacology , Staphylococcus aureus/pathogenicity
3.
Front Microbiol ; 6: 369, 2015.
Article in English | MEDLINE | ID: mdl-25999924

ABSTRACT

UNLABELLED: Staphylococcus aureus is an opportunistic pathogen that colonizes human hosts and causes a wide variety of diseases. Two interacting regulatory systems called agr (accessory gene regulator) and sar (staphylococcal accessory regulator) are involved in the regulation of virulence factors. The aim of this study was to evaluate the effect of vancomycin on hld and spa gene expression during the exponential and post-exponential growth phases in multidrug-resistant (MDR) S. aureus. METHODS: Antibiotic susceptibility was evaluated by the standard microdilution method. The phylogenetic profile was obtained by pulsed-field gel electrophoresis (PFGE). Polymorphisms of agr and SCCmec (staphylococcal cassette chromosome mec) were analyzed by multiplex polymerase chain reaction (PCR). The expression levels of hld and spa were analyzed by reverse transcription-PCR. An enzyme-linked immunosorbent assay (ELISA) was performed to detect protein A, and biofilm formation was analyzed via crystal violet staining. RESULTS: In total, 60.60% (20/33) of S. aureus clinical isolates were MDR. Half (10/20) of the MDR S. aureus isolates were distributed in subcluster 10, with >90% similarity among them. In the isolates of this subcluster, a high prevalence (100%) for the agrII and the cassette SCCmec II polymorphisms was found. Our data showed significant increases in hld expression during the post-exponential phase in the presence and absence of vancomycin. Significant increases in spa expression, protein A production and biofilm formation were observed during the post-exponential phase when the MDR S. aureus isolates were challenged with vancomycin. CONCLUSION: The polymorphism agrII, which is associated with nosocomial isolates, was the most prevalent polymorphism in MDR S. aureus. Additionally, under our study conditions, vancomycin modified hld and spa expression in these clinical isolates. Therefore, vancomycin may regulate alternative systems that jointly participate in the regulation of these virulence factors.

SELECTION OF CITATIONS
SEARCH DETAIL