Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Biochimie ; 197: 19-37, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35077806

ABSTRACT

Amphibians secrete a complex array of molecules that shape their interactions with coinhabiting microorganisms and macroscopic predators. Glycans are a rapidly evolving and complex class of biomolecules implicated in intrinsic and extrinsic recognition events. Despite the numerous studies aiming at the biochemical characterization of anuran skin secretions, little is known about protein-linked oligosaccharides, their synthesis pathways, and their homing secreted glycoproteins. In the present report, LC-MS/MS was used to investigate the diversity of N- and O-linked oligosaccharides in the skin secretion of two South American frogs, Pithecopus azureus and Boana raniceps. Additionally, the enzymes responsible for glycan synthesis pathways were evaluated based on their skin tissue transcriptome. Our analyses allowed the annotation of various N- and O-glycan structures commonly found in vertebrate proteins. Paucimannosidic glycans were abundant in the skin secretion of both amphibians; however, hybrid and complex N-glycan structures were detected only in B. raniceps. A good correlation between the structures discovered in glycomic analyses and transcripts encoding enzymes necessary for their synthesis was obtained. Some transcripts such as those of MAN1A2, FUT8, and ST6GALNAC were found solely in B. raniceps. Finally, secreted N- and O- linked glycoproteins were predicted from the transcriptomic data, indicating that proteases and protease inhibitors are putative sources of the glycans described herein. Overall, our results show the presence of oligosaccharides in amphibians skin secretions and suggest that their diversity is species-specific, paving the way for novel perspectives involving amphibian evolution and ecology.


Subject(s)
Glycoproteins , Tandem Mass Spectrometry , Animals , Anura/metabolism , Chromatography, Liquid , Glycoproteins/metabolism , Glycosylation , Oligosaccharides/chemistry , Polysaccharides/metabolism , Tandem Mass Spectrometry/methods
2.
Biology (Basel) ; 9(8)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781587

ABSTRACT

Antimicrobial peptides (AMPs) are a class of molecules that play an essential role in innate immune regulation. The Brevinin-1 family are AMPs that show strong pharmacological and antimicrobial potential. A novel peptide, B1A, was designed based on the primary structure of brevinin-1PLb and brevinin-1PLc. Subsequently, a synthesised replicate was subjected to a series of bioassays and was found to display antimicrobial activity. However, it also displayed high levels of haemolysis in a horse red blood cell haemolytic assay, suggesting potential toxicity. Therefore, we rationally designed a number of B1A analogues with aim of retaining antimicrobial activity, lowering toxicity, and to explore the structure-activity relationship of its N-terminus. B1A and its analogues still retained the "Rana Box" and the FLP-motif, which is a feature of this subfamily. However, the introduction of Lys and Trp residues into the peptide sequences revealed that antimicrobial activity of these analogues remained unchanged once the hydrophobicity and the charge reached the threshold. Hence, the idea that the hydrophobicity saturation in different situations is related to antimicrobial activity can be understood via the structure-activity relationship. Meanwhile, it could also be the starting point for the generation of peptides with specific antimicrobial activity.

3.
Biology (Basel) ; 9(7)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630734

ABSTRACT

Amphibian skin secretions are remarkable sources of novel bioactive peptides. Among these, antimicrobial peptides have demonstrated an outstanding efficacy in killing microorganisms via a general membranolytic mechanism, which may offer the prospect of solving specific target-driven antibiotic resistance. Here, the discovery of a novel defensive peptide is described from the skin secretion of the African frog, Kassina senegalensis. Named kassinatuerin-3, it was identified through a combination of "shot-gun" cloning and MS/MS fragmentation sequencing. Subsequently, a synthetic replicate was subjected to biofunctional evaluation. The results indicated that kassinatuerin-3 possessed antimicrobial activity against Gram-positive bacteria but no effect against Gram-negative bacteria. Additionally, it was active in biofilm eradication on S. aureus and MRSA and in the antiproliferation of selected cancer cell lines. Moreover, it had a very mild hemolytic effect, which demonstrated a high therapeutic index for kassinatuerin-3. Collectively, although kassinatuerin-3 did not demonstrate remarkable bioactivities compared with other natural or synthetic antimicrobial peptides (AMPs), it offered a new insight into the design of antimicrobial derivatives.

4.
J Proteomics ; 209: 103525, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31526902

ABSTRACT

Amphibians display a toxic secretion that works as chemical defenses against predators and/or microorganisms that is stored in specialized glands located in the tegument. For some animals, such glands have accumulated in specific regions of the body and formed prominent structures known as macroglands. The Bufonidae family displays conspicuous macroglands in a post-orbital position, termed parotoids, which secretions are known to be extremely viscous and rich in alkaloids and steroids. Few proteins have been described in this material, though. Mainly, because of the difficulties to handle such biological matrix. In this context, we have performed a proteomic study on the parotoid macrogland secretion of the Asian bufonid Duttaphrynus melanostictus. By employing the Ion-Exchange (IEx)-batch chromatography (anionic, cationic and both) we obtained six fractions - bound and unbound - that were submitted to an in solution-trypsin digestion followed by LC-MS/MS. Proteins related to: antioxidant activity, binding processes (carbohydrate/lipid/protein), energy metabolism, hydrolases, lipid metabolism and membrane traffic were identified. Moreover, IEx was able to preserve the biological activity of the retrieved proteins (peptidasic). The current study increases the knowledge on the proteins present in the bufonids parotoid macrogland secretion, providing a better understanding of the physiological role played by such molecules. SIGNIFICANCE: The current approach allowed a detailed proteomic analysis of the several proteins synthesized in the D. melanostictus parotoid macrogland (Bufonidae) that are secreted into the skins, but embedded within a complex viscous biological matrix. Moreover, our results aim to increase the knowledge on the biological role played by such proteins at the skin.


Subject(s)
Bodily Secretions/chemistry , Bufonidae , Proteomics/methods , Skin/metabolism , Animals , Chromatography, Ion Exchange/methods , Proteins/analysis , Specimen Handling
5.
Article in English | MEDLINE | ID: mdl-31467513

ABSTRACT

BACKGROUND: Bufonid parotoid macrogland secretion contains several low molecular mass molecules, such as alkaloids and steroids. Nevertheless, its protein content is poorly understood. Herein, we applied a sample preparation methodology that allows the analysis of viscous matrices in order to examine its proteins. METHODS: Duttaphrynus melanostictus parotoid macrogland secretion was submitted to ion-exchange batch sample preparation, yielding two fractions: salt-displaced fraction and acid-displaced fraction. Each sample was then fractionated by anionic-exchange chromatography, followed by in-solution proteomic analysis. RESULTS: Forty-two proteins could be identified, such as acyl-CoA-binding protein, alcohol dehydrogenase, calmodulin, galectin and histone. Moreover, de novo analyses yielded 153 peptides, whereas BLAST analyses corroborated some of the proteomic-identified proteins. Furthermore, the de novo peptide analyses indicate the presence of proteins related to apoptosis, cellular structure, catalysis and transport processes. CONCLUSIONS: Proper sample preparation allowed the proteomic and de novo identification of different proteins in the D. melanostictus parotoid macrogland secretion. These results may increase the knowledge about the universe of molecules that compose amphibian skin secretion, as well as to understand their biological/physiological role in the granular gland.

6.
Biochem Biophys Res Commun ; 509(3): 664-673, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30612735

ABSTRACT

Skin secretions are known as a highly-complex mixture of abundant and diverse bioactive molecules and its study has attracted increasing attention over recent years. Phylloseptin is a unique family of antimicrobial peptides which have been only isolated from frogs of the Phyllomedusinae subfamily. Here, three novel peptide precursors were successfully cloned from a cDNA library, which was constructed from the skin secretion of Phyllomedusa burmeisteri, as pair of primers (one nested universal primer and a designed degenerate sense primer) were employed for "shotgun" cloning. The encoded mature peptides were validated by MS/MS sequencing, and subsequently termed as Phylloseptin-PBa1, -PBa2 and -PBa3. Phylloseptin-PBa1 and -PBa2 were demonstrated to possess potent antimicrobial activities against Gram-positive bacteria and yeast, as well as broad-spectrum anticancer activities, while they possess varying haemolytic activity at the effective concentration. In contrast, Phylloseptin-PBa3 was found to exhibit a strong haemolytic activity even though it was only found to possess a weak antimicrobial activity and inconspicuous anticancer activity.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antineoplastic Agents/pharmacology , Anura , Animals , Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Antineoplastic Agents/chemistry , Anura/metabolism , Candida/drug effects , Candidiasis/drug therapy , Cell Line, Tumor , Gram-Positive Bacteria/drug effects , Gram-Positive Bacterial Infections/drug therapy , Humans , Neoplasms/drug therapy , Skin/chemistry , Skin/metabolism
7.
J. venom. anim. toxins incl. trop. dis ; 25: e20190029, 2019. tab
Article in English | LILACS, VETINDEX | ID: biblio-1020025

ABSTRACT

Bufonid parotoid macrogland secretion contains several low molecular mass molecules, such as alkaloids and steroids. Nevertheless, its protein content is poorly understood. Herein, we applied a sample preparation methodology that allows the analysis of viscous matrices in order to examine its proteins. Methods: Duttaphrynus melanostictus parotoid macrogland secretion was submitted to ion-exchange batch sample preparation, yielding two fractions: salt-displaced fraction and acid-displaced fraction. Each sample was then fractionated by anionic-exchange chromatography, followed by in-solution proteomic analysis. Results: Forty-two proteins could be identified, such as acyl-CoA-binding protein, alcohol dehydrogenase, calmodulin, galectin and histone. Moreover, de novo analyses yielded 153 peptides, whereas BLAST analyses corroborated some of the proteomic-identified proteins. Furthermore, the de novo peptide analyses indicate the presence of proteins related to apoptosis, cellular structure, catalysis and transport processes. Conclusions: Proper sample preparation allowed the proteomic and de novo identification of different proteins in the D. melanostictus parotoid macrogland secretion. These results may increase the knowledge about the universe of molecules that compose amphibian skin secretion, as well as to understand their biological/physiological role in the granular gland.(AU)


Subject(s)
Animals , Steroids , Bufonidae/parasitology , Proteomics , Alkaloids
8.
J proteomics, v. 209, 103525, oct. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2853

ABSTRACT

Amphibians display a toxic secretion that works as chemical defenses against predators and/or microorganismsthat is stored in specialized glands located in the tegument. For some animals, such glands have accumulated inspecific regions of the body and formed prominent structures known as macroglands. The Bufonidae familydisplays conspicuous macroglands in a post-orbital position, termed parotoids, which secretions are known to beextremely viscous and rich in alkaloids and steroids. Few proteins have been described in this material, though.Mainly, because of the difficulties to handle such biological matrix. In this context, we have performed a pro-teomic study on the parotoid macrogland secretion of the Asian bufonidDuttaphrynus melanostictus. By em-ploying the Ion-Exchange (IEx)-batch chromatography (anionic, cationic and both) we obtained six fractions -bound and unbound–that were submitted to an in solution-trypsin digestion followed by LC-MS/MS. Proteinsrelated to: antioxidant activity, binding processes (carbohydrate/lipid/protein), energy metabolism, hydrolases,lipid metabolism and membrane traffic were identified. Moreover, IEx was able to preserve the biological ac-tivity of the retrieved proteins (peptidasic). The current study increases the knowledge on the proteins present inthe bufonids parotoid macrogland secretion, providing a better understanding of the physiological role played bysuch molecules.Significance:The current approach allowed a detailed proteomic analysis of the several proteins synthesized intheD. melanostictusparotoid macrogland (Bufonidae) that are secreted into the skins, but embedded within acomplex viscous biological matrix. Moreover, our results aim to increase the knowledge on the biological roleplayed by such proteins at the skin

9.
J Venom Anim Toxins Incl Trop Dis, v. 25, e20190029, ago. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2826

ABSTRACT

Background: Bufonid parotoid macrogland secretion contains several low molecular mass molecules, such as alkaloids and steroids. Nevertheless, its protein content is poorly understood. Herein, we applied a sample preparation methodology that allows the analysis of viscous matrices in order to examine its proteins. Methods: Duttaphrynus melanostictus parotoid macrogland secretion was submitted to ion-exchange batch sample preparation, yielding two fractions: salt-displaced fraction and acid-displaced fraction. Each sample was then fractionated by anionic-exchange chromatography, followed by in-solution proteomic analysis. Results: Forty-two proteins could be identified, such as acyl-CoA-binding protein, alcohol dehydrogenase, calmodulin, galectin and histone. Moreover, de novo analyses yielded 153 peptides, whereas BLAST analyses corroborated some of the proteomic-identified proteins. Furthermore, the de novo peptide analyses indicate the presence of proteins related to apoptosis, cellular structure, catalysis and transport processes. Conclusions: Proper sample preparation allowed the proteomic and de novo identification of different proteins in the D. melanostictus parotoid macrogland secretion. These results may increase the knowledge about the universe of molecules that compose amphibian skin secretion, as well as to understand their biological/physiological role in the granular gland.

10.
Protein J ; 37(4): 380-389, 2018 08.
Article in English | MEDLINE | ID: mdl-29948543

ABSTRACT

A crucial step in scientific analysis can be sample preparation, and its importance increases in the same rate as the sensitivity of the following employed/desired analytical technique does. The need to analyze complex, viscous matrices is not new, and diverse approaches have been employed, with different success rates depending on the intended molecules. Solid-phase extraction, for example, has been successfully used in sample preparation for organic molecules and peptides. However, due to the usual methodological conditions, biologically active proteins are not successfully retrieved by this technique, resulting in a low rate of protein identification reported for the viscous amphibian skin secretion. Here we describe an ion-exchange batch processing sample preparation technique that allows viscous or adhesive materials (as some amphibian skin secretions) to be further processed by classical liquid chromatography approaches. According to our protocol, samples were allowed to equilibrate with a specific resin that was washed with appropriated buffers in order to yield the soluble protein fraction. In order to show the efficiency of our methodology, we have compared our results to classically prepared skin secretion, i.e., by means of filtration and centrifugation. After batch sample preparation, we were able to obtain reproductive resolved protein chromatographic profiles, as revealed by SDS-PAGE, and retrieve some biological activities, namely, hydrolases belonging to serine peptidase family. Not only that, but also the unbound fraction was rich in low molecular mass molecules, such as alkaloids and steroids, making this sample preparation technique also suitable for the enrichment of such molecules.


Subject(s)
Amphibian Proteins/isolation & purification , Amphibian Proteins/metabolism , Bufonidae/metabolism , Chromatography, Ion Exchange/methods , Hydrolases/metabolism , Skin/metabolism , Animals
11.
Biochem Biophys Res Commun ; 497(4): 943-949, 2018 03 18.
Article in English | MEDLINE | ID: mdl-29366784

ABSTRACT

Rana amurensis is important in Chinese medicine as its skin secretions contain abundant bioactive peptides. Here, we have identified the antimicrobial peptide Amurin-2 and three highly-conserved variants, Amurin-2a, Amurin-2b and Amurin-2c through a combination of molecular cloning and MS/MS fragmentation sequencing. Synthetic replicates of these peptides demonstrate potent antimicrobial activity against S. aureus, whilst some have activity against C.albicans and even resistant bacterial MRSA. Furthermore, two Lys-analogues (K4-Amurin-2 and K11-Amurin-2) were designed to improve the bioactive function and the antimicrobial activity of K4-Amurin-2 against E.coli was enhanced distinctly. In addition, the two modified peptides also showed more potent activity against S. aureus, C. albicans and MRSA strains. Meanwhile, these peptides showed inhibitory effect on the cell viability of several cancer cells. As a result, these structural and functional studies of Amurin-2 variants and analogues could provide insights for future antimicrobial peptide design.


Subject(s)
Amphibian Proteins/genetics , Antimicrobial Cationic Peptides/chemical synthesis , Ranidae/genetics , Skin/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Candida albicans/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cloning, Molecular , Drug Design , Genetic Variation , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Staphylococcus aureus/drug effects , Tandem Mass Spectrometry
12.
Protein J, v. 37, n. 4, p. 380-89, ago. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2539

ABSTRACT

A crucial step in scientific analysis can be sample preparation, and its importance increases in the same rate as the sensitivity of the following employed/desired analytical technique does. The need to analyze complex, viscous matrices is not new, and diverse approaches have been employed, with different success rates depending on the intended molecules. Solid-phase extraction, for example, has been successfully used in sample preparation for organic molecules and peptides. However, due to the usual methodological conditions, biologically active proteins are not successfully retrieved by this technique, resulting in a low rate of protein identification reported for the viscous amphibian skin secretion. Here we describe an ion-exchange batch processing sample preparation technique that allows viscous or adhesive materials (as some amphibian skin secretions) to be further processed by classical liquid chromatography approaches. According to our protocol, samples were allowed to equilibrate with a specific resin that was washed with appropriated buffers in order to yield the soluble protein fraction. In order to show the efficiency of our methodology, we have compared our results to classically prepared skin secretion, i.e., by means of filtration and centrifugation. After batch sample preparation, we were able to obtain reproductive resolved protein chromatographic profiles, as revealed by SDS-PAGE, and retrieve some biological activities, namely, hydrolases belonging to serine peptidase family. Not only that, but also the unbound fraction was rich in low molecular mass molecules, such as alkaloids and steroids, making this sample preparation technique also suitable for the enrichment of such molecules.

13.
Molecules ; 22(10)2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29064402

ABSTRACT

The dermaseptin peptides, mainly derived from the skin secretions of Hylidae frogs, belong to a superfamily of antimicrobial peptides and exhibit diverse antimicrobial and anticancer activities with low cytotoxicity. Here, we reported a novel dermaseptin peptide, from the South American orange-legged leaf frogs, Pithecopus (Phyllomedusa) hypochondrialis, processing the shortest peptide length, namely Dermaseptin-PH. The complementary DNA (cDNA) encoding biosynthetic precursor of Dermaseptin-PH was initially identified by the rapid amplification of cDNA ends PCR (RACE-PCR) technique from the skin secretion. The predicted primary structure was confirmed by a combination of reverse-phase high performance liquid chromatography (RP-HPLC) and MS/MS fragmentation from the skin secretion. Chemically-synthetic Dermaseptin-PH was investigated using a range of bioactivity assessment assays to evaluate the biological activities and cytotoxicity of Dermaseptin-PH. Dermaseptin-PH inhibited the growth of Gram-negative bacteria, Gram-positive bacteria, and pathogenic yeast Candidaalbicans. In addition, Dermaseptin-PH showed a broad-spectrum of anticancer activities against several cancer cell lines including MCF-7, H157, U251MG, MDA-MB-435S, and PC-3. The potent antimicrobial and anticancer activities of Dermaseptin-PH make it a promising candidate in the discovery of new drugs for clinical applications, and the relatively short sequence of Dermaseptin-PH can provide new insight for the research and structural modification of new peptide drugs.


Subject(s)
Amphibian Proteins/chemistry , Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Antineoplastic Agents/chemistry , Amphibian Proteins/pharmacology , Animals , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antineoplastic Agents/pharmacology , Anura , Cell Line, Tumor , Cell Survival/drug effects , Drug Discovery/methods , Humans , Microbial Sensitivity Tests , Skin/chemistry
14.
Front Microbiol ; 8: 628, 2017.
Article in English | MEDLINE | ID: mdl-28469603

ABSTRACT

Antimicrobial peptides (AMPs) in the skin secretions of amphibians are fundamental components of a unique defense system that has evolved to protect these hosts from microbial invasion. Medusins constitute a recently-discovered AMP family from phyllomedusine leaf frog skin and exhibit highly-conserved structural characteristics. Here, we report a novel medusin, medusin-PT, from the skin secretion of the Tarsier Leaf Frog, Phyllomedusa tarsius. The mature peptide was initially identified from its cloned biosynthetic precursor-encoding cDNA as obtained by the rapid amplification of cDNA ends (RACE) method. Reverse-phase HPLC and tandem mass spectrometry confirmed both the presence of medusin-PT in the skin secretion and its primary structure. In a range of bioassays, medusin-PT exhibited antimicrobial activity against only the Gram-positive bacterium Staphylococcus aureus at 64 µg/ml. However, after directed changes to enhance the cationicity and amphipathicity of the peptide structure, three analog showed more potent antimicrobial activity against several additional bacteria including the antibiotic-resistant bacterium MRSA. In addition, these analog exhibited activity against microbial biofilm (minimum biofilm inhibitory and eradication concentrations of 32 µg/ml and over 64 µg/ml, respectively). These data provide evidence that medusins might be promising candidates as novel antibiotic leads and that the targeted modification of a natural AMP can both improve its efficacy so as to provide new insights into antibiotic design and development.

15.
Biomed Pharmacother ; 80: 298-303, 2016 May.
Article in English | MEDLINE | ID: mdl-27133069

ABSTRACT

Toad glandular secretions and skin extractions contain numerous natural agents which may provide unique resources for novel drug development. Especially the skin-parotoid gland secretions of toads from genus Bufo contain as many as 86 different types of active compounds, each with the potential of becoming a potent drug. In the present study, crude skin-parotoid gland secretions from Bufo bufo, Bufo verrucosissimus and Bufotes variabilis from Turkey were screened against various cancer cells together with normal cells using MTT assay. Furthermore, the antimicrobial properties of skin secretions were tested on selected bacterial and fungal species for assessing the possible medical applications. Antimicrobial activity of skin secretions was studied by determining minimal inhibitory concentration (MIC) in broth dilution method. Hemolytic activity of each skin-secretion was also estimated for evaluating pharmaceutical potential. Both skin-parotoid gland secretions showed high cytotoxic effect on all cancerous and non-cancerous cell lines with IC50 values varying between <0.1µg/ml and 6.02µg/ml. MIC results of antimicrobial activity tests were found to be between 3.9µg/ml and 250µg/ml. No hemolytic activities on rabbit red blood cells at concentrations between 0.5µg/ml and 50µg/ml were observed. In conclusion, skin-parotoid secretions of bufonid toads might be remarkable candidates for anti-cancer and antimicrobial agents without hemolytic activities.


Subject(s)
Anti-Infective Agents/pharmacology , Bufonidae/metabolism , Parotid Gland/metabolism , Skin/metabolism , Animals , Bufo bufo , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Hemolysis/drug effects , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Proteins/analysis , Rabbits , Turkey
16.
Glycobiology ; 25(7): 792-803, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25804418

ABSTRACT

Xenopus laevis (African clawed frog) has two types of proto-type galectins that are similar to mammalian galectin-1 in amino acid sequence. One type, comprising xgalectin-Ia and -Ib, is regarded as being equivalent to galectin-1, and the other type, comprising xgalectin-Va and -Vb, is expected to be a unique galectin subgroup. The latter is considerably abundant in frog skin; however, its biological function remains unclear. We determined the crystal structures of two proto-type galectins, xgalectin-Ib and -Va. The structures showed that both galectins formed a mammalian galectin-1-like homodimer, and furthermore, xgalectin-Va formed a homotetramer. This tetramer structure has not been reported for other galectins. Gel filtration and other experiments indicated that xgalectin-Va was in a dimer-tetramer equilibrium in solution, and lactose binding enhanced the tetramer formation. The residues involved in the dimer-dimer association were conserved in xgalectin-Va and -Vb, and one of the Xenopus (Silurana) tropicalis proto-type galectins, but not in xgalectin-Ia and -Ib, and other galectin-1-equivalent proteins. Xgalectin-Va preferred Galß1-3GalNAc and not Galß1-4GlcNAc, while xgalectin-Ib preferred Galß1-4GlcNAc as well as human galectin-1. Xgalectin-Va/Vb would have diverged from the galectin-1 group with accompanying acquisition of the higher oligomer formation and altered ligand selectivity.


Subject(s)
Galectins/metabolism , Skin/metabolism , Xenopus laevis/metabolism , Amino Acid Sequence , Animals , Carbohydrate Conformation , Crystallography, X-Ray , Galectins/chemistry , Models, Molecular
17.
Biochimie ; 97: 144-51, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24161537

ABSTRACT

HPLC elution profile and MALDI TOF MS analysis of electro-stimulated skin secretion of the Indian Ranid frog Clinotarsus curtipes of the Western Ghats confirmed the presence of multiple peptides. Peptides eluted out of the C18 column at higher hydrophobic solvent region showed antibacterial activity against diverse bacterial strains, including the clinical isolates of V. cholerae and methicillin resistant Staphylococcus aureus (MRSA). Peptidomic analysis of the most potent chromatographic effluent fraction identified five novel peptide amides having sequence homology with brevinin family. These peptides are named as brevinin1CTcu1 (B1CTcu1) to brevinin1CTcu5 (B1CTcu5). Peptide B1CTcu1 is non-haemolytic while the others are haemolytic in nature but all elicited potential antibacterial activity. B1CTcu5 is a twenty-one residue peptide amide having proline hinge region in the middle and the typical C-terminal intramolecular disulfide-bridged hepta peptide domain (Rana box) that is present in most of the brevinin peptides. Analysis of their killing kinetics with E. coli and S. aureus and the ability to induce membrane depolarization proved that these are two independent events. These novel multifunctional peptides play an important role to protect C. curtipes from invading pathogenic microorganisms present in the environment.


Subject(s)
Amphibian Proteins/chemistry , Antimicrobial Cationic Peptides/chemistry , Skin/metabolism , Amino Acid Sequence , Amphibian Proteins/isolation & purification , Amphibian Proteins/pharmacology , Animals , Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/pharmacology , Chromatography, High Pressure Liquid , Electric Stimulation , Erythrocytes/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Hemolysis/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Microbial Sensitivity Tests , Molecular Sequence Data , Rabbits , Ranidae , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Vibrio cholerae/drug effects , Vibrio cholerae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...