Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Microorganisms ; 12(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930604

ABSTRACT

Lignocellulosic biomass is abundant on Earth, and there are multiple acidic pretreatment options to separate the cellulose, hemicellulose, and lignin fraction. By doing so, the fermentation inhibitors 5-Hydroxymethylfurfural (HMF) and furfural (FF) are produced in varying concentrations depending on the hydrolyzed substrate. In this study, the impact of these furanic compounds on Chlorella vulgaris growth and photosynthetic activity was analyzed. Both compounds led to a prolonged lag phase in Chlorella vulgaris growth. While the photosynthetic yield Y(II) was not significantly influenced in cultivations containing HMF, FF significantly reduced Y(II). The conversion of 5-Hydroxymethylfurfural and furfural to 5-Hydroxymethyl-2-Furoic Acid and 2-Furoic Acid was observed. In total, 100% of HMF and FF was converted in photoautotrophic and mixotrophic Chlorella vulgaris cultivations. The results demonstrate that Chlorella vulgaris is, as of now, the first known microalgal species converting furanic compounds.

2.
ChemSusChem ; 16(17): e202300685, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37477393

ABSTRACT

To date the electroactive species of selective aldehyde oxidation to carboxylates at gold electrodes is usually assumed to be the diolate. It forms with high concentration only in very alkaline electrolytes, when OH- binds to the carbonyl carbon atom. Accordingly, the electrochemical upgrading of biomass-derived aldehydes to carboxylates is believed to be limited to very alkaline electrolytes at many electrode materials. However, OH- -induced aldehyde decomposition in these electrolytes prevents application of electrochemical aldehyde oxidation for the sustainable upgrading of biomass to value-added chemicals at industrial scale. Here, we demonstrate the successful oxidation of aliphatic aldehydes at a rotating gold electrode at pH 12, where only 1 % of the aldehyde resides as the diolate species. This concentration is too small to account for the observed current, which shows that also other aldehyde species (i. e., the geminal diol and the non-hydrated aldehyde) are electroactive. This insight allows developing strategies to omit aldehyde decomposition while achieving high current densities for the selective aldehyde oxidation, making its future industrial application viable.

3.
Molecules ; 28(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838842

ABSTRACT

Previously synthesized and spectroscopically characterized mononuclear nonheme, low-spin iron(III)-iodosylbenzene complex bearing a bidentate pyridyl-benzimidazole ligands has been investigated in alkane and aldehyde oxidation reactions. The in situ generated Fe(III) iodosylbenzene intermediate is a reactive oxidant capable of activating the benzylic C-H bond of alkane. Its electrophilic character was confirmed by using substituted benzaldehydes and a modified ligand framework containing electron-donating (Me) substituents. Furthermore, the results of kinetic isotope experiments (KIE) using deuterated substrate indicate that the C-H activation can be interpreted through a tunneling-like HAT mechanism. Based on the results of the kinetic measurements and the relatively high KIE values, we can conclude that the activation of the C-H bond mediated by iron(III)-iodosylbenzene adducts is the rate-determining step.


Subject(s)
Aldehydes , Iron , Iron/chemistry , Alkanes/chemistry , Hydroxylation , Oxidation-Reduction
4.
Front Microbiol ; 13: 965625, 2022.
Article in English | MEDLINE | ID: mdl-36051760

ABSTRACT

Brevibacillus massiliensis strain phR is an obligately aerobic microbe that was isolated from human feces. Here, we show that it readily takes up tungsten (W), a metal previously associated only with anaerobes. The W is incorporated into an oxidoreductase enzyme (BmWOR) that was purified from native biomass. BmWOR consists of a single 65 kDa subunit and contains a single W-pyranopterin cofactor and a single [4Fe-4S] cluster. It exhibited high aldehyde-oxidizing activity with very high affinities (apparent Km < 6 µM) for aldehydes common in the human gut and in cooked foods, including furfural, propionaldehyde, benzaldehyde and tolualdehyde, suggesting that BmWOR plays a key role in their detoxification. B. massiliensis converted added furfural to furoic acid when grown in the presence of W, but not in the presence of the analogous element molybdenum. B. massiliensis ferredoxin (BmFd) served as the electron acceptor (apparent Km < 5 µM) for BmWOR suggesting it is the physiological electron carrier. Genome analysis revealed a Fd-dependent rather than NADH-dependent Complex I, suggesting that WOR not only serves a detoxification role but its aldehyde substrates could also serve as a source of energy. BmWOR is the first tungstoenzyme and the first member of the WOR family to be obtained from a strictly aerobic microorganism. Remarkably, BmWOR oxidized furfural in the presence of air (21% O2, v/v) but only if BmFd was also present. BmWOR is the first characterized member of the Clade 83 WORs, which are predominantly found in extremely halophilic and aerobic archaea (Clade 83A), with many isolated from food sources, while the remaining bacterial members (Clade 83B) include both aerobes and anaerobes. The potential advantages for microbes found in foods and involved in human gut health that harbor O2-resistant WORs, including in Bacillus and Brevibacillus based-probiotics, are discussed.

5.
Front Chem ; 6: 457, 2018.
Article in English | MEDLINE | ID: mdl-30386765

ABSTRACT

Oxidizing aldehydes to generate carboxylic acids is a crucial reaction in nature and in chemical industry. The aldehyde oxidation, an easily achieved process in liver cells, is inert toward autoxidation in industrial production and difficultly achieved under enzymatic condition (in water, at pH 7, at room temperature). Herein, we prepared a supramolecular catalyst which are nanospheres assembled in aqueous media by chromium centered Anderson polyoxometalates Na3[CrMo6O18(OH)3] (namely, CrMo6) and cationic pillar[5]arenes (namely, P5A) with 10 positive charges which can be used as the phase transfer catalysts (PTCs). This supramolecular catalyst was exploited on aldehydes oxidation under enzymatic condition with relatively good conversion. Through DLS monitoring, the diameters of nanospheres were variable while changing the charge ratios of the ionic complexes (P5A-CrMo6), and it is probably because of the closer charge ratios causing the more compact assemblies. Also, the nano-morphologies were monitored by TEM and SEM, and the nanostructures were characterized by zeta potential, the X-ray energy-dispersive spectroscopy (EDS), elemental analysis.

6.
Molecules ; 22(12)2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29231859

ABSTRACT

The oxidation of alcohols to the corresponding carbonyl or carboxyl compounds represents a convenient strategy for the selective introduction of electrophilic carbon centres into carbohydrate-based starting materials. The O2-dependent oxidation of prim-alcohols by flavin-containing alcohol oxidases often yields mixtures of aldehyde and carboxylic acid, which is due to "over-oxidation" of the aldehyde hydrate intermediate. In order to directly convert alcohols into carboxylic acids, rational engineering of 5-(hydroxymethyl)furfural oxidase was performed. In an attempt to improve the binding of the aldehyde hydrate in the active site to boost aldehyde-oxidase activity, two active-site residues were exchanged for hydrogen-bond-donating and -accepting amino acids. Enhanced over-oxidation was demonstrated and Michaelis-Menten kinetics were performed to corroborate these findings.


Subject(s)
Alcohol Oxidoreductases/chemistry , Alcohols/chemistry , Carboxylic Acids/chemistry , Flavoproteins/chemistry , Aldehydes/chemistry , Catalysis , Catalytic Domain , Escherichia coli , Flavins/chemistry , Furaldehyde/analogs & derivatives , Furaldehyde/chemistry , Hydrogen Bonding , Kinetics , Oxidation-Reduction , Protein Conformation
7.
Arch Biochem Biophys ; 634: 76-82, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29029877

ABSTRACT

Choline oxidase oxidizes choline to glycine betaine, with two flavin-mediated reactions to convert the alcohol substrate to the carbon acid product. Proton abstraction from choline or hydrated betaine aldehyde in the wild-type enzyme occurs in the mixing time of the stopped-flow spectrophotometer, thereby precluding a mechanistic investigation. Mutagenesis of S101 rendered the proton transfer reaction amenable to study. Here, we have investigated the aldehyde oxidation reaction catalyzed by the mutant enzymes using steady-state and rapid kinetics with betaine aldehyde. Stopped-flow traces for the reductive half-reaction of the S101T/V/C variants were biphasic, corresponding to the reactions of proton abstraction and hydride transfer. In contrast, the S101A enzyme yielded monophasic traces like wild-type choline oxidase. The rate constants for proton transfer in the S101T/C/V variants decreased logarithmically with increasing hydrophobicity of residue 101, indicating a behavior different from that seen previously with choline for which no correlation was determined. The rate constants for hydride transfer also showed a logarithmic decrease with increasing hydrophobicity at position 101, which was similar to previous results with choline as a substrate for the enzyme. Thus, the hydrophilic character of S101 is necessary not only for efficient hydride transfer but also for the proton abstraction reaction.


Subject(s)
Alcohol Oxidoreductases/chemistry , Betaine/analogs & derivatives , Hydrogen/chemistry , Kinetics , Metals/chemistry , Models, Chemical , Amino Acid Substitution , Betaine/chemistry , Enzyme Activation , Oxidation-Reduction , Protons , Structure-Activity Relationship
8.
FEBS Lett ; 591(1): 39-46, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27926983

ABSTRACT

Although the oxidation of aldehydes to carboxylic acids is mainly catalyzed by aldehyde dehydrogenases in nature, cytochromes P450 are also able to perform such reactions. In this study, we demonstrate the oxidation of cinnamaldehyde to cinnamic acid by the myxobacterial CYP260B1. Following our docking studies of the aldehyde, we generated T224A and T234A mutants of CYP260B1 by site-directed mutagenesis to disrupt the substrate positioning and proton delivery, respectively. Furthermore, we used the kinetic solvent isotope effect on the steady-state turnover of the substrate to investigate the reactive intermediate capable of performing the catalysis. Our results suggest that the aldehyde oxidation occurs via a nucleophilic attack of the ferric peroxoanion.


Subject(s)
Acrolein/analogs & derivatives , Biocatalysis , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Myxococcales/enzymology , Threonine/metabolism , Acrolein/chemistry , Acrolein/metabolism , Cinnamates/metabolism , Crystallography, X-Ray , Deuterium/metabolism , Electrophoresis, Polyacrylamide Gel , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Oxidation-Reduction , Progesterone/metabolism , Protons , Solvents , Spectrophotometry, Ultraviolet , Structure-Activity Relationship , Substrate Specificity
9.
Sci Adv ; 1(2): e1500020, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26601150

ABSTRACT

The first example of a homogeneous silver(I)-catalyzed aerobic oxidation of aldehydes in water is reported. More than 50 examples of different aliphatic and aromatic aldehydes, including natural products, were tested, and all of them successfully underwent aerobic oxidation to give the corresponding carboxylic acids in extremely high yields. The reaction conditions are very mild and greener, requiring only a very low silver(I) catalyst loading, using atmospheric oxygen as the oxidant and water as the solvent, and allowing gram-scale oxidation with only 2 mg of our catalyst. Chromatography is completely unnecessary for purification in most cases.

10.
ACS Appl Mater Interfaces ; 7(5): 2993-7, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25616157

ABSTRACT

An optical ozone sensor was developed based on the finding that a purely organic phosphor linearly loses its phosphorescence emission intensity in the presence of varying concentration of ozone gas and ozonated water. Compared to conventional conductance-based inorganic sensors, our novel sensory film has many advantages such as easy fabrication, low-cost, and portability. NMR data confirmed that phosphorescence drop is attributed to oxidation of the core triplet generating aldehyde group of the phosphor. We observed that linear correlation between phosphorescence and ozone concentration and it can detect ozone concentrations of 0.1 ppm that is the threshold concentration harmful to human tissue and respiratory organs. Like a litmus paper, this ozone sensor can be fabricated as a free-standing and disposable film.

SELECTION OF CITATIONS
SEARCH DETAIL