Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58.651
Filter
1.
Acta Neuropathol ; 148(1): 2, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980441

ABSTRACT

Proteolytic cell surface release ('shedding') of the prion protein (PrP), a broadly expressed GPI-anchored glycoprotein, by the metalloprotease ADAM10 impacts on neurodegenerative and other diseases in animal and in vitro models. Recent studies employing the latter also suggest shed PrP (sPrP) to be a ligand in intercellular communication and critically involved in PrP-associated physiological tasks. Although expectedly an evolutionary conserved event, and while soluble forms of PrP are present in human tissues and body fluids, for the human body neither proteolytic PrP shedding and its cleavage site nor involvement of ADAM10 or the biological relevance of this process have been demonstrated thus far. In this study, cleavage site prediction and generation (plus detailed characterization) of sPrP-specific antibodies enabled us to identify PrP cleaved at tyrosin 226 as the physiological and apparently strictly ADAM10-dependent shed form in humans. Using cell lines, neural stem cells and brain organoids, we show that shedding of human PrP can be stimulated by PrP-binding ligands without targeting the protease, which may open novel therapeutic perspectives. Site-specific antibodies directed against human sPrP also detect the shed form in brains of cattle, sheep and deer, hence in all most relevant species naturally affected by fatal and transmissible prion diseases. In human and animal prion diseases, but also in patients with Alzheimer`s disease, sPrP relocalizes from a physiological diffuse tissue pattern to intimately associate with extracellular aggregated deposits of misfolded proteins characteristic for the respective pathological condition. Findings and research tools presented here will accelerate novel insight into the roles of PrP shedding (as a process) and sPrP (as a released factor) in neurodegeneration and beyond.


Subject(s)
ADAM10 Protein , Amyloid Precursor Protein Secretases , Neurodegenerative Diseases , Humans , ADAM10 Protein/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Amyloid Precursor Protein Secretases/metabolism , Animals , Prion Proteins/metabolism , Membrane Proteins/metabolism , Brain/metabolism , Brain/pathology , Antibodies
2.
Mol Neurobiol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980563

ABSTRACT

After olfactory bulbectomy, animals are often used as a model of major depression or sporadic Alzheimer's disease and, hence, the status of this model is still disputable. To elucidate the nature of alterations in the expression of the genome after the operation, we analyzed transcriptomes of the cortex, hippocampus, and cerebellum of the olfactory bulbectomized (OBX) mice. Analysis of the functional significance of genes in the brain of OBX mice indicates that the balance of the GABA/glutamatergic systems is disturbed with hyperactivation of the latter in the hippocampus, leading to the development of excitotoxicity and induction of apoptosis in the background of severe mitochondrial dysfunction and astrogliosis. On top of this, the synthesis of neurotrophic factors decreases leading to the disruption of the cytoskeleton of neurons, an increase in the level of intracellular calcium, and the activation of tau protein hyperphosphorylation. Moreover, the acetylcholinergic system is deficient in the background of the hyperactivation of acetylcholinesterase. Importantly, the activity of the dopaminergic, endorphin, and opiate systems in OBX mice decreases, leading to hormonal dysfunction. On the other hand, genes responsible for the regulation of circadian rhythms, cell migration, and innate immunity are activated in OBX animals. All this takes place in the background of a drastic downregulation of ribosomal protein genes in the brain. The obtained results indicate that OBX mice represent a model of Alzheimer's disease with elements of major depression.

3.
Article in English | MEDLINE | ID: mdl-38976036

ABSTRACT

PURPOSE: [18F]-D3FSP is a new ß-amyloid (Aß) PET imaging tracer designed to decrease nonspecific signals in the brain by reducing the formation of the N-demethylated product. However, its optimal reference region for calculating the standardized uptake value ratio (SUVR) and its relation to the well-established biomarkers of Alzheimer's disease (AD) are still unclear. METHODS: We recruited 203 participants from the Greater Bay Area Healthy Aging Brain Study (GHABS) to undergo [18F]-D3FSP Aß PET imaging. We analyzed plasma Aß42/Aß40, p-Tau181, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) using the Simoa platform. We compared the standardized uptake value (SUV) of five reference regions (cerebellum, cerebellum cortex, brainstem/PONs, white matter, composite of the four regions above) and AD typical cortical region (COMPOSITE) SUVR among different clinical groups. The association of D3FSP SUVR with plasma biomarkers, imaging biomarkers, and cognition was also investigated. RESULTS: Brainstem/PONs SUV showed the lowest fluctuation across diagnostic groups, and COMPOSITE D3FSP SUVR had an enormous effect distinguishing cognitively impaired (CI) individuals from cognitively unimpaired (CU) individuals. COMPOSITE SUVR (Referred to brainstem/PONs) was positively correlated with p-Tau181 (p < 0.001), GFAP (p < 0.001), NfL (p = 0.014) in plasma and temporal-metaROI tau deposition (p < 0.001), and negatively related to plasma Aß42/Aß40 (p < 0.001), temporal-metaROI cortical thickness (p < 0.01), residual hippocampal volume (p < 0.001) and cognition (p < 0.001). The voxel-wise analysis replicated these findings. CONCLUSION: This study suggests brainstem/PONs as an optimal reference region for calculating D3FSP SUVR to quantify cortical Aß plaques in the brain. [18F]-D3FSP could distinguish CI from CU and strongly correlates with well-established plasma biomarkers, tau PET, neurodegeneration, and cognitive decline. However, future head-to-head comparisons of [18F]-D3FSP PET images with other validated Aß PET tracers or postmortem results are crucial.

4.
Mol Neurobiol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976128

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disease all over the world. In the last decade, accumulating proofs have evidenced that neuroinflammation is intimately implicated in the pathogenesis of AD and activation of NOD-like receptor family pyrin domain-containing 1 (NLRP1) inflammasome can induce neuronal pyroptosis and in turn lead to neuronal loss in AD. Thioredoxin-1 (Trx-1), a multifunctional molecule with anti-inflammation in human tissues, displays crucial neuroprotective roles in AD. Our previous research preliminarily found that Trx-1 inhibition enhanced the expression of NLRP1, caspase-1, and gasdermin D (GSDMD) in Aß25-35-treated PC12 cells. However, it is largely unknown if Trx-1 can inhibit NLRP1-mediated neuronal pyroptosis in AD neurons. In this study, it was verified that the protein levels of NLRP1, caspase-1, and GSDMD were significantly increased in Aß25-35-treated mouse HT22 and primary hippocampal neurons. Suppression of Trx-1 with PX-12, a selective inhibitor of Trx-1, or Trx-1 knockdown further activated NLRP1-mediated neuronal pyroptosis. On the contrary, lentivirus infection-mediated Trx-1 overexpression in differentiated PC12 cells dramatically reversed expression of NLRP1, caspase-1, and GSDMD. Furthermore, Trx-1 overexpression mediated by adeno-associated virus in the hippocampal tissues of APP/PS1 mice likewise attenuated the activation of NLRP1-mediated neuronal pyroptosis, as well as reduced the hippocampal deposition of Aß and ameliorated the cognitive function of APP/PS1 mice. In conclusion, this article predicates a novel molecular mechanism by which Trx-1 exploits neuroprotection through attenuating NLRP1-mediated neuronal pyroptosis in AD models, suggesting that Trx-1 may be a promising therapeutic target for AD.

5.
Alzheimers Dement (Amst) ; 16(3): e12613, 2024.
Article in English | MEDLINE | ID: mdl-38966622

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is often misclassified in electronic health records (EHRs) when relying solely on diagnosis codes. This study aimed to develop a more accurate, computable phenotype (CP) for identifying AD patients using structured and unstructured EHR data. METHODS: We used EHRs from the University of Florida Health (UFHealth) system and created rule-based CPs iteratively through manual chart reviews. The CPs were then validated using data from the University of Texas Health Science Center at Houston (UTHealth) and the University of Minnesota (UMN). RESULTS: Our best-performing CP was "patient has at least 2 AD diagnoses and AD-related keywords in AD encounters," with an F1-score of 0.817 at UF, 0.961 at UTHealth, and 0.623 at UMN, respectively. DISCUSSION: We developed and validated rule-based CPs for AD identification with good performance, which will be crucial for studies that aim to use real-world data like EHRs. Highlights: Developed a computable phenotype (CP) to identify Alzheimer's disease (AD) patients using EHR data.Utilized both structured and unstructured EHR data to enhance CP accuracy.Achieved a high F1-score of 0.817 at UFHealth, and 0.961 and 0.623 at UTHealth and UMN.Validated the CP across different demographics, ensuring robustness and fairness.

6.
J Mol Neurosci ; 74(3): 64, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981928

ABSTRACT

Circular RNAs (circRNAs) are a subclass of non-coding RNAs which have demonstrated potential as biomarkers for Alzheimer's disease (AD). In this study, we conducted a comprehensive exploration of the circRNA transcriptome within AD brain tissues. Specifically, we assessed circRNA expression patterns in the dorsolateral prefrontal cortex collected from nine AD-afflicted individuals and eight healthy controls. Utilising two circRNA detection tools, CIRI2 and CIRCexplorer2, we detected thousands of circRNAs and performed a differential expression analysis. CircRNAs which exhibited statistically significantly differential expression were identified as AD-specific differentially expressed circRNAs. Notably, our investigation revealed 120 circRNAs with significant upregulation and 1325 circRNAs displaying significant downregulation in AD brains when compared to healthy brain tissue. Additionally, we explored the expression profiles of the linear RNA counterparts corresponding to differentially expressed circRNAs in AD-afflicted brains and discovered that the linear RNA counterparts exhibited no significant changes in the levels of expression. We used CRAFT tool to predict that circUBE4B had potential to target miRNA named as hsa-miR-325-5p, ultimately regulated CD44 gene. This study provides a comprehensive overview of differentially expressed circRNAs in the context of AD brains, underscoring their potential as molecular biomarkers for AD. These findings significantly enhance our comprehension of AD's underlying pathophysiological mechanisms, offering promising avenues for future diagnostic and therapeutic developments.


Subject(s)
Alzheimer Disease , MicroRNAs , RNA, Circular , Transcriptome , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Male , Female , Aged , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Brain/metabolism , Biomarkers/metabolism
7.
Acta Pharmacol Sin ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982150

ABSTRACT

Olfactory dysfunction is increasingly recognized as an early indicator of Alzheimer's disease (AD). Aberrations in GABAergic function and the excitatory/inhibitory (E/I) balance within the olfactory bulb (OB) have been implicated in olfactory impairment during the initial stages of AD. While the neuregulin 1 (NRG1)/ErbB4 signaling pathway is known to regulate GABAergic transmission in the brain and is associated with various neuropsychiatric disorders, its specific role in early AD-related olfactory impairment remains incompletely understood. This study demonstrated that olfactory dysfunction preceded cognitive decline in young adult APP/PS1 mice and was characterized by reduced levels of NRG1 and ErbB4 in the OB. Further investigation revealed that deletion of ErbB4 in parvalbumin interneurons reduced GABAergic transmission and increased hyperexcitability in mitral and tufted cells (M/Ts) in the OB, thereby accelerating olfactory dysfunction in young adult APP/PS1 mice. Additionally, ErbB4 deficiency was associated with increased accumulation of Aß and BACE1-mediated cleavage of APP, along with enhanced CDK5 signaling in the OB. NRG1 infusion into the OB was found to enhance GABAergic transmission in M/Ts and alleviate olfactory dysfunction in young adult APP/PS1 mice. These findings underscore the critical role of NRG1/ErbB4 signaling in regulating GABAergic transmission and E/I balance within the OB, contributing to olfactory impairment in young adult APP/PS1 mice, and provide novel insights for early intervention strategies in AD. This work has shown that ErbB4 deficiency increased the burden of Aß, impaired GABAergic transmission, and disrupted the E/I balance of mitral and tufted cells (M/Ts) in the OB, ultimately resulting in olfactory dysfunction in young adult APP/PS1 mice. NRG1 could enhance GABAergic transmission, rescue E/I imbalance in M/Ts, and alleviate olfactory dysfunction in young adult APP/PS1 mice. OB: olfactory bulb, E/I: excitation/inhibition, Pr: probability of release, PV: parvalbumin interneurons, Aß: ß-amyloid, GABA: gamma-aminobutyric acid.

8.
Alzheimers Dement ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982860

ABSTRACT

BACKGROUND: Previous studies have found that Alzheimer's disease (AD)-related plasma markers are associated with amyloid beta (Aß) deposition, but the change of this association in different Aß pathological stages remains unclear. METHODS: Data were obtained from the SILCODE. According to the standardized uptake value ratio (SUVR) and Aß stage classification, correlation analysis was performed among plasma biomarkers, and voxel/SUVR values in the regions of interest (ROI) and clinical scale information, respectively. Mediation analysis was used to study the possible pathways. RESULTS: The proportion of cognitively normal (CN) and subjective cognitive decline (SCD) was the highest in stages A0 to 1, while in stages A2 to 4, the proportion of mild cognitive impairment (MCI) and AD increased. Plasma phosphorylated tau (p-tau)181 and glial fibrillary acidic protein (GFAP) levels were significantly lower in stage A0 compared to the later phases. Two pathways demonstrated fully mediated effects: positron emission tomography (PET) SUVR-plasma p-tau181-Mini-Mental State Examination (MMSE) and PET SUVR-plasma GFAP-MMSE. DISCUSSION: This study demonstrated the role of plasma biomarkers in the early stage of AD, especially in SCD, from both the clinical diagnosis and Aß stage dimensions. HIGHLIGHTS: Plasma ptau181 and GFAP level serve as indicators of early Alzheimer's disease and the pathologic Aß staging classification. A possible ceiling effect of GFAP was observed in the mid-to-late stages of the AD course. This study confirms the role of AD plasma markers in promoting Aß deposition at an early stage, particularly in females with subjective cognitive decline(SCD). The overlapping brain regions of plasma p-tau181, GFAP, and neurofilament light for Aß deposition in the brain in early AD were distributed across various regions, including the posterior cingulate gyrus, rectus gyrus, and inferior temporal gyrus.

9.
Front Pharmacol ; 15: 1408031, 2024.
Article in English | MEDLINE | ID: mdl-38983916

ABSTRACT

Introduction: Alzheimer's disease (AD) represents a critical global health challenge with limited therapeutic options, prompting the exploration of alternative strategies. A key pathology in AD involves amyloid beta (Aß) aggregation, and targeting both Aß aggregation and oxidative stress is crucial for effective intervention. Natural compounds from medicinal and food sources have emerged as potential preventive and therapeutic agents, with Nelumbo nucifera leaf extract (NLE) showing promising properties. Methods: In this study, we utilized transgenic Caenorhabditis elegans (C. elegans) models to investigate the potential of NLE in countering AD and to elucidate the underlying mechanisms. Various assays were employed to assess paralysis rates, food-searching capabilities, Aß aggregate accumulation, oxidative stress, lifespan under stress conditions, and the expression of stress-resistance-related proteins. Additionally, autophagy induction was evaluated by measuring P62 levels and the formation of LGG-1+ structures, with RNAi-mediated inhibition of autophagy-related genes to confirm the mechanisms involved. Results: The results demonstrated that NLE significantly reduced paralysis rates in CL4176 and CL2006 worms while enhancing food-searching capabilities in CL2355 worms. NLE also attenuated Aß aggregate accumulation and mitigated Aß-induced oxidative stress in C. elegans. Furthermore, NLE extended the lifespan of worms under oxidative and thermal stress conditions, while concurrently increasing the expression of stress-resistance-related proteins, including SOD-3, GST-4, HSP-4, and HSP-6. Moreover, NLE induced autophagy in C. elegans, as evidenced by reduced P62 levels in BC12921 worms and the formation of LGG-1+ structures in DA2123 worms. The RNAi-mediated inhibition of autophagy-related genes, such as bec-1 and vps-34, negated the protective effects of NLE against Aß-induced paralysis and aggregate accumulation. Discussion: These findings suggest that NLE ameliorates Aß-induced toxicity by activating autophagy in C. elegans. The study underscores the potential of NLE as a promising candidate for further investigation in AD management, offering multifaceted approaches to mitigate AD-related pathology and stress-related challenges.

10.
Front Mol Neurosci ; 17: 1423340, 2024.
Article in English | MEDLINE | ID: mdl-38984196

ABSTRACT

Alzheimer's disease (AD) affects the elderly population by causing memory impairments, cognitive and behavioral abnormalities. Currently, no curative treatments exist, emphasizing the need to explore therapeutic options that modify the progression of the disease. MicroRNAs (miRNAs), as non-coding RNAs, demonstrate multifaceted targeting potential and are known to be dysregulated in AD pathology. This mini review focuses on two promising miRNAs, hsa-miR-132 and hsa-miR-129, which consistently exhibit differential regulation in AD. By employing computational predictions and referencing published RNA sequencing dataset, we elucidate the intricate miRNA-mRNA target relationships associated with hsa-miR-132 and hsa-miR-129. Our review consistently identifies the downregulation of hsa-miR-132 and hsa-miR-129 in AD brains as a non-coding RNA molecular signature across studies conducted over the past 15 years in AD research.

12.
Alzheimers Dement ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984649

ABSTRACT

INTRODUCTION: Substantial racial and ethnic disparities in hypertension and dementia exist in the United States. We evaluated the effect of maintaining systolic blood pressure (SBP) below clinical thresholds on dementia incidence. METHODS: We included 6806 Multi-Ethnic Study of Atherosclerosis participants (44 to 84 years old). We implemented the parametric g-formula to simulate the hypothetical interventions to reduce SBP below 120 and 140 mmHg over time, accounting for time-varying confounding. We estimated risk ratios (RRs) and risk differences for dementia incidence at 19 years. RESULTS: The RRs (95% confidence intervals [CIs]) comparing an intervention reducing SBP below 120 mmHg to no intervention were 0.93 (0.87 to 0.99) for total sample, 0.95 (0.88 to 1.02) for White, 0.90 (0.79 to 1.02) for Black, 0.90 (0.78 to 1.05) for Latino, and 1.16 (0.83 to 1.55) for Chinese American participants. Results for lowering SBP below 140 mmHg and with death as competing event were attenuated. DISCUSSION: The reduction of SBP below 120 mmHg over time has modest effects on reducing dementia incidence. More work is needed to understand the heterogeneity across racial and ethnic groups. HIGHLIGHTS: There is a potential beneficial effect in lowering SBP to reduce the risk of dementia, which may vary by race and ethnicity. The percentage of participants who would need intervention on blood pressure to meet clinical thresholds is greater for Black and Latino communities. Results are sensitive to the way that death is specified in the research question and analysis.

13.
Age Ageing ; 53(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38984695

ABSTRACT

PURPOSE: This study aimed to develop a normal brain ageing model based on magnetic resonance imaging and radiomics, therefore identifying radscore, an imaging indicator representing white matter heterogeneity and exploring the significance of radscore in detecting people's cognitive changes. METHODS: Three hundred sixty cognitively normal (CN) subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database and 105 CN subjects from the Parkinson's Progression Markers Initiative database were used to develop the model. In ADNI, 230 mild cognitive impairment (MCI) subjects were matched with 230 CN old-aged subjects to evaluate their heterogeneity difference. One hundred four MCI subjects with 48 months of follow-up were divided into low and high heterogeneity groups. Kaplan-Meier survival curve analysis was used to observe the importance of heterogeneity results for predicting MCI progression. RESULTS: The area under the receiver operating characteristic curve of the model in the training, internal test and external test sets was 0.7503, 0.7512 and 0.7514, respectively. There was a significantly positive correlation between age and radscore of CN subjects (r = 0.501; P < .001). The radscore of MCI subjects was significantly higher than that of matched CN subjects (P < .001). The median radscore ratios of MCI to CN from four age groups (66-70y, 71-75y, 76-80y and 81-85y) were 1.611, 1.760, 1.340 and 1.266, respectively. The probability to progression of low and high heterogeneity groups had a significant difference (P = .002). CONCLUSION: When radscore is significantly higher than that of normal ageing, it is necessary to alert the possibility of cognitive impairment and deterioration.


Subject(s)
Aging , Cognitive Dysfunction , Disease Progression , Magnetic Resonance Imaging , Humans , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/diagnosis , Aged , Male , Female , Aged, 80 and over , Aging/psychology , Brain/diagnostic imaging , Brain/pathology , Risk Factors , Age Factors , Predictive Value of Tests , Cognition , Databases, Factual , Case-Control Studies , Risk Assessment , White Matter/diagnostic imaging , White Matter/pathology , Radiomics
14.
Res Sq ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38946950

ABSTRACT

Background: The research community has historically failed to enroll diverse groups of participants in dementia clinical trials. A unique aspect of dementia care research is the requirement of a study partner, who can attest to the care recipient's clinical and functional capacity. The aim of this study is to assess racial and ethnic differences and the importance of various trial considerations among dementia caregivers, in their decision to participate in clinical research as study partners. Method: We embedded a vignette about a hypothetical dementia clinical trial in a nationally representative survey of U.S. dementia caregivers, oversampling non-Hispanic Black and Hispanic caregivers. Dementia caregivers were asked about their willingness to participate in the trial with their care recipient and rated the importance of nine considerations in hypothetical decisions to participate. Caregiver demographic characteristics were analyzed as predictors of trial participation in a base demographic model. In a second reasons model caregiver demographic characteristics and the rated importance of the nine considerations were separately analyzed as predictors; both models used survey-weighted logistic regression. Result: The sample consisted of 610 dementia caregivers, including 156 non-Hispanic Black and 122 Hispanic caregiver participants. In the base demographic model, hypothetical trial participation was negatively associated with older caregiver age (OR (odds ratio) = 0.72, p = < 0.001). In the reasons model, the rated importance of a social responsibility to help others by participating in research was significantly associated with participation (OR = 1.56, p = 0.049), while the importance of the possibility of the care recipient experiencing serious side effects was negatively associated with participation (OR = 0.51, p = 0.003). In both models there was no significant difference in hypothetical participation between non-Hispanic Black and non-Hispanic White caregivers, or between Hispanic and non-Hispanic White caregivers. Conclusion: Hispanic and non-Hispanic Black dementia caregivers were not less likely than non-Hispanic White dementia caregivers to participate in a hypothetical dementia clinical trial. Our study suggests that failures to recruit diverse populations in dementia clinical research are not attributable to less willingness among members of underrepresented groups but may instead reflect structural barriers and historic exclusion from trial participation.

15.
medRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38947015

ABSTRACT

INTRODUCTION: Normal pressure hydrocephalus (NPH) patients undergoing cortical shunting frequently show early AD pathology on cortical biopsy, which is predictive of progression to clinical AD. The objective of this study was to use samples from this cohort to identify CSF biomarkers for AD-related CNS pathophysiologic changes using tissue and fluids with early pathology, free of post-mortem artifact. METHODS: We analyzed Simoa, proteomic, and metabolomic CSF data from 81 patients with previously documented pathologic and transcriptomic changes. RESULTS: AD pathology on biopsy correlates with CSF ß-amyloid-40/42, neurofilament light chain (NfL), and phospho-tau-181(p-tau181)/ß-amyloid-42, while several gene expression modules correlate with NfL. Proteomic analysis highlights 7 core proteins that correlate with pathology and gene expression changes on biopsy, and metabolomic analysis of CSF identifies disease-relevant groups that correlate with biopsy data.. DISCUSSION: As additional biomarkers are added to AD diagnostic panels, our work provides insight into the CNS pathophysiology these markers are tracking.

16.
ArXiv ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38947922

ABSTRACT

Alzheimer's disease (AD) is the most prevalent form of dementia, affecting millions worldwide with a progressive decline in cognitive abilities. The AD continuum encompasses a prodormal stage known as Mild Cognitive Impairment (MCI), where patients may either progress to AD (MCIc) or remain stable (MCInc). Understanding the underlying mechanisms of AD requires complementary analysis derived from different data sources, leading to the development of multimodal deep learning models. In this study, we leveraged structural and functional Magnetic Resonance Imaging (sMRI/fMRI) to investigate the disease-induced grey matter and functional network connectivity changes. Moreover, considering AD's strong genetic component, we introduce Single Nucleotide Polymorphisms (SNPs) as a third channel. Given such diverse inputs, missing one or more modalities is a typical concern of multimodal methods. We hence propose a novel deep learning based classification framework where generative module employing Cycle Generative Adversarial Networks (cGAN) was adopted to impute missing data within the latent space. Additionally, we adopted an Explainable Artificial Intelligence (XAI) method, Integrated Gradients (IG), to extract input features relevance, enhancing our understanding of the learned representations. Two critical tasks were addressed: AD detection and MCI conversion prediction. Experimental results showed that our framework was able to reach the state-of-the-art in the classification of CN vs AD reaching an average test accuracy of 0.926 ± 0.02. For the MCInc vs MCIc task, we achieved an average prediction accuracy of 0.711 ± 0.01 using the pre-trained model for CN and AD. The interpretability analysis revealed that the classification performance was led by significant grey matter modulations in cortical and subcortical brain areas well known for their association with AD. Moreover, impairments in sensory-motor and visual resting state network connectivity along the disease continuum, as well as mutations in SNPs defining biological processes linked to amyloid-beta and cholesterol formation clearance and regulation, were identified as contributors to the achieved performance. Overall, our integrative deep learning approach shows promise for AD detection and MCI prediction, while shading light on important biological insights.

17.
Brain Res ; 1842: 149103, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955250

ABSTRACT

Amyloid PET scans help in identifying the beta-amyloid deposition in different brain regions. The purpose of this study is to develop a deep learning model that can automate the task of finding amyloid deposition in different regions of the brain only by using PET scan and without the corresponding MRI scan. 2647 18F-Florbetapir PET scans are collected from Alzheimer's Disease Neuroimaging Initiative (ADNI) from multiple centres taken over a period. A deep learning model based on multi-instance learning and attention is proposed which is trained and validated using 80% of the scans and the remaining 20% of the scans are used for testing the model. The performance of the model is validated using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The proposed model is further tested upon an external dataset consisting of 1413 18F-Florbetapir PET scans from the Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) study. The proposed model achieves MAE of 0.0243 and RMSE of 0.0320 for summary Standardized Uptake Value Ratio (SUVR) based on composite reference region for ADNI test set. When tested on the A4-study dataset, the proposed model achieves MAE of 0.038 and RMSE of 0.0495 for summary SUVR based on the composite region. The results show that the proposed model provides less MAE and RMSE when compared with existing models. A graphical user interface is developed based on the proposed model where the predictions are made by selecting the files of 18F-Florbetapir PET scans.

18.
Alzheimers Res Ther ; 16(1): 150, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970052

ABSTRACT

BACKGROUND: Patients with young onset Alzheimer's disease (YOAD) face long diagnostic delays. Prescription medication use may provide insights into early signs and symptoms, which may help facilitate timely diagnosis. METHODS: In a register-based nested case-control study, we examined medication use for everyone diagnosed with YOAD in a Danish memory clinic during 2016-2020 compared to cognitively healthy controls. Prescription medication use were grouped into 13 overall categories (alimentary tract and metabolism, blood and blood forming organs, cardiovascular system, dermatologicals, genitourinary system and sex hormones, systemic hormonal preparations, antiinfectives for systemic use, antineoplastic and immunomodulating agents, musculo-skeletal system, nervous system, antiparasitic products, respiratory system, and sensory organs). Further stratifications were done for predetermined subcategories with a use-prevalence of at least 5% in the study population. Conditional logistic regression produced odds ratios, which given the use of incidence-density matching is interpretable as incidence rate ratios (IRRs). The association between prescription medication use and subsequent YOAD diagnosis was examined in the entire 10-year study period and in three time-intervals. RESULTS: The study included 1745 YOAD cases and 5235 controls. In the main analysis, several overall categories showed significant associations with YOAD in one or more time-intervals, namely blood and blood forming organs and nervous system. Prescription medication use in the nervous system category was increased for YOAD cases compared to controls already 10->5 years prior to diagnosis (IRR 1.17, 95% CI 1.05-1.31), increasing to 1.57 (95% CI 1.39-1.78) in the year preceding diagnosis. This was largely driven by antidepressant and antipsychotic use, and especially prominent for first-time users. CONCLUSIONS: In this study, medication use in several categories was associated with YOAD. Onset of treatment-requiring psychiatric symptoms such as depression or psychosis in mid-life may serve as potential early indicators of YOAD.


Subject(s)
Age of Onset , Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/epidemiology , Alzheimer Disease/diagnosis , Case-Control Studies , Female , Male , Denmark/epidemiology , Middle Aged , Aged , Prescription Drugs/therapeutic use , Registries
19.
Alzheimers Res Ther ; 16(1): 153, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970077

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder where pathophysiological changes begin decades before the onset of clinical symptoms. Analysis of brain atrophy patterns using structural MRI and multivariate data analysis are an effective tool in identifying patients with subjective cognitive decline (SCD) at higher risk of progression to AD dementia. Atrophy patterns obtained from models trained to classify advanced AD versus normal subjects, may not be optimal for subjects at an early stage, like SCD. In this study, we compared the accuracy of the SCD progression prediction using the 'severity index' generated using a standard classification model trained on patients with AD dementia versus a new model trained on ß-amyloid (Aß) positive patients with amnestic mild cognitive impairment (aMCI). METHODS: We used structural MRI data of 504 patients from the Swedish BioFINDER-1 study cohort (cognitively normal (CN), Aß-negative = 220; SCD, Aß positive and negative = 139; aMCI, Aß-positive = 106; AD dementia = 39). We applied multivariate data analysis to create two predictive models trained to discriminate CN individuals from either individuals with Aß positive aMCI or AD dementia. Models were applied to individuals with SCD to classify their atrophy patterns as either high-risk "disease-like" or low-risk "CN-like". Clinical trajectory and model accuracy were evaluated using 8 years of longitudinal data. RESULTS: In predicting progression from SCD to MCI or dementia, the standard, dementia-based model, reached 100% specificity but only 10.6% sensitivity, while the new, aMCI-based model, reached 72.3% sensitivity and 60.9% specificity. The aMCI-based model was superior in predicting progression from SCD to MCI or dementia, reaching a higher receiver operating characteristic area under curve (AUC = 0.72; P = 0.037) in comparison with the dementia-based model (AUC = 0.57). CONCLUSION: When predicting conversion from SCD to MCI or dementia using structural MRI data, prediction models based on individuals with milder levels of atrophy (i.e. aMCI) may offer superior clinical value compared to standard dementia-based models.


Subject(s)
Atrophy , Brain , Cognitive Dysfunction , Dementia , Disease Progression , Magnetic Resonance Imaging , Humans , Male , Female , Atrophy/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cognitive Dysfunction/diagnosis , Aged , Magnetic Resonance Imaging/methods , Brain/pathology , Brain/diagnostic imaging , Dementia/diagnostic imaging , Dementia/pathology , Middle Aged , Aged, 80 and over , Cohort Studies , Neuropsychological Tests , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology
20.
Alzheimers Res Ther ; 16(1): 151, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970127

ABSTRACT

BACKGROUND: Amyloid beta protein (Aß) is a treatment target in Alzheimer's Disease (AD). Lowering production of its parent protein, APP, has benefits in preclinical models. Posiphen, an orally administered small molecule, binds to an iron-responsive element in APP mRNA and decreases translation of APP and Aß. To augment human data for Posiphen, we evaluated safety, tolerability and pharmacokinetic and pharmacodynamic (PD) effects on Aß metabolism using Stable Isotope Labeling Kinetic (SILK) analysis. METHODS: Double-blind phase 1b randomized ascending dose clinical trial, at five sites, under an IRB-approved protocol. Participants with mild cognitive impairment or mild AD (Early AD) confirmed by low CSF Aß42/40 were randomized (within each dose arm) to Posiphen or placebo. Pretreatment assessment included lumbar puncture for CSF. Participants took Posiphen or placebo for 21-23 days, then underwent CSF catheter placement, intravenous infusion of 13C6-leucine, and CSF sampling for 36 h. Safety and tolerability were assessed through participant reports, EKG and laboratory tests. CSF SILK analysis measured Aß40, 38 and 42 with immunoprecipitation-mass spectrometry. Baseline and day 21 CSF APP, Aß and other biomarkers were measured with immunoassays. The Mini-Mental State Exam and ADAS-cog12 were given at baseline and day 21. RESULTS: From June 2017 to December 2021, 19 participants were enrolled, randomized within dose cohorts (5 active: 3 placebo) of 60 mg once/day and 60 mg twice/day; 1 participant was enrolled and completed 60 mg three times/day. 10 active drug and 5 placebo participants completed all study procedures. Posiphen was safe and well-tolerated. 8 participants had headaches related to CSF catheterization; 5 needed blood patches. Prespecified SILK analyses of Fractional Synthesis Rate (FSR) for CSF Aß40 showed no significant overall or dose-dependent effects of Posiphen vs. placebo. Comprehensive multiparameter modeling of APP kinetics supported dose-dependent lowering of APP production by Posiphen. Cognitive measures and CSF biomarkers did not change significantly from baseline to 21 days in Posiphen vs. placebo groups. CONCLUSIONS: Posiphen was safe and well-tolerated in Early AD. A multicenter SILK study was feasible. Findings are limited by small sample size but provide additional supportive safety and PK data. Comprehensive modeling of biomarker dynamics using SILK data may reveal subtle drug effects. TRIAL REGISTRATION: NCT02925650 on clinicaltrials.gov (registered on 10-24-2016).


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/cerebrospinal fluid , Double-Blind Method , Male , Female , Aged , Amyloid beta-Peptides/cerebrospinal fluid , Cognitive Dysfunction/drug therapy , Middle Aged , Dose-Response Relationship, Drug , Peptide Fragments/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Aged, 80 and over , Amyloid beta-Protein Precursor/genetics , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...