ABSTRACT
Horned Frogs of the family Ceratophryidae are conspicuous anurans represented by three endemic South American genera. Most ceratophryids inhabit semiarid environments, but three species of Ceratophrys occupy tropical or temperate humid areas. Several morphological and behavioral characters of larvae and adults are conserved across the family. Based on examination of specimens and accounts in the literature, the embryonic development of C. ornata, C. cranwelli, and the monotypic genus Chacophrys are described and compared with that of species of Lepidobatrachus. Ceratophryid embryos share a suite of morphological features and heterochronic shifts during development. Most features, such as gill structure, ciliation, early hatching, and precocious differentiation of the gut and hind limbs, are shared by all the species regardless the differences in the habitats that occupy. This is consistent with previous observations of some adult characters, and likely supports the hypothesis of an early diversification of ceratophryids in semiarid environments. Other embryonic features, such as the morphology and ontogeny of the oral disc and digestive tract, are correlated with larval feeding habits and vary within the family. The evolutionary and ecological significance of some conserved characters (e.g., gastrulation pattern, Type-A adhesive glands) and other taxon-specific features (e.g., nasal appendix) remain to be explored in the group.
Subject(s)
Anura/embryology , Biological Evolution , Embryo, Nonmammalian/anatomy & histology , Animals , Anura/anatomy & histology , Cilia/physiology , Embryonic Development , Gills/anatomy & histology , Gills/embryology , Larva/anatomy & histologyABSTRACT
Karyotype data within a phylogenetic framework and molecular dating were used to examine chromosome evolution in Nierembergia and to infer how geological or climatic processes have influenced in the diversification of this solanaceous genus native to South America and Mexico. Despite the numerous studies comparing karyotype features across species, including the use of molecular phylogenies, to date relatively few studies have used formal comparative methods to elucidate chromosomal evolution, especially to reconstruct the whole ancestral karyotypes. Here, we mapped on the Nierembergia phylogeny one complete set of chromosomal data obtained by conventional staining, AgNOR-, C- and fluorescent chromosome banding, and fluorescent in situ hybridisation. In addition, we used a Bayesian molecular relaxed clock to estimate divergence times between species. Nierembergia showed two major divergent clades: a mountainous species group with symmetrical karyotypes, large chromosomes, only one nucleolar organising region (NOR) and without centromeric heterochromatin, and a lowland species group with asymmetrical karyotypes, small chromosomes, two chromosomes pairs with NORs and centromeric heterochromatin bands. Molecular dating on the DNA phylogeny revealed that both groups diverged during Late Miocene, when Atlantic marine ingressions, called the 'Paranense Sea', probably forced the ancestors of these species to find refuge in unflooded areas for about 2 Myr. This split agrees with an increased asymmetry and heterochromatin amount, and decrease in karyotype length and chromosome size. Thus, when the two Nierembergia ancestral lineages were isolated, major divergences occurred in chromosomal evolution, and then each lineage underwent speciation separately, with relatively minor changes in chromosomal characteristics.