Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892321

ABSTRACT

AMELX mutations cause X-linked amelogenesis imperfecta (AI), known as AI types IE, IIB, and IIC in Witkop's classification, characterized by hypoplastic (reduced thickness) and/or hypomaturation (reduced hardness) enamel defects. In this study, we conducted whole exome analyses to unravel the disease-causing mutations for six AI families. Splicing assays, immunoblotting, and quantitative RT-PCR were conducted to investigate the molecular and cellular effects of the mutations. Four AMELX pathogenic variants (NM_182680.1:c.2T>C; c.29T>C; c.77del; c.145-1G>A) and a whole gene deletion (NG_012494.2:g.307534_403773del) were identified. The affected individuals exhibited enamel malformations, ranging from thin, poorly mineralized enamel with a "snow-capped" appearance to severe hypoplastic defects with minimal enamel. The c.145-1G>A mutation caused a -1 frameshift (NP_001133.1:p.Val35Cysfs*5). Overexpression of c.2T>C and c.29T>C AMELX demonstrated that mutant amelogenin proteins failed to be secreted, causing elevated endoplasmic reticulum stress and potential cell apoptosis. This study reveals a genotype-phenotype relationship for AMELX-associated AI: While amorphic mutations, including large deletions and 5' truncations, of AMELX cause hypoplastic-hypomaturation enamel with snow-capped teeth (AI types IIB and IIC) due to a complete loss of gene function, neomorphic variants, including signal peptide defects and 3' truncations, lead to severe hypoplastic/aplastic enamel (AI type IE) probably caused by "toxic" cellular effects of the mutant proteins.


Subject(s)
Amelogenesis Imperfecta , Amelogenin , Genetic Association Studies , Mutation , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Humans , Amelogenin/genetics , Male , Female , Pedigree , Phenotype , Child , Endoplasmic Reticulum Stress/genetics , Genotype , Exome Sequencing
2.
FASEB J ; 38(7): e23608, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38593315

ABSTRACT

Tooth development is a complex process involving various signaling pathways and genes. Recent findings suggest that ion channels and transporters, including the S100 family of calcium-binding proteins, may be involved in tooth formation. However, our knowledge in this regard is limited. Therefore, this study aimed to investigate the expression of S100 family members and their functions during tooth formation. Tooth germs were extracted from the embryonic and post-natal mice and the expression of S100a6 was examined. Additionally, the effects of S100a6 knockdown and calcium treatment on S100a6 expression and the proliferation of SF2 cells were examined. Microarrays and single-cell RNA-sequencing indicated that S100a6 was highly expressed in ameloblasts. Immunostaining of mouse tooth germs showed that S100a6 was expressed in ameloblasts but not in the undifferentiated dental epithelium. Additionally, S100a6 was localized to the calcification-forming side in enamel-forming ameloblasts. Moreover, siRNA-mediated S100a6 knockdown in ameloblasts reduced intracellular calcium concentration and the expression of ameloblast marker genes, indicating that S100a6 is associated with ameloblast differentiation. Furthermore, S100a6 knockdown inhibited the ERK/PI3K signaling pathway, suppressed ameloblast proliferation, and promoted the differentiation of the dental epithelium toward epidermal lineage. Conclusively, S100a6 knockdown in the dental epithelium suppresses cell proliferation via calcium and intracellular signaling and promotes differentiation of the dental epithelium toward the epidermal lineage.


Subject(s)
Calcium , Phosphatidylinositol 3-Kinases , Animals , Mice , Ameloblasts/metabolism , Calcium/metabolism , Cell Differentiation , Epithelial Cells , Odontogenesis/genetics , Phosphatidylinositol 3-Kinases/metabolism
3.
Oral Dis ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321366

ABSTRACT

OBJECTIVE: To investigate the effects of sodium fluoride on the ameloblast and reveal the mechanism of dental fluorosis. MATERIALS AND METHODS: Mouse ameloblast-like cell line (ALC) cells were treated with various concentrations of NaF, and subjected to Incucyte, fluorescence immunoassay, transmission electron microscopy, reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blot for autophagy examination, alkaline phosphatase and alizarin red staining for mineralization after osteogenic induction. RESULTS: NaF exerts a dose-dependent inhibitory effect on ALC cell growth. TEM and fluorescence immunoassay showed that 1.5 mM or higher concentrations of NaF could induce a fusion of lysosome and mitochondria, finally increasing the number of autophagosome. RT-qPCR and western blot showed that the upregulation of autophagy related gene 13 (ATG13), downregulation of phosphorylated Unc-51-like kinase 1 (p-ULK1) were found in NaF-induced autophagy of ALC cells. The knockdown of ATG13 could rescue it as well as the expression of p-ULK1 and LC3B. Besides, alizarin red staining showed that fluoride under these concentrations could promote the mineralization of ALC. CONCLUSIONS: The data show that fluoride in higher concentration can induce autophagy via the p-ULk1/ATG13/LC3B pathway of ALCs than lower ones promote mineralization in vitro, which provides insight into the function of NaF in the autophagy and mineralization of ameloblast.

4.
Biol Trace Elem Res ; 202(3): 1103-1114, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37410266

ABSTRACT

Fluoride can be widely ingested from the environment, and its excessive intake could result in adverse effects. Dental fluorosis is an early sign of fluoride toxicity which can cause esthetic and functional problems. Though apoptosis in ameloblasts is one of the potential mechanisms, the specific signal cascade is in-conclusive. High-throughput sequencing and molecular biological techniques were used in this study to explore the underlying pathogenesis of dental fluorosis, for its prevention and treatment. A fluorosis cell model was established. Viability and apoptosis rate of mouse ameloblast-derived cell line (LS8 cells) was measured using cell counting kit-8 (CCK-8) assay and flow cytometry analysis. Cells were harvested with or without 2-mM sodium fluoride (NaF) stimulation for high-throughput sequencing. Based on the sequencing data, subcellular structures, endoplasmic reticulum stress (ERS), and apoptosis related biomarkers were verified using transmission electron microscopy, quantitative real-time polymerase chain reaction, and Western blotting techniques. Expression of ERS markers, apoptosis related proteins, and enamel formation enzymes were detected using Western blotting after addition of 4-phenylbutyrate (4-PBA). NaF-inhibited LS8 cells displayed time- and dose- dependent viability. Additionally, apoptosis and morphological changes were observed. RNA-sequencing data showed that protein processing in endoplasmic reticulum was obviously affected. ERS and apoptosis were induced by excessive NaF. Downregulation of kallikrein-related peptidase 4 (KLK4) was also observed. Inhibition of ERS by 4-PBA rescued the apoptotic and functional protein changes in cells. Excessive fluoride induces apoptosis by activating ERS, which is mediated by GRP-78/PERK/CHOP signaling. Key proteinase is present in maturation-stage enamel; KLK4 was also affected by fluoride, but rescued by 4-PBA. This study presents a possibility for therapeutic strategies for dental fluorosis, while further exploration is required.


Subject(s)
Butylamines , Fluorides , Fluorosis, Dental , Mice , Animals , Fluorides/pharmacology , Fluorides/metabolism , Ameloblasts , Fluorosis, Dental/metabolism , Endoplasmic Reticulum Chaperone BiP , Sodium Fluoride/pharmacology , Apoptosis , Endoplasmic Reticulum Stress
5.
Dev Cell ; 58(20): 2163-2180.e9, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37582367

ABSTRACT

Tooth enamel secreted by ameloblasts (AMs) is the hardest material in the human body, acting as a shield to protect the teeth. However, the enamel is gradually damaged or partially lost in over 90% of adults and cannot be regenerated due to a lack of ameloblasts in erupted teeth. Here, we use single-cell combinatorial indexing RNA sequencing (sci-RNA-seq) to establish a spatiotemporal single-cell census for the developing human tooth and identify regulatory mechanisms controlling the differentiation process of human ameloblasts. We identify key signaling pathways involved between the support cells and ameloblasts during fetal development and recapitulate those findings in human ameloblast in vitro differentiation from induced pluripotent stem cells (iPSCs). We furthermore develop a disease model of amelogenesis imperfecta in a three-dimensional (3D) organoid system and show AM maturation to mineralized structure in vivo. These studies pave the way for future regenerative dentistry.


Subject(s)
Dental Enamel , Odontogenesis , Tooth , Humans , Ameloblasts/metabolism , Amelogenesis/genetics
6.
Front Cell Dev Biol ; 11: 1164811, 2023.
Article in English | MEDLINE | ID: mdl-37457296

ABSTRACT

Tooth formation relies on two types of dental cell populations, namely, the dental epithelium and dental mesenchyme, and the interactions between these cell populations are important during tooth development. Although human-induced pluripotent stem cells (hiPSCs) can differentiate into dental epithelial and mesenchymal cells, organoid research on tooth development has not been established yet. This study focused on the hiPSC-derived human ameloblast organoid (hAO) using a three-dimensional (3D) culture system. hAOs had similar properties to ameloblasts, forming enamel in response to calcium and mineralization by interaction with the dental mesenchyme. hAOs simultaneously had osteogenic and odontogenic differentiation potential. Furthermore, hAOs demonstrated tooth regenerative potential upon interaction with the mouse dental mesenchyme. Our findings provide new insights into a suitable hiPSC-derived dental source and demonstrate that hAOs can be beneficial not only for tooth regeneration but also for the study of various dental diseases for which treatment has not been developed yet.

7.
Ecotoxicol Environ Saf ; 260: 115089, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37271104

ABSTRACT

Perfluorooctanoic acid (PFOA) is an artificial fluorinated organic compound that has generated increased public attention due to its potential health hazards. Unsafe levels of PFOA exposure can affect reproduction, growth and development. During tooth enamel development (amelogenesis), environmental factors including fluoride can cause enamel hypoplasia. However, the effects of PFOA on ameloblasts and tooth enamel formation remain largely unknown. In the present study we demonstrate several PFOA-mediated cell death pathways (necrosis/necroptosis, and apoptosis) and assess the roles of ROS-MAPK/ERK signaling in PFOA-mediated cell death in mouse ameloblast-lineage cells (ALC). ALC cells were treated with PFOA. Cell proliferation and viability were analyzed by MTT assays and colony formation assays, respectively. PFOA suppressed cell proliferation and viability in a dose dependent manner. PFOA induced both necrosis (PI-positive cells) and apoptosis (cleaved-caspase-3, γH2AX and TUNEL-positive cells). PFOA significantly increased ROS production and up-regulated phosphor-(p)-ERK. Addition of ROS inhibitor N-acetyl cysteine (NAC) suppressed p-ERK and decreased necrosis, and increased cell viability compared to PFOA alone, whereas NAC did not change apoptosis. This suggests that PFOA-mediated necrosis was induced by ROS-MAPK/ERK signaling, but apoptosis was not associated with ROS. Addition of MAPK/ERK inhibitor PD98059 suppressed necrosis and increased cell viability compared to PFOA alone. Intriguingly, PD98059 augmented PFOA-mediated apoptosis. This suggests that p-ERK promoted necrosis but suppressed apoptosis. Addition of the necroptosis inhibitor Necrostatin-1 restored cell viability compared to PFOA alone, while pan-caspase inhibitor Z-VAD did not mitigate PFOA-mediated cell death. These results suggest that 1) PFOA-mediated cell death was mainly caused by necrosis/necroptosis by ROS-MAPK/ERK signaling rather than apoptosis, 2) MAPK/ERK signaling plays the dual roles (promoting necrosis and suppressing apoptosis) under PFOA treatment. This is the initial report to indicate that PFOA could be considered as a possible causative factor for cryptogenic enamel malformation. Further studies are required to elucidate the mechanisms of PFOA-mediated adverse effects on amelogenesis.


Subject(s)
Ameloblasts , Mice , Animals , Reactive Oxygen Species/metabolism , Ameloblasts/metabolism , Cell Death , Necrosis
8.
FASEB J ; 37(4): e22861, 2023 04.
Article in English | MEDLINE | ID: mdl-36929047

ABSTRACT

Enamel is formed by the repetitive secretion of a tooth-specific extracellular matrix and its decomposition. Calcification of the enamel matrix via hydroxyapatite (HAP) maturation requires pH cycling to be tightly regulated through the neutralization of protons released during HAP synthesis. We found that Gpr115, which responds to changes in extracellular pH, plays an important role in enamel formation. Gpr115-deficient mice show partial enamel hypomineralization, suggesting that other pH-responsive molecules may be involved. In this study, we focused on the role of Gpr111/Adgrf2, a duplicate gene of Gpr115, in tooth development. Gpr111 was highly expressed in mature ameloblasts. Gpr111-KO mice showed enamel hypomineralization. Dysplasia of enamel rods and high carbon content seen in Gpr111-deficient mice suggested the presence of residual enamel matrices in enamel. Depletion of Gpr111 in dental epithelial cells induced the expression of ameloblast-specific protease, kallikrein-related peptidase 4 (Klk4), suggesting that Gpr111 may act as a suppressor of Klk4 expression. Moreover, reduction of extracellular pH to 6.8 suppressed the expression of Gpr111, while the converse increased Klk4 expression. Such induction of Klk4 was synergistically enhanced by Gpr111 knockdown, suggesting that proper enamel mineralization may be linked to the modulation of Klk4 expression by Gpr111. Furthermore, our in vitro suppression of Gpr111 and Gpr115 expression indicated that their suppressive effect on calcification was additive. These results suggest that both Gpr111 and Gpr115 respond to extracellular pH, contribute to the expression of proteolytic enzymes, and regulate the pH cycle, thereby playing important roles in enamel formation.


Subject(s)
Dental Enamel Hypomineralization , Receptors, G-Protein-Coupled , Animals , Mice , Ameloblasts/metabolism , Dental Enamel Hypomineralization/genetics , Dental Enamel Hypomineralization/metabolism , Epithelial Cells/metabolism , Hydrogen-Ion Concentration , Kallikreins/metabolism , Receptors, G-Protein-Coupled/genetics
9.
Front Physiol ; 14: 1100714, 2023.
Article in English | MEDLINE | ID: mdl-36935757

ABSTRACT

Introduction: The intracellular Ca2+ sensor stromal interaction molecule 1 (STIM1) is thought to play a critical role in enamel development, as its mutations cause Amelogenesis Imperfecta (AI). We recently established an ameloblast-specific (AmelX-iCre) Stim1 conditional deletion mouse model to investigate the role of STIM1 in controlling ameloblast function and differentiation in vivo (Stim1 cKO). Our pilot data (Said et al., J. Dent. Res., 2019, 98, 1002-1010) support our hypothesis for a broad role of Stim1 in amelogenesis. This paper aims to provide an in-depth characterization of the enamel phenotype observed in our Stim1 cKO model. Methods: We crossed AmelX-iCre mice with Stim1-floxed animals to develop ameloblast-specific Stim1 cKO mice. Scanning electron microscopy, energy dispersive spectroscopy, and micro- CT were used to study the enamel phenotype. RNAseq and RT-qPCR were utilized to evaluate changes in the gene expression of several key ameloblast genes. Immunohistochemistry was used to detect the amelogenin, matrix metalloprotease 20 and kallikrein 4 proteins in ameloblasts. Results: Stim1 cKO animals exhibited a hypomineralized AI phenotype, with reduced enamel volume, diminished mineral density, and lower calcium content. The mutant enamel phenotype was more severe in older Stim1 cKO mice compared to younger ones and changes in enamel volume and mineral content were more pronounced in incisors compared to molars. Exploratory RNAseq analysis of incisors' ameloblasts suggested that ablation of Stim1 altered the expression levels of several genes encoding enamel matrix proteins which were confirmed by subsequent RT-qPCR. On the other hand, RT-qPCR analysis of molars' ameloblasts showed non-significant differences in the expression levels of enamel matrix genes between control and Stim1-deficient cells. Moreover, gene expression analysis of incisors' and molars' ameloblasts showed that Stim1 ablation caused changes in the expression levels of several genes associated with calcium transport and mitochondrial kinetics. Conclusions: Collectively, these findings suggest that the loss of Stim1 in ameloblasts may impact enamel mineralization and ameloblast gene expression.

10.
Front Physiol ; 14: 1116091, 2023.
Article in English | MEDLINE | ID: mdl-36814474

ABSTRACT

Enamel development is a process in which extracellular matrix models from a soft proteinaceous matrix to the most mineralized tissue in vertebrates. Patients with mutant NCKX4, a gene encoding a K+-dependent Na+/Ca2+-exchanger, develop a hypomineralized and hypomature enamel. How NCKX4 regulates enamel protein removal to achieve an almost protein-free enamel is unknown. We characterized the upregulation pattern of Nckx4 in the progressively differentiating enamel-forming ameloblasts by qPCR, and as well as confirmed NCKX4 protein to primarily localize at the apical surface of wild-type ruffle-ended maturation ameloblasts by immunostaining of the continuously growing mouse incisors, posing the entire developmental trajectory of enamel. In contrast to the normal mature enamel, where ECM proteins are hydrolyzed and removed, we found significant protein retention in the maturation stage of Nckx4 -/- mouse enamel. The Nckx4 -/- enamel held less Ca2+ and K+ but more Na+ than the Nckx4 +/+ enamel did, as measured by EDX. The alternating acidic and neutral pH zones at the surface of mineralizing Nckx4 +/+ enamel were replaced by a largely neutral pH matrix in the Nckx4 -/- enamel. In situ zymography revealed a reduced kallikrein-related peptidase 4 (KLK4) activity in the Nckx4 -/- enamel. We showed that KLK4 took on 90% of proteinase activity in the maturation stage of normal enamel, and that recombinant KLK4 as well as native mouse enamel KLK4 both performed less effectively in a buffer with increased [Na+] and pH, conditions found in the Nckx4 -/- developing enamel. This study, for the first time to our knowledge, provides evidence demonstrating the impaired in situ KLK4 activity in Nckx4 -/- enamel and suggests a novel function of NCKX4 in facilitating KLK4-mediated hydrolysis and removal of ECM proteins, warranting the completion of enamel matrix modeling.

11.
Arch Oral Biol ; 145: 105588, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36442302

ABSTRACT

OBJECTIVE: This work aimed to examine changes in odontogenic ameloblast-associated protein (ODAM) expression during the progression of periodontal disease and to investigate the effect of ODAM deficiency in vitro by RNA sequencing. DESIGN: Gingival tissue samples were collected from three groups, including healthy control, gingivitis and periodontitis patients, and ODAM expression was assessed by immunohistochemistry and quantitative reverse transcription PCR (qRT-PCR). Then, an Odam-knockdown cell line was established by lentiviral infection of small guide RNAs (sgRNAs) into an immortalized ameloblast-lineage cell line. RNA sequencing was carried out in Odam-knockdown and empty lentiviral vector-transfected cells. Differentially expressed genes were compared between these two cell groups to analyze functional enrichment, and a protein-protein interaction network was built. RESULTS: ODAM expression levels in gingival tissue samples were significantly lower in patients with periodontitis than in healthy controls as determined by immunohistochemistry and qRT-PCR. Transcriptomic analysis of Odam-knockdown cells identified 2801 differentially expressed genes, which were enriched in cell-substrate adhesion, proliferation, and migration pathways. The expression of a core of differentially expressed genes was confirmed by qRT-PCR in Odam-knockdown cells and by immunohistochemistry in clinical samples. Knocking down Odam significantly reduced cell adhesion but increased cell proliferation and migration capacity in vitro. CONCLUSIONS: ODAM is important in cell adhesion, proliferation, and migration, and its downregulation may contribute to periodontitis progression in humans.


Subject(s)
Ameloblasts , Periodontitis , Humans , Ameloblasts/metabolism , Cell Adhesion , Down-Regulation , Intracellular Signaling Peptides and Proteins/metabolism , Periodontitis/metabolism , Cell Proliferation
12.
Arch Razi Inst ; 78(4): 1333-1341, 2023 08.
Article in English | MEDLINE | ID: mdl-38226389

ABSTRACT

Amoxicillin is one of the most commonly prescribed antibiotics in children. As a result, it is prescribed as the first line of defence against cutaneous, gastrointestinal, and respiratory infections. The objective of this study was to evaluate the effects of Amoxicillin on the formation of dentin and enamel during the secretory and early phases of mineralization. Regarding the materials and methods used to perform this study, 16 pregnant adult Wistar rats were equally divided into two groups. The first group did not receive the drug and was prescribed a saline solution (control group), and the other group received 250 mg/kg/day of Amoxicillin (experimental group). From the 13th gestational day until delivery, the treatment was given every day by oral gavage. After birth, the newborns also received the same treatment as their mothers from the first day until 7 or 12 days after birth. The newborns were sacrificed at 7 and 12 days postnatally, the jaws were dissected, the maxilla was taken, the samples were fixed in 10% formaldehyde solution, and the upper first molars were analyzed histologically by H & E stain and histomorphometrically by image J to examine the enamel, dentin, ameloblast and odontoblast mean thickness in both groups and each healing periods. The study's results showed that the mean enamel, as well as ameloblastic and odontoblastic layer thickness, were significantly different in the Amoxicillin 250 mg/kg group, compared to the control group. The result also revealed a non-significant group difference in the dentin thickness in both durations (P-value at day 7=0.147 and the P-value at day 12=0.054). Vacuolization of the ameloblastic and odontoblastic layers was observed in the Amoxicillin-treated group in both durations.


Subject(s)
Amoxicillin , Anti-Bacterial Agents , Infant, Newborn , Humans , Pregnancy , Female , Child , Rats , Animals , Amoxicillin/pharmacology , Rats, Wistar , Anti-Bacterial Agents/pharmacology , Wound Healing
13.
Front Physiol ; 13: 1062042, 2022.
Article in English | MEDLINE | ID: mdl-36523561

ABSTRACT

Maturation stage ameloblasts (M-ABs) are responsible for terminal enamel mineralization in teeth and undergo characteristic cyclic changes in both morphology and function between ruffle-ended ameloblasts (RA) and smooth-ended ameloblasts (SA). Energy metabolism has recently emerged as a potential regulator of cell differentiation and fate decisions; however, its implication in M-ABs remains unclear. To elucidate the relationship between M-ABs and energy metabolism, we examined the expression pattern of energy metabolic enzymes in M-ABs of mouse incisors. Further, using the HAT7 cell line with M-AB characteristics, we designed experiments to induce an energy metabolic shift by changes in oxygen concentration. We revealed that RA preferentially utilizes oxidative phosphorylation, whereas SA depends on glycolysis-dominant energy metabolism in mouse incisors. In HAT7 cells, hypoxia induced an energy metabolic shift toward a more glycolytic-dominant state, and the energy metabolic shift reduced alkaline phosphatase (ALP) activity and calcium transport and deposition with a change in calcium-related gene expression, implying a phenotype shift from RA to SA. Taken together, these results indicate that the energy metabolic state is an important determinant of the RA/SA phenotype in M-ABs. This study sheds light on the biological significance of energy metabolism in governing M-ABs, providing a novel molecular basis for understanding enamel mineralization and elucidating the pathogenesis of enamel hypomineralization.

14.
J Oral Biosci ; 64(4): 400-409, 2022 12.
Article in English | MEDLINE | ID: mdl-36270608

ABSTRACT

OBJECTIVES: Epithelial-mesenchymal interactions are extremely important in tooth development and essential for ameloblast differentiation, especially during tooth formation. We aimed to identify the type of mesenchymal cells important in ameloblast differentiation. METHODS: We used two types of cell culture systems with chambers and found that a subset of debtal mesenchimal cells is important for the differentiatiuon of dental spithelial cells into ameloblasts. Further, we induced dental pulp stem cell-like cells from dental pulp stem cells using the small molecule compound BIO ( a GSK-3 inhibitor IX) to clarify the mechanism involved in ameloblast differentiation induced by dental pulp stem cells. RESULTS: The BIO-induced dental pulp cells promoted the expression of mesenchymal stem cell markers Oct3/4 and Bcrp1. Furthermore, we used artificial dental pulp stem cells induced by BIO to identify the molecules expressed in dental pulp stem cells required for ameloblast differentiation. Panx3 expression was induced in the dental pulp stem cell through interaction with the dental epithelial cells. In addition, ATP release from cells increased in Panx3-expressing cells. We also confirmed that ATP stimulation is accepted in dental epithelial cells. CONCLUSIONS: These results showed that the Panx3 expressed in dental pulp stem cells is important for ameloblast differentiation and that ATP release by Panx3 may play a role in epithelial-mesenchymal interaction.


Subject(s)
Ameloblasts , Mesenchymal Stem Cells , Ameloblasts/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3/metabolism , Adenosine Triphosphate/metabolism
15.
Front Physiol ; 13: 1003931, 2022.
Article in English | MEDLINE | ID: mdl-36117697

ABSTRACT

Junctional epithelium (JE) is a vital epithelial component which forms an attachment to the tooth surface at the gingival sulcus by the adhesion of protein complexes from its basal layer. Disruption of the JE is associated with the development of gingivitis, periodontal disease, and alveolar bone loss. Odontogenic ameloblast-associated (ODAM) is comprised of a signal peptide and an ODAM protein with 12 putative glycosylation sites. It is expressed during odontogenesis by maturation stage ameloblasts and is incorporated into the enamel matrix during the formation of outer and surface layer enamel. ODAM, as a secreted protein which is accumulated at the interface between basal lamina and enamel, mediates the adhesion of the JE to the tooth surface; and is involved with extracellular signalling of WNT and ARHGEF5-RhoA, as well as intracellular signalling of BMP-2-BMPR-IB-ODAM. ODAM is also found to be highly expressed in salivary glands and appears to have implications for the regulation of formation, repair, and regeneration of the JE. Bioinformatics and research data have identified the anti-cancer properties of ODAM, indicating its potential both as a prognostic biomarker and therapeutic target. Understanding the biology of ODAM will help to design therapeutic strategies for periodontal and dental disorders.

16.
Biomater Adv ; 137: 212844, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35929273

ABSTRACT

Enamel is the highest mineralized tissue in the body protecting teeth from external stimuli, infections, and injuries. Enamel lacks the ability to self-repair due to the absence of enamel-producing cells in the erupted teeth. Here, we reported a novel approach to promote enamel-like tissue formation via the delivery of a key ameloblast inducer, T-box1 gene, into a rat dental epithelial stem cell line, HAT-7, using non-viral gene delivery systems based on cationic lipids. We comparatively assessed the lipoplexes prepared from glycyl-lysine-modified gemini surfactants and commercially available 1,2-dioleoyl-3-trimethylammonium-propane lipids at three nitrogen-to phosphate (N/P) ratios of 2.5, 5 and 10. Our findings revealed that physico-chemical characteristics and biological activities of the gemini surfactant-based lipoplexes with a N/P ratio of 5 provide the most optimal outcomes among those examined. HAT-7 cells were transfected with T-box1 gene using the optimal formulation then cultured in conventional 2D cell culture systems. Ameloblast differentiation, mineralization, bio-enamel interface and structure were assessed at different time points over 28 days. Our results showed that our gemini transfection system provides superior gene expression compared to the benchmark agent, while keeping low cytotoxicity levels. T-box1-transfected HAT-7 cells strongly expressed markers of secretory and maturation stages of the ameloblasts, deposited minerals, and produced enamel-like crystals when compared to control cells. Taken together, our gemini surfactant-based T-box1 gene delivery system is effective to accelerate and guide ameloblastic differentiation of dental epithelial stem cells and promote enamel-like tissue formation. This study would represent a significant advance towards the tissue engineering and regeneration of dental enamel.


Subject(s)
Nanoparticles , Pulmonary Surfactants , Animals , Cell Differentiation , Dental Enamel , Excipients , Gene Transfer Techniques , Lipoproteins , Nanoparticles/chemistry , Rats , Stem Cells , Surface-Active Agents/chemistry
17.
Genes (Basel) ; 13(7)2022 07 04.
Article in English | MEDLINE | ID: mdl-35885982

ABSTRACT

BACKGROUND: Chemotherapy treatment of cancer in children can influence formation of normal tissues, leading to irreversible changes in their structure and function. Tooth formation is susceptible to several types of chemotherapy that induce irreversible changes in the structure of enamel, dentin and dental root morphology. These changes can make the teeth more prone to fracture or to caries when they have erupted. Recent studies report successful treatment of brain tumors with the alkylating drug temozolomide (TMZ) in combination with veliparib (VLP) in a glioblastoma in vivo mouse model. Whether these drugs also affect tooth formation is unknown. AIM: In this study the effect of TMZ/VLP on incisor formation was investigated in tissue sections of jaws from mice and compared with mice not treated with these drugs. MATERIALS AND METHOD: The following aspects were studied using immunohistochemistry of specific protein markers including: (1) proliferation (by protein expression of proliferation marker Ki67) (2) a protein involved in paracellular ion transport (expression of tight junction (TJ) protein claudin-1) and (3) in transcellular passage of ions across the dental epithelium (expression of Na+, K+ 2Cl- cotransporter/NKCC1). RESULTS: Chemotherapy with TMZ/VLP strongly reduced immunostaining for claudin-1 in distal parts of maturation ameloblasts. No gross changes were found in the treated mice, either in cell proliferation in the dental epithelium at the cervical loop or in the immunostaining pattern for NKCC1 in (non-ameloblastic) dental epithelium. The salivary glands in the treated mice contained strongly reduced immunostaining for NKCC1 in the basolateral membranes of acinar cells. DISCUSSION/CONCLUSIONS: Based on the reduction of claudin-1 immunostaining in ameloblasts, TMZ/VLP may potentially influence forming enamel by changes in the structure of TJs structures in maturation ameloblasts, structures that are crucial for the selective passage of ions through the intercellular space between neighboring ameloblasts. The strongly reduced basolateral NKCC1 staining seen in fully-grown salivary glands of TMZ/VLP-treated mice suggests that TMZ/VLF could also influence ion transport in adult saliva by the salivary gland epithelium. This may cause treated children to be more susceptible to caries.


Subject(s)
Models, Theoretical , Odontogenesis , Animals , Benzimidazoles , Claudin-1/genetics , Mice , Temozolomide/pharmacology
18.
Front Bioeng Biotechnol ; 10: 890882, 2022.
Article in English | MEDLINE | ID: mdl-35800329

ABSTRACT

The transcriptional regulation of induced pluripotent stem cells (iPSCs) holds promise for their directed differentiation into ameloblasts, which are usually lost after tooth eruption. Ameloblast differentiation is regulated by multiple signaling molecules, including bone morphogenetic proteins (BMPs). Epiprofin (Epfn), a transcription factor, is expressed in the dental epithelium, and epithelial Epfn overexpression results in ectopic ameloblast differentiation and enamel formation in mouse incisor, a striking phenotype resembling that of mice with deletion of follistatin (a BMP inhibitor). However, it remains unknown whether and how Epfn transcriptional activation promotes ameloblast induction from mouse iPSCs. Here, we generated doxycycline-inducible Epfn-expressing mouse iPSCs (Epfn-iPSCs). Ameloblasts, which are characterized by positive staining for keratin 14 and amelogenin and alizarin red S staining, were successfully derived from Epfn-iPSCs based on a stage-specific induction protocol, which involved the induction of the surface ectoderm, dental epithelial cells, and ameloblasts at stages 1, 2, and 3, respectively. Epfn activation by doxycycline at stages 2 and/or 3 decreased cell proliferation and promoted ameloblast differentiation, along with the upregulation of p-Smad1/5/8, a key regulator of the BMP-Smad signaling pathway. Gene analysis of the BMP-Smad signaling pathway-associated molecules revealed that Epfn activation decreased follistatin expression at stage 2, but increased BMP2/4/7 expression at stage 3. Perturbations in the ameloblast differentiation process were observed when the BMP-Smad signaling pathway was inhibited by a BMP receptor inhibitor (LDN-193189). Simultaneous LDN-193189 treatment and Epfn activation largely reversed the perturbations in ameloblast induction, with partial recovery of p-Smad1/5/8 expression, suggesting that Epfn activation promotes ameloblast induction from mouse iPSCs partially by upregulating BMP-Smad activity. These results reveal the potential regulatory networks between Epfn and the BMP-Smad pathway and suggest that Epfn is a promising target for inducing the differentiation of ameloblasts, which can be used in enamel and tooth regeneration.

19.
Front Genet ; 13: 788259, 2022.
Article in English | MEDLINE | ID: mdl-35401675

ABSTRACT

Amelogenesis imperfecta is a congenital disorder within a heterogeneous group of conditions characterized by enamel hypoplasia. Patients suffer from early tooth loss, social embarrassment, eating difficulties, and pain due to an abnormally thin, soft, fragile, and discolored enamel with poor aesthetics and functionality. The etiology of amelogenesis imperfecta is complicated by genetic interactions. To identify mouse amelogenesis imperfecta-related genes (mAIGenes) and their respective phenotypes, we conducted a systematic literature review and database search and found and curated 70 mAIGenes across all of the databases. Our pathway enrichment analysis indicated that these genes were enriched in tooth development-associated pathways, forming four distinct groups. To explore how these genes are regulated and affect the phenotype, we predicted microRNA (miRNA)-gene interaction pairs using our bioinformatics pipeline. Our miRNA regulatory network analysis pinpointed that miR-16-5p, miR-27b-3p, and miR-23a/b-3p were hub miRNAs. The function of these hub miRNAs was evaluated through ameloblast differentiation assays with/without the candidate miRNA mimics using cultured mouse ameloblast cells. Our results revealed that overexpression of miR-16-5p and miR-27b-3p, but not miR-23a/b-3p, significantly inhibited ameloblast differentiation through regulation of mAIGenes. Thus, our study shows that miR-16-5p and miR-27b-3p are candidate pathogenic miRNAs for amelogenesis imperfecta.

20.
J Biol Chem ; 298(5): 101807, 2022 05.
Article in English | MEDLINE | ID: mdl-35271849

ABSTRACT

Amel, the gene encoding the amelogenin protein involved in enamel formation, is highly alternatively spliced. When exon4 is excised, it can form a mature miRNA (miR-exon4) that has previously been suggested to indirectly regulate expression of the Runt-related transcription factor 2 (Runx2) involved in bone development in ameloblasts and osteoblasts. However, the precise mechanism of this regulation is unclear. In this study, we aimed to identify direct targets of miR-exon4. The transcription factor family nuclear factor I/A (NFI/A) is known to negatively regulate expression of Runx2 and is among the most highly predicted direct targets of miR-exon4 that link to Runx2. Immunostaining detected NFI/A in osteoblasts and ameloblasts in vivo, and reporter assays confirmed direct interaction of the Nfia 3'-UTR and miR-exon4. In addition, silencing of Nfia in MC3T3-E1-M14 osteoblasts resulted in subsequent downregulation of Runx2. In a monoclonal subclone (mi2) of MC3T3-E1 cells wherein mature miR-exon4 was functionally inhibited, we observed significantly downregulated Runx2 expression. We showed that NFI/A was significantly upregulated in mi2 cells at both mRNA and protein levels. Furthermore, quantitative proteomics and pathway analysis of gene expression in mi2 cells suggested that miR-exon4 could directly target Prkch (protein kinase C-eta), possibly leading to RUNX2 regulation through mechanistic target of rapamycin kinase activation. Reporter assays also confirmed the direct interaction of miR-exon4 and the 3'-UTR of Prkch, and Western blot analysis confirmed significantly upregulated mechanistic target of rapamycin kinase phosphorylation in mi2 cells. Taken together, we conclude that Nfia and Prkch expression negatively correlates with miR-exon4-mediated Runx2 regulation in vivo and in vitro, suggesting miR-exon4 directly targets Nfia and Prkch to regulate Runx2.


Subject(s)
Amelogenin/genetics , Core Binding Factor Alpha 1 Subunit/genetics , MicroRNAs , NFI Transcription Factors/metabolism , Protein Kinase C/metabolism , 3' Untranslated Regions , Animals , Cell Differentiation , Cell Line , Core Binding Factor Alpha 1 Subunit/metabolism , Exons , Gene Expression Regulation , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , NFI Transcription Factors/genetics , Osteoblasts/metabolism , Osteogenesis/physiology , Sirolimus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...