Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Article in English | MEDLINE | ID: mdl-38970656

ABSTRACT

This work aimed to define strategies to increase the bioproduction of 6 pentyl-α-pyrone (bioaroma). As first strategy, fermentations were carried out in the solid state, with agro-industrial residues: Mauritia flexuosa Liliopsida. and Manihot esculenta Crantz in isolation, conducting them with different nutrient solutions having Trichoderma harzianum as a fermenting fungus. Physicochemical characterizations, centesimal composition, lignocellulosic and mineral content and antimicrobial activity were required. Fermentations were conducted under different humidification conditions (water, nutrient solution without additives and nutrient solutions with glucose or sucrose) for 9 days. Bioaroma was quantified by gas chromatography, assisted by solid-phase microextraction. The results showed the low production of this compound in fermentations conducted with sweet cassava (around 6 ppm (w/w)). The low bioproduction with sweet cassava residues can probably be related to its starch-rich composition, homogeneous substrate, and low concentration of nutrients. Already using buriti, the absence of aroma production was detected. Probably the presence of silicon and high lignin content in buriti minimized the fungal activity, making it difficult to obtain the aroma of interest. Given the characteristics presented by the waste, a new strategy was chosen: mixing waste in a 1:1 ratio. This fermentation resulted in the production of 156.24 ppm (w/w) of aroma using the nutrient solution added with glucose. This combination, therefore, promoted more favorable environment for the process, possibly due to the presence of fermentable sugars from sweet cassava and fatty acids from the buriti peel, thus proving the possibility of an increase of around 2500% in the bioproduction of coconut aroma.

2.
Sci Rep ; 14(1): 15191, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956403

ABSTRACT

The development of geopolymer concrete offers promising prospects for sustainable construction practices due to its reduced environmental impact compared to conventional Portland cement concrete. However, the complexity involved in geopolymer concrete mix design often poses challenges for engineers and practitioners. In response, this study proposes a simplified approach for designing geopolymer concrete mixtures, drawing upon principles from Portland cement concrete mix design standards and recommended molar ratios of oxides involved in geopolymer synthesis. The proposed methodology aims to streamline the mix design process while optimizing key factors such as chemical composition, alkali activation solution, water content, and curing conditions to achieve desired compressive strength and workability. By leveraging commonalities between Portland cement concrete and geopolymer concrete, this approach seeks to facilitate the adoption of geopolymer concrete in practical construction applications. The proposed mix design guidelines have been validated through examples for concrete cured under different conditions, including outdoor and oven curing. Future research should focus on validating the proposed methodology through experimental studies and exploring cost-effective alternatives for alkali activation solutions to enhance the feasibility and scalability of geopolymer concrete production. Overall, the proposed simplified approach holds promise for advancing the utilization of geopolymer concrete as a sustainable alternative in the construction industry.

3.
Bioprocess Biosyst Eng ; 47(7): 1081-1094, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38739268

ABSTRACT

Wheat bran is one of the most abundant by-products from grain milling, which can be used as substrate for solid-state fermentation (SSF) to obtain enzymes able to convert this agro-industrial waste into glucose syrup, which in turn can be applied for the production of different food products. The present study aimed to determine centesimal composition of wheat bran, obtain enzymatic extract that converts wheat bran into wheat glucose syrup (WGS), produce rice flakes cereal bars (RFCB), and evaluate their nutritional composition and the presence of functional compounds, as well as their antioxidant potential. Determination of centesimal composition of wheat bran demonstrated its nutritional potential. Enzymatic extract was obtained and it converted wheat bran into WGS, which were applied to rice flakes producing RFCB. These cereal bars proved to be a source of dietary fiber (1.8 g) and soluble protein (7.2 g) while RCFB produced with corn glucose syrup did not present these nutritional components. In addition, RFCB produced with WGS showed polyphenolic compounds, among them flavonoids, which exhibited antioxidant activity by DPPH and ABTS radical scavenging (47.46% and 711.89 µM Trolox Equivalent/g, respectively), and iron ion reduction (71.70 µM Trolox equivalent/g). Final product showed a decrease in caloric value and sodium content. Therefore, the present study showed that the bioprocess of SSF yields a nutritional, ecological, and functional food product, which might be of great interest for food industry, adding nutritional and functional value to a well-stablished product.


Subject(s)
Antioxidants , Dietary Fiber , Edible Grain , Fermentation , Glucose , Glucose/metabolism , Antioxidants/metabolism , Edible Grain/chemistry , Oryza/chemistry , Triticum/metabolism , Triticum/chemistry
4.
ACS Appl Mater Interfaces ; 16(15): 19391-19410, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38591172

ABSTRACT

Nowadays, bone systems have a series of consequences that compromise the quality of life mainly due to wear and decreased bioactivity, generally in elderly people and children. In this context, the combination of montmorillonite (MMT-NPs) in a vitreous system such as nanobioglass facilitates the adsorption of biomolecules on the surface and within the interlamellar spaces, enabling the entry of ions by a cation exchange process focusing on increasing the rate of bone formation. This work aims to synthesize and characterize an eco-friendly hybrid reinforcement containing MMT-NPs with nanobioglass doped with magnesium nanoparticles (MgNPs-BV). In this way, MMT-NPs@MgNPs-BV was synthesized by the impregnation method, where an experimental design was used to verify the synthesis conditions. The ideal condition by experimental design was carried out in terms of the characterization and biological activity, where we demonstrated MMT-NPs of 30% w w-1, MgNPs-BV of 6% w w-1, and a calcination temperature of 1273.15 K with a cell viability around 66.87%, an average crystallite diameter of 12.5 nm, and a contact angle of 17.7°. The characterizations confirmed the impregnation method with an average particle size of 51.4 ± 13.1 nm. The mechanical tests showed a hardness of 2.6 GPa with an apparent porosity of 22.2%, similar to human bone. MMT-NPs@MgNPs-BV showed a cell proliferation of around 96% in osteoblastic cells (OFCOL II), with the formation of the apatite phase containing a relation of Ca/P of around 1.63, a biodegradability of 82%, and rapid release of ions with a Ca/P ratio of 1.42. Therefore, the eco-friendly hybrid reinforcement with MMT-NPs and MgNPs-BV shows potential for application with a matrix for biocompatible nanocomposites for bone regeneration.


Subject(s)
Bentonite , Nanoparticles , Child , Humans , Aged , Quality of Life , Bone Regeneration , Ions
5.
Adv Food Nutr Res ; 108: 135-177, 2024.
Article in English | MEDLINE | ID: mdl-38460998

ABSTRACT

Packaging is fundamental to maintaining the quality of food, but its contribution with a negative footprint to the environment must be completely changed worldwide to reduce pollution and climate change. Innovative and sustainable packaging and new strategies of reutilization are necessary to reduce plastic waste accumulation, maintain food quality and safety, and reduce food losses and waste. The purpose of this chapter is to present innovations in food packaging for a sustainable and circular economy. First, to present the eco-design packaging approach as well as new strategies for recycled or recyclable materials in food packaging. Second, to show current trends in new packaging materials developed from the use of agro-industrial wastes as well as new methods of production, including 3D/4D printing, electrostatic spinning, and the use of nanomaterials.


Subject(s)
Food Packaging , Nanostructures , Recycling , Food , Industrial Waste
6.
J Environ Sci Health B ; 59(4): 131-141, 2024.
Article in English | MEDLINE | ID: mdl-38314812

ABSTRACT

Small slaughterhouses generate biowaste, which for economic reasons, is generally destined for composting. Inoculating appropriate microorganisms can improve biodegradation efficiency and mitigate odor generation during the composting process and can give rise to composts with neutral or pleasant odors. Therefore, the aim of this study was to compare the odor intensity reduction of compost generated with and without a formulated inoculum (Saccharomyces cerevisiae, Bacillus subtilis, and Rhodopseudomonas palustris). A set of experimental data was collected and analyzed according to the German "Verein Deutscher Ingenieure" odor protocol. The results showed that adding microorganisms was effective in reducing unpleasant odors in all three composts generated from swine, cattle, and poultry slaughterhouse by-products during both summer and winter seasons. Additionally, soil odor was predominant in composts that were inoculated in the two tested seasons (i.e., summer and winter). On the other hand, composts without inoculation had odors similar to peat for swine compost, ammonia for cattle compost, and manure for poultry compost, regardless of the season tested. Overall, composting process with appropriate inoculum can help in the correct disposal of slaughterhouse wastes by transforming organic matter into composts, which can have economic and environmental value as a soil conditioner and/or fertilizer.


Subject(s)
Composting , Animals , Cattle , Swine , Abattoirs , Odorants/prevention & control , Soil , Biodegradation, Environmental , Manure
7.
Microorganisms ; 12(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38399644

ABSTRACT

Bioconversion of lignocellulosic biomass is a highly promising alternative to rapidly reduce reliance on fossil fuels and greenhouse gas emissions. However, the use of lignocellulosic biomass is limited by the challenges of efficient degradation strategies. Given this need, Bacillus tropicus (B. tropicus) with cellulose degradation ability was isolated and screened from rotten dahlia. The strain efficiently utilized coconut oil cake (COC) to secrete 167.3 U/mL of cellulase activity. Electron microscopy results showed significant changes in the structure and properties of cellulose after treatment with B. tropicus, which increased the surface accessibility and the efficiency of the hydrolysis process. The functional group modification observed by Fourier transform infrared spectroscopy indicated the successful depolymerization of COC. The X-ray diffraction pattern showed that the crystallinity index increased from 44.8% to 48.2% due to the hydrolysis of the amorphous region in COC. The results of colorimetry also reveal an efficient hydrolysis process. A co-culture of B. tropicus and Saccharomyces cerevisiae was used to produce ethanol from COC waste, and the maximum ethanol yield was 4.2 g/L. The results of this work show that B. tropicus can be used to prepare biotechnology value-added products such as biofuels from lignocellulosic biomass, suggesting promising utility in biotechnology applications.

8.
Saudi J Biol Sci ; 31(4): 103947, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38371876

ABSTRACT

The production of corn generates a substantial amount of agro-industrial waste, with corncob accounting for a significant portion of this waste. In this study, we focused on utilizing corncob as a carbon source and inducer to simultaneously produce two valuable industrial enzymes, protease, and xylanase, using a recombinant strain of B. halodurans CM1. Interestingly, xylan-rich corncob not only enhanced the xylanase activity but also induced protease activity of the modified B. halodurans CM1 strain. The effect of corncob concentration on the coproduction of protease and xylanase was investigated. Corncob with 6 % concentration induced protease activity of 1020.7 U/mL and xylanase activity of 502.8 U/mL in a 7 L bioreactor under the condition of 1 vvm aeration, 250 rpm agitation, 37 °C temperature, initial pH 9.0, and 40 h incubation period. The protease produced was an alkalothermophilic enzyme whose highest activity was at pH 12 and 50 °C, and it belonged to a serine protease family. This alkalothermophilic protease's activity to some degree was reduced by Co2+, Mg2+, Fe2+, Zn2+, and K+, but enhanced by Ca2+ and Ni2+ (at 5 mM). The protease was stable even under the presence of a 15 % concentration of acetone, DMSO, ethanol, and isopropyl alcohol. The protease activity at 30 °C was not considerably changed by the presence of detergent, indicating excellent potential as a washing detergent additive. According to these findings, corncob has the potential to be a substrate for the coproduction of protease and xylanase, which have a wide range of industrial uses.

9.
Environ Res ; 247: 118220, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38242422

ABSTRACT

The work investigates the potential of peanut shells, an abundant agro-industrial waste, to serve as an adsorbent precursor for the effective and simple treatment of effluents loaded with cadmium and nickel ions. Among the adsorbents prepared, carbonized peanut shell (CCarb), due to its higher adsorption capacity, proved to be the most effective compared to carbonized and activated peanut shell (CATQ). The carbonization process led to structural changes, which resulted in an increase in surface area (around 6 times more in CATQ) and pore volume (around 3 times more in CATQ). Even so, the amount of H+ acid sites due to acid activation produced unfavorable effects for adsorption. Hydroxyl, carboxyl and carbonyl groups were identified on the adsorbent surface which presented favorable charges for metal adsorption. This improvement propels the carbonized variant to the forefront, demonstrating the highest adsorption capacity and reaching equilibrium in less than 90 and 60 min for cadmium and nickel ions, respectively. In both monocomponent and bicomponent systems concentrations greater than 40 ppm signify an increase in adsorption capacity for Ni2+. The experimental data best fit the Freundlich model, showing maximum adsorption capacities of 17.04 mg g-1 for cadmium and 31.28 mg g-1 for nickel. Despite the antagonistic effect observed in the bicomponent system, this study concludes by underlining the promise of activated carbon from peanut shells to harmonize technical and environmental concerns.


Subject(s)
Nickel , Water Pollutants, Chemical , Cadmium , Arachis , Adsorption , Bismuth , Ions , Kinetics , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
10.
Food Chem ; 443: 138515, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38277934

ABSTRACT

In light of the growing demand for alternative protein sources, laboratory-grown meat has been proposed as a potential solution to the challenges posed by conventional meat production. Cultured meat does not require animal slaughter and uses sustainable production methods, contributing to animal welfare, human health, and environmental sustainability. However, some challenges still need to be addressed in cultured meat production, such as the use of fetal bovine serum for medium supplementation. This ingredient has limited availability, increases production costs, and raises ethical concerns. This review explores the potential of non-animal protein hydrolysates derived from agro-industrial wastes as substitutes for critical components of fetal bovine serum in cultured meat production. Despite the lack of standardization of hydrolysate composition, the potential benefits of this alternative protein source may outweigh its disadvantages. Future research holds promise for increasing the accessibility of cultured meat.


Subject(s)
Industrial Waste , Protein Hydrolysates , Animals , In Vitro Meat , Meat/analysis , Serum Albumin, Bovine
11.
Polymers (Basel) ; 16(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38257061

ABSTRACT

The growing demand for environmentally friendly and sustainable materials has led to the invention of innovative solutions aiming to reduce negative impacts on the environment. Mycelium-based green composites (MBCs) have become an alternative to traditional materials due to their biodegradability and various potential uses. Although MBCs are accepted as modern materials, there are concerns related to some of their physical and mechanical properties that might have limitations when they are used. This study investigates the effects of using paper waste to improve MBC properties. In this study, we investigated the physical and mechanical properties of MBCs produced from lignocellulosic materials (corn husk and sawdust) and mushroom mycelia of the genus Lentinus sajor-caju TBRC 6266, with varying amounts of paper waste added. Adding paper waste increases the density of MBCs. Incorporating 20% paper waste into corn husks led to the enhancement of the compression, bending, and impact strength of MBCs by over 20%. Additionally, it was also found that the MBCs produced from corn husk and 10% paper waste could help in reducing the amount of water absorbed into the material. Adding paper waste to sawdust did not improve MBC properties. At the same time, some properties of MBCs, such as low tensile strength and high shrinkage, might need to be further improved in the future to unlock their full potential, for which there are many interesting approaches. Moreover, the research findings presented in this publication provide a wealth of insightful information on the possibility of using paper waste to improve MBC performance and expand their suitability for a range of applications in sustainable packaging materials and various home decorative items. This innovative approach not only promotes the efficient utilization of lignocellulosic biomass but also contributes to the development of environmentally friendly and biodegradable alternatives to traditional materials.

12.
J Environ Manage ; 352: 120032, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38184874

ABSTRACT

The biogas plant plays a dual role: it directly provides energy and indirectly promotes organic farming through outlet slurry. However, agricultural biomass wastes such as rice straws (RS) and pressmud (PM), which can't be used as fertilizers on their own, were vermicomposted (60 days) with biogas slurry (BS), using earthworm, into four blends: T1(BS, 100%), T2(3:2, BS: RS), T3(3:2, BS: PM), and T4(3:1:1, BS: RS: PM). The characterization, elemental analysis, and toxicological risk assessment of derived vermimanure were carried out using various analytical tools, such as an organic elemental analyzer such as CHNS, FT-IR, FESEM-EDXA, XPS, and ICP-OES. The pH, electrical conductivity, and C/N values were within 7.1-7.8, 3.2-6.0 dSm-1, and 12-15, respectively, for all treatments. The proportions of N (38%), P (70%), K (58%), Mg (67%), Ca (42%), and ash (44%), increased significantly (P < 0.05) over the initial feedstocks. The ecological risks of heavy metals (Zn, Cu, Ni, Pb, Cd, and Cr) in all feedstocks were found to be under WHO-permitted levels. The growth performance of earthworms was also considerably higher (P < 0.05) over the control feedstock group. The analytical methods verified that feedstock T4 (3:1:1, BS: RS: PM) was more porous, containing NH4+, PO43-, K+, and other nutrients. Pellets of all vermimanure groups keep 65-75% of the original volume. As well, when these pellets have been employed for agronomy and dispersed in the field, they will cause less dust than traditional or powdered compost or manure. In comparison to the control group, the synergistic approach of RS, PM, and BS in vermimanure significantly (P < 0.05) enhanced seed germination (83%), vigour index (42.5%), and decreased mean germination time by 27%. Furthermore, pot trials with Abelmoschus esculentus seed indicated that seedlings cultivated with 40% vermimanure of T4 (3:1:1, BS: RS: PM) mixed soil showed high growth in shoot, root, and plant yield.


Subject(s)
Oligochaeta , Oryza , Animals , Biofuels/analysis , Spectroscopy, Fourier Transform Infrared , Soil/chemistry , Manure/analysis , Risk Assessment
13.
Bioresour Technol ; 394: 130317, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218408

ABSTRACT

In this review, the main properties of olive mill solid waste, the primary by-product of olive oil production, and its feasibility as a feedstock for anaerobic digesters operating at laboratory-, pilot- and industrial-scales are discussed in detail. Nutrient addition and thermal pretreatments were found to have the potential to address the challenges arising from the high carbon-to-nitrogen ratio, the low pH, and the high concentration of phenolic compounds. Furthermore, anaerobic co-digestion with different organic feedstocks has been identified as one of the most promising options to solve the aforementioned problems and the seasonality nature of olive waste, while improving the efficiency of anaerobic treatment plants that operate throughout the whole year. The insights generated from this study show co-digestion with wastes from animal farming to be the most environmentally and economically sustainable method for improving anaerobic digestion processes with olive mill solid waste.


Subject(s)
Olea , Anaerobiosis , Solid Waste , Industrial Waste/analysis , Phenols , Methane
14.
Environ Res ; 244: 117879, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38086503

ABSTRACT

Biosurfactants are eco-friendly compounds with unique properties and promising potential as sustainable alternatives to chemical surfactants. The current review explores the multifaceted nature of biosurfactant production and applications, highlighting key fermentative parameters and microorganisms able to convert carbon-containing sources into biosurfactants. A spotlight is given on biosurfactants' obstacles in the global market, focusing on production costs and the challenges of large-scale synthesis. Innovative approaches to valorizing agro-industrial waste were discussed, documenting the utilization of lignocellulosic waste, food waste, oily waste, and agro-industrial wastewater in the segment. This strategy strongly contributes to large-scale, cost-effective, and environmentally friendly biosurfactant production, while the recent advances in waste valorization pave the way for a sustainable society.


Subject(s)
Industrial Waste , Refuse Disposal , Food , Fermentation , Surface-Active Agents/chemistry
15.
Prep Biochem Biotechnol ; 54(1): 1-11, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37071540

ABSTRACT

This study describes the production, characterization and application of an endoglucanase from Penicillium roqueforti using lignocellulosic agro-industrial wastes as the substrate during solid-state fermentation. The endoglucanase was generated after culturing with different agro-industrial wastes for 96 h without any pretreatment. The highest activity was obtained at 50 °C and pH 4.0. Additionally, the enzyme showed stability in the temperature and pH ranges of 40-80 °C and 4.0-5.0, respectively. The addition of Ca2+, Zn2+, Mg2+, and Cu2+ increased enzymatic activity. Halotolerance as a characteristic of the enzyme was confirmed when its activity increased by 35% on addition of 2 M NaCl. The endoglucanase saccharified sugarcane bagasse, coconut shell, wheat bran, cocoa fruit shell, and cocoa seed husk. The Box-Behnken design was employed to optimize fermentable sugar production by evaluating the following parameters: time, substrate, and enzyme concentration. Under ideal conditions, 253.19 mg/g of fermentable sugars were obtained following the saccharification of wheat bran, which is 41.5 times higher than that obtained without optimizing. This study presents a thermostable, halotolerant endoglucanase that is resistant to metal ions and organic solvents with the potential to be applied in producing fermentable sugars for manufacturing biofuels from agro-industrial wastes.


Subject(s)
Cellulase , Saccharum , Cellulase/chemistry , Cellulose , Dietary Fiber , Fermentation , Industrial Waste , Research Design , Saccharum/metabolism , Sugars , Calcium/chemistry , Copper/chemistry , Zinc/chemistry , Magnesium/chemistry
16.
Braz J Microbiol ; 54(4): 2719-2731, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37783938

ABSTRACT

In this work, a new isolate yeast, namely Rhodotorula toruloides KP324973, was examined for ß-carotene production from corn steep liquor (CSL) as a sole carbon source because CSL as the by-product of corn wet-milling process mainly enriched from the water-soluble carbohydrates. The studies were preliminary performed at the shaken flasks, and then developed at batch and fed-batch modes in a bubble column reactor (BCR). Application of the BCR improved the carotenogenesis of the cells in comparison with shaken flasks and the specific ß-carotene production rate (Rp) and the yield of ß-carotene production from the total reducing sugars (YP/TRS) reached 2.23 mg gcell-1 h-1 and 36.82 mg gTRS-1, respectively. Further studies were carried out to optimize the operational factors of the BCR for a fed-batch production by the response surface methodology. An optimal condition at a feed flow rate of 2.5 mL h-1, temperature 11.7°C, and initial pH of 6.1 obtained the highest Rp = 12.31 mg gcell-1 h-1 and YP/TRS = 97.18 mg gTRS-1.


Subject(s)
Rhodotorula , beta Carotene , Zea mays , Bioreactors , Fermentation
17.
Bioresour Technol ; 390: 129829, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839650

ABSTRACT

Recent years have seen a transition to a sustainable circular economy model that uses agro-industrial waste biomass waste to produce energy while reducing trash and greenhouse gas emissions. Biogas production from lignocellulosic biomass (LCB) is an alternative option in the hunt for clean and renewable fuels. Different approaches are employed to transform the LCB to biogas, including pretreatment, anaerobic digestion (AD), and biogas upgradation to biomethane. To maintain process stability and improve AD performance, machine learning (ML) tools are being applied in real-time monitoring, predicting, and optimizing the biogas production process. An environmental life cycle assessment approach for biogas production systems is essential to calculate greenhouse gas emissions. The current review presents a detailed overview of the utilization of agro-waste for sustainable biogas production. Different methods of waste biomass processing and valorization are discussed that contribute towards developing an efficient agro-waste to biogas-based circular economy.


Subject(s)
Garbage , Greenhouse Gases , Industrial Waste , Biofuels , Biomass
18.
Materials (Basel) ; 16(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37834532

ABSTRACT

This article presents an experimental study to analyze the mechanical properties of a soil stabilized with ordinary Portland cement (OPC) under a sustainable approach consisting of a significant substitution of OPC for sugarcane bagasse ash (SCBA) to reduce the quantity of cement used in the stabilization, reaching the necessary mechanical requirements for its use as a subgrade layer. Soil specimens were elaborated with 3%, 5%, and 7% OPC as a stabilizing agent by weight of the soil. These mixtures were then partially substituted with 25%, 50%, and 75% SCBA, with these percentages being by weight of the stabilizer (OPC). Compaction, compressive strength, and California bearing ratio (CBR) tests were performed to evaluate the mechanical properties of the specimens. The results indicate that a 25% substitution of OPC by SCBA shows a similar performance to the mixture with only Portland cement, so a reduction in OPC use can be made. Further, with a substitution of 100% OPC by SCBA, the CBR of natural soil without stabilizers is improved.

19.
Molecules ; 28(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687063

ABSTRACT

As a biodegradable and renewable material, polylactic acid is considered a major environmentally friendly alternative to petrochemical plastics. Microbial fermentation is the traditional method for lactic acid production, but it is still too expensive to compete with the petrochemical industry. Agro-industrial wastes are generated from the food and agricultural industries and agricultural practices. The utilization of agro-industrial wastes is an important way to reduce costs, save energy and achieve sustainable development. The present study aimed to develop a method for the valorization of Zizania latifolia waste and cane molasses as carbon sources for L-lactic acid fermentation using Rhizopus oryzae LA-UN-1. The results showed that xylose derived from the acid hydrolysis of Z. latifolia waste was beneficial for cell growth, while glucose from the acid hydrolysis of Z. latifolia waste and mixed sugars (glucose and fructose) from the acid hydrolysis of cane molasses were suitable for the accumulation of lactic acid. Thus, a three-stage carbon source utilization strategy was developed, which markedly improved lactic acid production and productivity, respectively reaching 129.47 g/L and 1.51 g/L·h after 86 h of fermentation. This work demonstrates that inexpensive Z. latifolia waste and cane molasses can be suitable carbon sources for lactic acid production, offering an efficient utilization strategy for agro-industrial wastes.


Subject(s)
Molasses , Rhizopus oryzae , Canes , Industrial Waste , Lactic Acid , Carbon , Glucose
20.
World J Microbiol Biotechnol ; 39(12): 323, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37773232

ABSTRACT

The present study describes practical implication of bioaugmentation and biostimulation processes for bioremediation of an industrial soil chronically contaminated by hydrocarbons. For this purpose, biomass production of six autochthonous hydrocarbon-degrading bacteria were evaluated as inoculum of bioaugmentation strategy, by testing carbon and nitrogen sources included co-products and agro-industrial waste as sustainable and low-cost components of the growth medium. Otherwise, biostimulation was approached by the addition of optimized concentration of nitrogen and phosphorus. Microcosm assays showed that total hydrocarbons (TH) were significantly removed from chronically contaminated soil undergoing bioremediation treatment. Systems Mix (bioaugmentation); N,P (biostimulation) and Mix + N,P (bioaugmentation and biostimulation) reached higher TH removal, being 89.85%, 91.00%, 93.04%, respectively, comparing to 77.83% of system C (natural attenuation) at 90 days. The increased heterotrophic aerobic bacteria and hydrocarbon degrading bacteria counts were according to TH biodegrading process during the experiments. Our results showed that biostimulation with nutrients represent a valuable alternative tool to treat a chronically hydrocarbon-contaminated industrial soil, while bioaugmentation with a consortium of hydrocarbon degrading bacteria would be justified when the soil has a low amount of endogenous degrading microorganisms. Furthermore, the production of inoculum for application in bioaugmentation using low-cost substrates, such as industrial waste, would lead to the development of an environmentally friendly and attractive process in terms of cost-benefit.


Subject(s)
Petroleum , Soil Pollutants , Biodegradation, Environmental , Industrial Waste , Petroleum/analysis , Soil/chemistry , Soil Pollutants/analysis , Hydrocarbons , Bacteria , Nitrogen , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...