Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.287
Filter
1.
Ecol Lett ; 27(9): e14500, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39354911

ABSTRACT

The fundamental trade-off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade-off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non-proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change.


Subject(s)
Trees , Tropical Climate , Trees/growth & development , Climate Change , Reproduction , Forests
2.
Obes Rev ; : e13842, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39390753

ABSTRACT

A footnote in Adolphe Quetelet's classic 1835 Treatise on Man described his algebraic analysis of how body weight ( W $$ W $$ ) varies with height ( H $$ H $$ ) in adult males and females. Using data on 12 short and 12 tall subjects of each sex, Quetelet established the rule that W $$ W $$ is approximately proportional ( ∝ $$ \propto $$ ) to H2 in adults; that is, W ∝ H 2 $$ W\propto {H}^2 $$ when W ≈ α H 2 $$ W\approx \alpha {H}^2 $$ for some constant α $$ \alpha $$ . Quetelet's Rule ( W ∝ H 2 $$ W\propto {H}^2 $$ ), transformed and renamed in the twentieth century to body mass index ( BMI = W / H 2 $$ \mathrm{BMI}=W/{H}^2 $$ ), is now a globally applied phenotypic descriptor of adiposity at the individual and population level. The journey from footnote to ubiquitous adiposity measure traveled through hundreds of scientific reports and many more lay publications. The recent introduction of highly effective pharmacologic weight loss treatments has heightened scrutiny of BMI's origins and appropriateness as a gateway marker for diagnosing and monitoring people with obesity. This contemporary context prompted the current report that delves into the biological and mathematical paradigms that underlie the simple index BMI = W / H 2 $$ \mathrm{BMI}=W/{H}^2 $$ . Students and practitioners can improve or gain new insights into their understanding of BMI's historical origins and quantitative underpinning from the provided overview, facilitating informed use of BMI and related indices in research and clinical settings.

3.
Dev Dyn ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39344770

ABSTRACT

BACKGROUND: The vertebrate olfactory system entails a complex set of neural/support structures that bridge morphogenetic regions. The developmental mechanisms coordinating this bridge remain unclear, even for model organisms such as chick, Gallus gallus. Here, we combine previous growth data on the chick olfactory apparatus with new samples targeting its early embryogenesis. The purpose is to illuminate how early developmental dynamics integrate with scaling relationships to produce adult form and, potentially, evolutionary patterns. Olfactory structures, including epithelium, turbinate, nerve, and olfactory bulb, are considered in the context of neighboring nasal and brain structures. RESULTS: Axonal outgrowth from the olfactory epithelium, which eventually connects receptor neurons with the brain, begins earlier than previously established. This dynamic marks the beginning of a complex pattern of early differential growth wherein the olfactory bulbs scale with positive allometry relative to both brain volume and turbinate area, which in turn scale isometrically with one another. CONCLUSIONS: The mechanisms driving observed patterns of organogenesis and growth remain unclear awaiting experimental evidence. We discuss competing hypotheses, including the possibility that broad-based isometry of olfactory components reflects constraints imposed by high levels of functional/structural integration. Such integration would include the frontonasal prominence having a strong influence on telencephalic patterning.

4.
Carbon Balance Manag ; 19(1): 31, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259316

ABSTRACT

BACKGROUND: Southeast Asian (SEA) mangroves are globally recognized as blue carbon hotspots. Methodologies that measure mangrove soil carbon stock (SCS) are either accurate but costly (i.e., elemental analyzers), or economical but less accurate (i.e., loss-on-ignition [LOI]). Most SEA countries estimate SCS by measuring soil organic matter (OM) through the LOI method then converting it into organic carbon (OC) using a conventional conversion equation (%Corg = 0.415 * % LOI + 2.89, R2 = 0.59, n = 78) developed from Palau mangroves. The local site conditions in Palau does not reflect the wide range of environmental settings and disturbances in the Philippines. Consequently, the conventional conversion equation possibly compounds the inaccuracies of converting OM to OC causing over- or under-estimated SCS. Here, we generated a localized OM-OC conversion equation and tested its accuracy in computing SCS against the conventional equation. The localized equation was generated by plotting % OC (from elemental analyzer) against the % OM (from LOI). The study was conducted in different mangrove stands (natural, restored, and mangrove-recolonized fishponds) in Oriental Mindoro and Sorsogon, Philippines from the West and North Philippine Sea biogeographic regions, respectively. The OM:OC ratios were also statistically tested based on (a) stand types, (b) among natural stands, and (c) across different ages of the restored and recolonized stands. Increasing the accuracy of OM-OC conversion equations will improve SCS estimates that will yield reasonable C emission reduction targets for the country's commitments on Nationally Determined Contributions (NDC) under the Paris Agreement. RESULTS: The localized conversion equation is %OC = 0.36 * % LOI + 2.40 (R2 = 0.67; n = 458). The SOM:OC ratios showed significant differences based on stand types (x2 = 19.24; P = 6.63 × 10-05), among natural stands (F = 23.22; p = 1.17 × 10-08), and among ages of restored (F = 5.14; P = 0.03) and recolonized stands (F = 3.4; P = 0.02). SCS estimates using the localized (5%) and stand-specific equations (7%) were similar with the values derived from an elemental analyzer. In contrast, the conventional equation overestimates SCS by 20%. CONCLUSIONS: The calculated SCS improves as the conversion equation becomes more reflective of localized site conditions. Both localized and stand-specific conversion equations yielded more accurate SCS compared to the conventional equation. While our study explored only two out of the six marine biogeographic regions in the Philippines, we proved that having a localized conversion equation leads to improved SCS measurements. Using our proposed equations will make more realistic SCS targets (and therefore GHG reductions) in designing mangrove restoration programs to achieve the country's NDC commitments.

5.
R Soc Open Sci ; 11(9): 240765, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39263457

ABSTRACT

Comparative neuroanatomical studies have long debated the role of development in the evolution of novel and disparate brain morphologies. Historically, these studies have emphasized whether evolutionary shifts along conserved or distinct developmental allometric trends cause changes in brain morphologies. However, the degree to which interspecific differences between variably sized taxa originate through modifying developmental allometry remains largely untested. Taxa with disparate brain shapes and sizes thus allow for investigation into how developmental trends contribute to neuroanatomical diversification. Here, we examine a developmental series of large-bodied ratite birds (approx. 60-140 kg). We use three-dimensional geometric morphometrics on cephalic endocasts of common ostriches, emus and southern cassowaries and compare their developmental trajectories with those of the more modestly sized domestic chicken, previously shown to be in the same allometric grade as ratites. The results suggest that ratites and chickens exhibit disparate endocranial shapes not simply accounted for by their size differences. When shape and age are examined, chickens partly exhibit more accelerated and mature brain shapes than ratites of similar size and age. Taken together, our study indicates that disparate brain shapes between these differently sized taxa have emerged from the evolution of distinct developmental allometries, rather than simply following conserved scaling trends.

6.
New Phytol ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39288438

ABSTRACT

Understanding trait-trait coordination is essential for successful plant breeding and crop modeling. Notably, plant size drives variation in morphological, physiological, and performance-related traits, as described by allometric laws in ecology. Yet, as allometric relationships have been limitedly studied in crops, how they influence and possibly limit crop performance remains unknown. Here, we review how an allometry perspective on crops gains insights into the phenotypic evolution during crop domestication, the breeding of varieties adapted to novel conditions, and the prediction of crop yields. As allometry is an active field of research, modeling and manipulating crop allometric relationships can help to develop more resilient and productive agricultural systems to face future challenges.

7.
J Morphol ; 285(9): e21775, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39256990

ABSTRACT

The plains vizcacha, Lagostomus maximus, is the only living species in the genus, being notably larger than fossil congeneric species, such as Lagostomus incisus, from the Pliocene of Argentina and Uruguay. Here, we compare the skull growth allometric pattern and sexual dimorphism of L. maximus and L. incisus, relating shape and size changes with skull function. We also test whether the ontogenetic trajectories and allometric trends between both sexes of L. maximus follow the same pattern. A common allometric pattern between both species was the elongation of the skull, a product of the lengthening of rostrum, and chondrogenesis on the spheno-occipitalis synchondrosis and coronalis suture. We also detected a low proportion of skull suture fusion. In some variables, older male specimens did not represent a simple linear extension of female trajectory, and all dimorphic traits were related to the development of the masticatory muscles. Sexual dimorphism previously attributed to L. incisus would indicate that this phenomenon was present in the genus since the early Pliocene and suggests social behaviors such as polygyny and male-male competition. Ontogenetic changes in L. incisus were similar to L. maximus, showing a conservative condition of the genus. Only two changes were different in the ontogeny of both species, which appeared earlier in L. incisus compared to L. maximus: the development of the frontal process of the nasals in a square shape, and the straight shape of the occipital bone in lateral view. Juveniles of L. maximus were close to adult L. incisus in the morphospace, suggesting a peramorphic process. The sequence of suture and synchondroses fusion showed minor differences in temporozygomatica and frontonasalis sutures, indicating major mechanical stress in L. maximus related to size. We suggest a generalized growth path in Chinchillidae, but further analyses are necessary at an evolutionary level, including Lagidium and Chinchilla.


Subject(s)
Fossils , Sex Characteristics , Skull , Animals , Skull/anatomy & histology , Skull/growth & development , Male , Female , Fossils/anatomy & histology , Rodentia/anatomy & histology , Rodentia/growth & development , Biological Evolution , Cranial Sutures/anatomy & histology , Cranial Sutures/growth & development
8.
Zoology (Jena) ; 166: 126197, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39232351

ABSTRACT

Living at high altitudes impose physiological and ecological challenges to which species may respond altering their body size, body proportions, and the shape of their body parts. Despite the importance of this topic for understanding the origin of species diversity, little attention has been invested in this phenomenon at the populational level. This paper study the relationship between altitude and body size, body proportions, and forewing shape venation of two populations of the parasitoid wasp Cotesia flavipes. Wasps were collected from Diatraea spp. larvae from sugarcane crops in two Colombian mountain ranges that cover between 600 m and 2143 m of altitude. Linear measurements of different body regions and geometric morphometrics of the forewing were subject to multivariate comparisons and allometric analyses to assess variation and to compare trends between ranges. Central (600 m to 1704 m) and Eastern Cordillera (877 m to 2143 m) populations showed different trends between body size and altitude. Allometric trends were not uniform within or between populations nor between structures. The allometric slopes of five body measurements from a single altitude differed from these from its own mountain range suggesting that body size trends along the cordilleras are a consequence of altitude and not of intrinsic body resource allocation processes. Wing shape between populations differed; however, these changes were poorly related to altitude. In agreement with recent studies in other groups, the observed allometric and wing shape differences between the two C. flavipes populations could be a plasticity response to altitude with interesting implications for posterior genetic differentiation.


Subject(s)
Altitude , Body Size , Wasps , Animals , Wasps/physiology , Wasps/anatomy & histology , Colombia , Wings, Animal/anatomy & histology
9.
Biol Open ; 13(9)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39284732

ABSTRACT

Students of biological allometry have used the logarithmic transformation for over a century to linearize bivariate distributions that are curvilinear on the arithmetic scale. When the distribution is linear, the equation for a straight line fitted to the distribution can be back-transformed to form a two-parameter power function for describing the original observations. However, many of the data in contemporary studies of allometry fail to meet the requirement for log-linearity, thereby precluding the use of the aforementioned protocol. Even when data are linear in logarithmic form, the two-parameter power equation estimated by back-transformation may yield a misleading or erroneous perception of pattern in the original distribution. A better approach to bivariate allometry would be to forego transformation altogether and to fit multiple models to untransformed observations by nonlinear regression, thereby creating a pool of candidate models with different functional form and different assumptions regarding random error. The best model in the pool of candidate models could then be identified by a selection procedure based on maximum likelihood. Two examples are presented to illustrate the power and versatility of newer methods for studying allometric variation. It always is better to examine the original data when it is possible to do so.


Subject(s)
Models, Biological , Algorithms , Likelihood Functions , Animals , Humans
10.
Sci Total Environ ; 953: 176061, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39255930

ABSTRACT

Mixed forests generally outperform monospecific forests in terms of productivity, stability, and resilience and are becoming increasingly important for sustainable forest management. However, accurate estimates of tree biomass allocation, as well as aboveground and component biomass in mixed forests, remain scarce. Our study addressed three different objectives to identify differences in biomass between mixed and monocultures and develop biomass models: (1) identification of biomass growth patterns in mixed and monoculture stands using analysis of covariance (ANCOVA), (2) investigation of the best fitting approach to modeling aboveground biomass using logarithmic regression and nonlinear mixed-effects models, and (3) fitting compartment biomass proportion models by Dirichlet regression, considering the additivity property. We analyzed 52 harvested trees from six plots within an experimental triplet in northern Spain, consisting of mixed and single-species stands of Scots pine (Pinus sylvestris L.) and sessile oak (Quercus petraea (Matt.) Liebl.). Moreover, diameter at breast height and tree height were used as covariate variables to determine the most accurate and unbiased models. The research findings showed that (i) allometric patterns of individual-tree biomass in mixed stands significantly differed from those in monospecific stands for sessile oak, while those in Scots pine did not change; (ii) nonlinear mixed-effect models demonstrated a better fit - indicated by lower Furnival index values - than logarithmic regression models in predicting aboveground biomass; and (iii) the fitted biomass equations provided good performance and accurate estimates of biomass component proportions compared to those of existing models. Consequently, our results offer a better understanding of biomass and carbon storage within mixed and monoculture forests in the context of climate change.


Subject(s)
Biomass , Forests , Pinus sylvestris , Quercus , Pinus sylvestris/growth & development , Quercus/growth & development , Spain , Trees/growth & development
11.
J Exp Biol ; 227(19)2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39234663

ABSTRACT

Increasing evidence shows that larger fish are more vulnerable to acute warming than smaller individuals of the same species. This size-dependency of thermal tolerance has been ascribed to differences in aerobic performance, largely owing to a decline in oxygen supply relative to demand. To shed light on these ideas, we examined metabolic allometry in 130 rainbow trout ranging from 12 to 358 g under control conditions (17°C) and in response to acute heating (to 25°C), with and without supplemental oxygen (100% versus 150% air saturation). Under normoxia, high temperature caused an average 17% reduction in aerobic scope compared with 17°C. Aerobic performance disproportionally deteriorated in bigger fish as the scaling exponent (b) for aerobic scope declined from b=0.87 at 17°C to b=0.74 at 25°C. Hyperoxia increased maximum metabolic rate and aerobic scope at both temperatures and disproportionally benefited larger fish at 25°C as the scaling exponent for aerobic scope was reestablished to the same level as at 17°C (b=0.86). This suggests that hyperoxia may provide metabolic refuge for larger individuals, allowing them to sustain aerobic activities when facing acute warming. Notably, the elevated aerobic capacity afforded by hyperoxia did not appear to improve thermal resilience, as mortality in 25°C hyperoxia (13.8%, n=4) was similar to that in normoxia (12.1%, n=4), although we caution that this topic warrants more targeted research. We highlight the need for mechanistic investigations of the oxygen transport system to determine the consequences of differential metabolic scaling across temperature in a climate warming context.


Subject(s)
Oncorhynchus mykiss , Animals , Oncorhynchus mykiss/physiology , Aerobiosis , Body Size , Hyperoxia , Hot Temperature/adverse effects , Oxygen Consumption , Oxygen/metabolism
12.
Zoology (Jena) ; 167: 126210, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39321517

ABSTRACT

During early development, fishes undergo significant changes that influence external morphology and the functioning of internal organs and systems. This often results in gradual variation of the morphological traits of individuals across developmental stages. The investigation of larval and juvenile fish development and growth patterns has pertinent implications for the systematic and ecological elucidation of species. Bryconops gracilis is a medium-sized fish, omnivorous that inhabits lotic and lentic environments with acidic and transparent waters in the Amazon basin. In this study, the early development of B. gracilis is described, until recently a practically unknown species. In terms of development, we used morphological, meristic, and morphometric data to characterize the larvae and juveniles. The individuals were collected in the Curuá-Una River, Amazon basin, Brazil. Fifty-four specimens were examined. Samples include individuals with 3.39-21.79 mm SL. Yolk-sac larvae have two attachment organs on the dorsal surface of head and body. The larvae of B. gracilis are considered altricial, with a fusiform body, and the intestine reaches the median region of the body. Initially, the mouth is subterminal and becomes isognathic from the postflexion stage on. During the postflexion stage, the most relevant morphological changes occur (e.g., presence of all fins, mouth position similar to adults, increased body pigmentation), making individuals more specialized to explore new habitats and diets and maximize their chances of survival. Furthermore, vertebrae and myomeres are compared and assist with differentiating some Bryconops species at early life stages that occur in sympatry in the Amazon basin. Our results contribute to knowledge about the external morphology of neotropical freshwater fishes, enabling the identification of larvae and juveniles through traditional taxonomy and broadening the perspective on the ontogenetic study of the adipose fin in Characoidei.

13.
Ann Bot ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212300

ABSTRACT

BACKGROUND AND AIMS: Each branch internode, and the organs growing on it, can be seen as a single morphological phytomer subunit, made of structurally and functionally interrelated components. However, allometric relationships between anatomy and morphology of these subunits remain unclear, particularly in the axial context. This study aims to address this knowledge gap, by measuring morpho-anatomical parameters and their allometric relationships along grapevine shoots. METHODS: To facilitate comparison, shoot length was normalized and a relative position index was calculated for each internode, ranging from 0 at the base to 1 at the apex. Scaling relationships between morpho-anatomical parameters along the axis were developed and validated by statistical modeling. KEY RESULTS: Most morpho-anatomical parameters displayed an axial behaviour of increasing then decreasing in size from base to apex, with the exception of shoot diameter and shoot vessel density. Relative position index of 0.2 acted as the data turning point for most variables analysed. During the first phase (relative position index below 0.2), the phytomer organs traits are uncoupled and show weak allometric correlation, and during the second phase the traits are strongly allometrically related. CONCLUSIONS: Our findings suggest that allometric relationships along grapevine shoots are not constant- they exhibit a bimodal pattern, possibly influenced by seasonal temperatures. This work could aid managing productivity shifts in agricultural and natural systems under global climate change and add to basic knowledge of differentiation and development of growth units in plants.

14.
J Exp Biol ; 227(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39155677

ABSTRACT

A select group of hemipterans within the suborder Auchenorrhyncha are the only animals that feed exclusively on xylem sap - a nutritionally poor liquid that exists under negative pressure within a plant's xylem vessels. To consume it, xylem-feeding bugs have evolved enlarged cibarial pumps capable of generating enormous negative pressures. A previous study examining the allometry of this feeding model suggested that small xylem feeders pay relatively higher energetic costs while feeding, favouring the evolution of larger-bodied species. However, this interspecific analysis only considered adult xylem-feeding insects and neglected the considerable intraspecific change in size that occurs across the insect's development. Here, we examine the changes in cibarial pump morphology and function that occur during the development of Philaenus spumarius, the common meadow spittlebug. We show that the cibarial pump scales largely as expected from isometry and that the maximum negative pressure is mass independent, indicating that size has no effect on the xylem-feeding capacity of juvenile spittlebugs. We conclude that a first instar nymph with a body mass 2% of the adult can still feed at the >1 MPa tension present in a plant's xylem vessels without a substantial energetic disadvantage.


Subject(s)
Xylem , Animals , Xylem/physiology , Xylem/anatomy & histology , Feeding Behavior/physiology , Nymph/physiology , Nymph/growth & development , Heteroptera/physiology , Heteroptera/growth & development , Heteroptera/anatomy & histology , Body Size , Hemiptera/physiology , Hemiptera/growth & development , Hemiptera/anatomy & histology
15.
Exp Parasitol ; 265: 108821, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39128576

ABSTRACT

The dynamic properties of neural systems throughout life can be hijacked by so-called manipulative parasites. This study investigated changes in the brain chemistry of the amphipod Gammarus fossarum in response to infection with two trophically-transmitted helminth parasites known to induce distinct behavioral alterations: the bird acanthocephalan Polymorphus minutus and the fish acanthocephalan Pomphorhynchus tereticollis. We quantified brain antioxidant capacity as a common marker of homeostasis and neuroprotection, and brain total protein, on 72 pools of six brains. We analyzed the concentration of serotonin (5HT), dopamine (DA) and tyramine in 52 pools of six brains, by using ultrafast high performance liquid chromatography with electrochemical detection (UHPLC-ECD). Brain total protein concentration scaled hypo-allometrically to dry body weight, and was increased in infected gammarids compared to uninfected ones. The brain of gammarids infected with P. minutus had significantly lower total antioxidant capacity relative to total proteins. Infection with P. tereticollis impacted DA level compared to uninfected ones, and in opposite direction between spring and summer. Brain 5HT level was higher in summer compared to spring independently of infection status, and was decreased by infection after correcting for brain total protein concentration estimated from dry whole-body weight. The potential implication of 5HT/DA balance in parasite manipulation, as a major modulator of the reward-punishment axis, is discussed. Taken together, these findings highlight the need to consider both brain homeostatic and/or structural changes (antioxidant and total protein content) together with neurotransmission balance and flexibility, in studies investigating the impact of parasites on brain and behavior.


Subject(s)
Acanthocephala , Amphipoda , Brain Chemistry , Brain , Serotonin , Animals , Acanthocephala/physiology , Serotonin/analysis , Serotonin/metabolism , Brain/parasitology , Brain/metabolism , Amphipoda/parasitology , Amphipoda/physiology , Seasons , Dopamine/analysis , Dopamine/metabolism , Chromatography, High Pressure Liquid , Antioxidants/analysis , Antioxidants/metabolism
16.
Diabetes Obes Metab ; 26(10): 4613-4621, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39113264

ABSTRACT

AIM: Tirzepatide (Tzp), a novel dual agonist glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1, is approved for treating insulin resistance and obesity, and menopausal women consuming a high-calorie diet are a target to study the Tzp effect. Therefore, we aimed to allometrically scale body weight (BW) in Tzp-treated obese diabetic menopausal mice. MATERIALS AND METHODS: Three-month-old C57BL/6 female mice had bilateral ovariectomy (Ovx) or a sham procedure and for 12 weeks were fed a control diet or a high-fat and high sucrose diet (n = 120/each group [control (C), obese diabetic (Od), Ovx (O), sham (S), Tzp (T)]). Tzp was subcutaneously administered (10 nmol/kg) or vehicle once a day for an additional 4 weeks. The analysis considered log-transformed data and the allometric equation log y = log a + b log x. RESULTS: Od and OdO showed more upward slopes than C and CO. In C, BW was non-allometric by T administration. Od and OdO showed slightly positive slopes (more prominent in OdO than Od). OdT and OdOT showed negative slopes, significant intercepts, and more robust Pearson coefficients than untreated ones. A potent drug effect was seen with BW allometric decline. Interactions between diet versus Ovx and diet versus Tzp affected weight gain. Diet versus Ovx versus Tzp affected food intake. CONCLUSIONS: A model was developed to show three usual factors observed in mature women. Notably, Tzp improved the metabolism and weight loss of OdO mice. Tzp-treated mice showed negative allometric BW across treatment time, which is a quantitative assessment that allows better comparison between results.


Subject(s)
Adiponectin , Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Insulin , Leptin , Menopause , Obesity , Animals , Female , Mice , Adiponectin/blood , Body Weight/drug effects , Diabetes Mellitus, Type 2/drug therapy , Diet, High-Fat/adverse effects , Gastric Inhibitory Polypeptide/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-2 Receptor , Insulin/blood , Leptin/blood , Menopause/drug effects , Mice, Inbred C57BL , Obesity/drug therapy , Ovariectomy
17.
J Anat ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39161228

ABSTRACT

Scapula shape is highly variable across humans and appears to be sexually dimorphic-differing significantly between biological males and females. However, previous investigations of sexual dimorphism in scapula shape have not considered the effects of allometry (the relationship between size and shape). Disentangling allometry from sexual dimorphism is necessary because apparent sex-based differences in shape could be due to inherent differences in body size. This study aimed to investigate sexual dimorphism in scapula shape and examine the role of allometry in sex-based variation. We used three-dimensional geometric morphometrics with Procrustes ANOVA to quantify scapula shape variation associated with sex and size in 125 scapulae. Scapula shape significantly differed between males and females, and males tended to have larger scapulae than females for the same body height. We found that males and females exhibited distinct allometric relationships, and sexually dimorphic shape changes did not align with male- or female-specific allometry. A secondary test revealed that sexual dimorphism in scapula shape persisted between males and females of similar body heights. Overall, our findings indicate that there are sex-based differences in scapula shape that cannot be attributed to size-shape relationships. Our results shed light on the potential role of sexual selection in human shoulder evolution, present new hypotheses for biomechanical differences in shoulder function between sexes, and identify relevant traits for improving sex classification accuracy in forensic analyses.

18.
Glob Chang Biol ; 30(8): e17473, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39155688

ABSTRACT

Tree allometric models, essential for monitoring and predicting terrestrial carbon stocks, are traditionally built on global databases with forest inventory measurements of stem diameter (D) and tree height (H). However, these databases often combine H measurements obtained through various measurement methods, each with distinct error patterns, affecting the resulting H:D allometries. In recent decades, terrestrial laser scanning (TLS) has emerged as a widely accepted method for accurate, non-destructive tree structural measurements. This study used TLS data to evaluate the prediction accuracy of forest inventory-based H:D allometries and to develop more accurate pantropical allometries. We considered 19 tropical rainforest plots across four continents. Eleven plots had forest inventory and RIEGL VZ-400(i) TLS-based D and H data, allowing accuracy assessment of local forest inventory-based H:D allometries. Additionally, TLS-based data from 1951 trees from all 19 plots were used to create new pantropical H:D allometries for tropical rainforests. Our findings reveal that in most plots, forest inventory-based H:D allometries underestimated H compared with TLS-based allometries. For 30-metre-tall trees, these underestimations varied from -1.6 m (-5.3%) to -7.5 m (-25.4%). In the Malaysian plot with trees reaching up to 77 m in height, the underestimation was as much as -31.7 m (-41.3%). We propose a TLS-based pantropical H:D allometry, incorporating maximum climatological water deficit for site effects, with a mean uncertainty of 19.1% and a mean bias of -4.8%. While the mean uncertainty is roughly 2.3% greater than that of the Chave2014 model, this model demonstrates more consistent uncertainties across tree size and delivers less biased estimates of H (with a reduction of 8.23%). In summary, recognizing the errors in H measurements from forest inventory methods is vital, as they can propagate into the allometries they inform. This study underscores the potential of TLS for accurate H and D measurements in tropical rainforests, essential for refining tree allometries.


Subject(s)
Rainforest , Trees , Tropical Climate , Lasers
19.
Sci Rep ; 14(1): 17901, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095435

ABSTRACT

While brain size in primates and their relatives within Euarchontoglires is well-studied, less research has examined brain shape, or the allometric trajectories that underlie the relationship between size and shape. Defining these patterns is key to understanding evolutionary trends. 3D geometric morphometric analyses of endocranial shape were performed on 140 species of extant euarchontoglirans using digital cranial endocasts. Principal component analyses on Procrustes shape variables show a clear phylogenetic pattern in endocranial shape, supported by an ANOVA which identified significant differences in shape among several groups (e.g., Platyrrhini, Strepsirrhini, Scandentia, Rodentia, and Lagomorpha). ANOVAs of shape and size also indicate that allometry has a small but significant impact on endocranial shape across Euarchontoglires, with homogeneity of slopes tests finding significant differences in the scaling relationship between shape and size among these same groups. While most of these clades possess a distinct endocranial morphotype, the highly derived platyrrhines display the strongest relationship between size and shape. Rodents show the most diversity in endocranial shape, potentially attributed to their comparatively weak relationship between shape and size. These results suggest fundamental differences in how shape and size covary among Euarchontoglires, which may have facilitated the adaptive radiations that characterize members of this group.


Subject(s)
Biological Evolution , Phylogeny , Skull , Animals , Skull/anatomy & histology , Fossils/anatomy & histology , Principal Component Analysis , Brain/anatomy & histology , Primates/anatomy & histology
20.
Ann N Y Acad Sci ; 1538(1): 98-106, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39091080

ABSTRACT

Scientific progress within the last few decades has revealed the functional morphology of an insect's sticky footpads-a compliant pad that secretes thin liquid films. However, the physico-chemical mechanisms underlying their adhesion remain elusive. Here, we explore these underlying mechanisms by simultaneously measuring adhesive force and contact geometry of the adhesive footpads of live, tethered Indian stick insects, Carausius morosus, spanning more than two orders of magnitude in body mass. We find that the adhesive force we measure is similar to the previous measurements that use a centrifuge. Our measurements afford us the opportunity to directly probe the adhesive stress in vivo and use existing theory on capillary adhesion to predict the surface tension of the secreted liquid and compare it to previous assumptions. From our predictions, we find that the surface tension required to generate the adhesive stresses we observed ranges between 0.68 and 12 mN m - 1 ${\rm m}^{-1}$ . The low surface tension of the liquid would enhance the wetting of the stick insect's footpads and promote their ability to conform to various substrates. Our insights may inform the biomimetic design of capillary-based, reversible adhesives and motivate future studies on the physico-chemical properties of the secreted liquid.


Subject(s)
Insecta , Surface Tension , Animals , Insecta/physiology , Adhesiveness , Capillaries/physiology , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL