Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.419
Filter
1.
Vitam Horm ; 126: 97-111, 2024.
Article in English | MEDLINE | ID: mdl-39029978

ABSTRACT

Sonic hedgehog (Shh) is a secreted glycopeptide belonging to the hedgehog family that is essential for morphogenesis during embryonic development. The Shh signal is mediated by two membrane proteins, Patched-1 (Ptch-1) and Smoothened (Smo), following the activation of transcription factors such as Gli. Shh decreases the permeability of the blood-brain barrier (BBB) and plays a key role in its function. In the damaged brain, BBB function is remarkably disrupted. The BBB disruption causes brain edema and neuroinflammation resulting from the extravasation of serum components and the infiltration of inflammatory cells into the cerebral parenchyma. Multiple studies have suggested that astrocyte is a source of Shh and that astrocytic Shh production is increased in the damaged brain. In various experimental animal models of acute brain injury, Shh or Shh signal activators alleviate BBB disruption by increasing tight junction proteins in endothelial cells. Furthermore, activation of astrocytic Shh signaling reduces reactive astrogliosis, neuroinflammation, and increases the production of vascular protective factors, which alleviates BBB disruption in the damaged brain. These findings suggest that astrocytic Shh and Shh signaling protect BBB function in the damaged brain and that target drugs for Shh signaling are expected to be novel therapeutic drugs for acute brain injuries.


Subject(s)
Astrocytes , Blood-Brain Barrier , Hedgehog Proteins , Signal Transduction , Hedgehog Proteins/metabolism , Blood-Brain Barrier/metabolism , Astrocytes/metabolism , Animals , Humans , Signal Transduction/physiology
2.
Ann Surg Oncol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981990

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAM), a major component of the tumor microenvironment, play key roles in tumor formation and progression; however, mechanisms underlying TAM-induced tumor progression are complex and not well known. We previously reported that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) functions as a tumor promoter in some cancer contexts. METHODS: We examined ANGPTL2 expression in paraffin-embedded tumor samples from resected specimens of 221 patients with esophageal cancer. Patients were subdivided into four groups based on immunohistochemistry scores described above: ANGPTL2-low/TAM-low, ANGPTL2-low/TAM-high, ANGPTL2-high/TAM-low, and ANGPTL2-high/TAM-high groups. Gene expression datasets of esophageal cancer cell lines were obtained from the cancer cell line encyclopedia public database. RESULTS: In this study, we demonstrate that TAM infiltration is associated with poor prognosis in patients with esophageal cancer whose tumor cells show relatively higher ANGPTL2 expression levels; however, TAM infiltration did not affect prognosis in patients with ANGPTL2-low-expressing esophageal cancer, suggesting that ANGPTL2 expression in esophageal cancer cells is required for TAM-induced tumor progression. Our analysis of public datasets indicates a potential positive correlation of ANGPTL2 expression levels with that of transforming growth factor (TGF)-ß, a TAM-activating factor, in esophageal cancer cell lines. CONCLUSION: We conclude that ANGPTL2 signaling in tumor cells supports TAM-induced tumor progression and contributes to poor prognosis in patients with esophageal cancer. These findings overall provide novel insight into pro-tumor ANGPTL2 functions and illustrate the essential role of cancer cell/TAM crosstalk in cancer progression.

3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000274

ABSTRACT

Understanding the molecular factors involved in the development of uterine myomas may result in the use of pharmacological drugs instead of aggressive surgical treatment. ANG1, CaSR, and FAK were examined in myoma and peripheral tissue samples taken from women after myoma surgery and in normal uterine muscle tissue samples taken from the control group. Tests were performed using tissue microarray immunohistochemistry. No statistically significant differences in ANG1 expression between the tissue of the myoma, the periphery, and the normal uterine muscle tissue of the control group were recorded. The CaSR value was reduced in the myoma and peripheral tissue and normal in the group of women without myomas. FAK expression was also lower in the myoma and periphery compared to the healthy uterine myometrium. Calcium supplementation could have an effect on stopping the growth of myomas.


Subject(s)
Focal Adhesion Kinase 1 , Leiomyoma , Receptors, Calcium-Sensing , Uterine Neoplasms , Humans , Female , Leiomyoma/metabolism , Leiomyoma/pathology , Leiomyoma/genetics , Receptors, Calcium-Sensing/metabolism , Receptors, Calcium-Sensing/genetics , Adult , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Uterine Neoplasms/genetics , Middle Aged , Myometrium/metabolism , Myometrium/pathology , Immunohistochemistry
4.
Oncol Rep ; 52(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-39027998

ABSTRACT

Following the publication of this article, an interested reader drew to the authors' attention that two pairs of protein bands featured in the western blots in Fig. 3A and 5D on p. 679 and 681 respectively appeared to be strikingly similar. After having re­examined their original data, the authors realized that Fig. 5D had been assembled incorrectly. The revised version of Fig. 5, now including the correct data for Fig. 5D, is shown on the next page. Note that the errors made in terms of assembling the data in Fig. 5 did not greatly affect either the results or the conclusions reported in this paper, and all the authors agree to the publication of this corrigendum. The authors regret that these errors went unnoticed prior to the publication of their article, are grateful to the Editor of Oncology Reports for allowing them this opportunity to publish this corrigendum. They also apologize to the readership for any inconvenience caused. [Oncology Reports  33: 675­684, 2015; DOI: 10.3892/or.2014.3653].

5.
Hellenic J Cardiol ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038608

ABSTRACT

BACKGROUND: Bicuspid aortic valve (BAV) is prone to promote the occurrence of left ventricular remodeling (LVR) which is associated with adverse clinical outcomes. Although the association between angiogenic activity and LVR has been established, pro-angiogenic cytokine features and potential biomarker candidates for LVR in BAV patients remain to be clarified. METHODS: From November 2018 to May 2019, BAV patients diagnosed by transthoracic echocardiography at our institution were included. LVR was diagnosed based on echocardiographic calculations of relative wall thickness (RWT) and left ventricular mass index (LVMI). A multiplex ELISA array was used to measure the plasma levels of 60 angiogenesis-related cytokines. RESULTS: Among 103 BAV patients, 71 were categorized into LVR group and 32 into normal LV geometry group. BAV patients with LVR demonstrated increased LVMI, elevated prevalence of moderate to severe aortic stenosis and aortic regurgitation, and decreased left ventricular ejection fraction (LVEF). Plasma level of Angiopoietin-1 was elevated in BAV patients with or without LVR compared to healthy controls (P = 0.001, P < 0.001, respectively) and was negatively correlated with RWT (r = -0.222, P = 0.027). Plasma level of Angiopoietin-2 was elevated in the LVR group (P = 0.001) compared to normal LV geometry group and was negatively correlated with LVEF (r = -0.330, P = 0.002). CONCLUSION: Decreased angiogenesis plays a crucial role in the occurrence and progression of LVR in BAV patients. Disturbance in the pro- and anti-angiogensis equilibrium in BAV patients with LVR may reflect the aggravation of endothelial injury and dysfunction.

6.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063066

ABSTRACT

Loss of the inner blood-retinal barrier (BRB) integrity is a main feature of ocular diseases such as diabetic macular edema. However, there is a lack of clarity on how inner BRB function is modulated within the diabetic retina. The current study examined whether eucalyptol inhibited inner BRB destruction and aberrant retinal angiogenesis in 33 mM glucose-exposed human retinal microvascular endothelial (RVE) cells and db/db mice. This study further examined the molecular mechanisms underlying endothelial dysfunction including retinal endoplasmic reticulum (ER) stress and angiopoietin (Ang)/Tie axis in conjunction with vascular endothelial growth factor (VEGF). Eucalyptol is a naturally occurring monoterpenoid and an achiral aromatic component of many plants including eucalyptus leaves. Nontoxic eucalyptol reduced the production of amyloid-ß (Aß) protein in glucose-loaded RVE cells and in diabetic mice. This natural compound blocked apoptosis of Aß-exposed RVE cells in diabetic mouse eyes by targeting ER stress via the inhibition of PERK-eIF2α-ATF4-CHOP signaling. Eucalyptol promoted activation of the Ang-1/Tie-2 pathway and dual inhibition of Ang-2/VEGF in Aß-exposed RVE cells and in diabetic eyes. Supply of eucalyptol reversed the induction of junction proteins in glucose/Aß-exposed RVE cells within the retina and reduced permeability. In addition, oral administration of eucalyptol reduced vascular leaks in diabetic retinal vessels. Taken together, these findings clearly show that eucalyptol inhibits glucose-induced Aß-mediated ER stress and manipulates Ang signaling in diabetic retinal vessels, which ultimately blocks abnormal angiogenesis and loss of inner BRB integrity. Therefore, eucalyptol provides new treatment strategies for diabetes-associated RVE defects through modulating diverse therapeutic targets including ER stress, Ang-1/Tie-2 signaling, and Ang-2/VEGF.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Endoplasmic Reticulum Stress , Eucalyptol , Signal Transduction , Animals , Endoplasmic Reticulum Stress/drug effects , Eucalyptol/pharmacology , Mice , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/pathology , Signal Transduction/drug effects , Humans , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Blood-Retinal Barrier/metabolism , Blood-Retinal Barrier/drug effects , Male , Apoptosis/drug effects , Angiopoietin-1/metabolism , Mice, Inbred C57BL , Retinal Vessels/metabolism , Retinal Vessels/drug effects , Retinal Vessels/pathology
7.
Front Neurosci ; 18: 1408205, 2024.
Article in English | MEDLINE | ID: mdl-39050669

ABSTRACT

Background: Vascular dementia (VaD) is a complex neurodegenerative disorder. We previously found that treatment of VaD in middle-aged male rats subjected to multiple microinfarction (MMI) with AV-001, a Tie2 receptor agonist, significantly improves cognitive function. Age and sex affect the development and response of VaD to therapeutic intervention. Thus, the present study investigated the therapeutic effect of AV-001 on VaD in aged female rats subjected to MMI. Methods: Female 18-month-old Wistar rats were subjected to MMI by injecting either 1,000 (low dose, LD-MMI) or 6,000 (high dose, HD-MMI) cholesterol crystals of size 70-100 µm into the right internal carotid artery. AV-001 (1 µg/Kg, i.p.) was administered once daily after MMI for 1 month, with treatment initiated 1 day after MMI. A battery of behavioral tests to examine sensorimotor and cognitive functions was performed at 21-28 days after MMI. All rats were sacrificed at 1 month after MMI. Results: Aged female rats subjected to LD-MMI exhibit severe neurological deficits, memory impairment, and significant white matter (WM) and oligodendrogenesis injury in the corpus callosum compared with control rats. HD-MMI in aged female rats induces significant anxiety- and depression-like behaviors, which were not detected in LD-MMI aged female rats. Also, HD-MMI induces significantly increased WM injury compared to LD-MMI. AV-001 treatment of LD-MMI and HD-MMI increases oligodendrogenesis, myelin and axon density in the corpus callosum and striatal WM bundles, promotes WM integrity and attenuates neurological and cognitive deficits. Additionally, both LD-MMI and HD-MMI rats exhibit a significant increase, while AV-001 significantly decreases the levels of inflammatory factors in the cerebrospinal fluid (CSF). Conclusion: MMI reduces oligodendrogenesis, and induces demyelination, axonal injury and WM injury, and causes memory impairment, while HD-MMI induces increased WM injury and further depression-like behaviors compared to LD-MMI rats. AV-001 has a therapeutic effect on aged female rats with MMI by reducing WM damage and improving neuro-cognitive outcomes.

8.
Article in English | MEDLINE | ID: mdl-39051116

ABSTRACT

BACKGROUND: In addition to their fundamental roles in preserving vascular integrity, platelets also contribute to tumor angiogenesis and metastasis. However, despite being a reservoir for angiogenic and metastatic cytokines, platelets also harbor negative regulators of tumor progression. Angpt1 (angiopoietin-1) is a cytokine essential for developmental angiogenesis that also protects against tumor cell metastasis through an undefined mechanism. Although activated platelets release Angpt1 from α-granules into circulation, the contributions of platelet Angpt1 to tumor growth, angiogenesis, and metastasis have not been investigated. METHODS: Using cytokine arrays and ELISAs, we first compared platelet Angpt1 levels in breast and melanoma mouse tumor models to tumor-free controls. We then assessed tumor growth and metastasis in mice lacking megakaryocyte and platelet Angpt1 (Angpt1Plt KO). The spontaneous metastasis of mammary-injected tumor cells to the lungs was quantified using RT-PCR. The lung colonization of intravenously injected tumor cells and tumor cell extravasation were determined using fluorescent microscopy and flow cytometry. RESULTS: Platelet Angpt1 is selectively upregulated in the PyMT (polyoma middle tumor antigen) breast cancer mouse model, and platelets are the principal source of Angpt1 in blood circulation. While primary tumor growth and angiogenesis were unaffected, Angpt1Plt KO mice had both increased spontaneous lung metastasis and tumor cell lung colonization following mammary or intravenous injection, respectively. Although platelet Angpt1 did not affect initial tumor cell entrapment in the lungs, Angpt1Plt KO mice had increased tumor cell retention and extravasation. Serum from Angpt1Plt KO mice increased endothelial permeability and reduced VE-cadherin expression at endothelial junctions compared with serum from control mice (Angpt1WT). CONCLUSIONS: Platelets provide an intravascular source of Angpt1 that restrains tumor metastasis by preserving the lung microvasculature to limit tumor cell extravasation.

9.
J Infect Dis ; 230(1): e60-e64, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052712

ABSTRACT

In 2018 there was a large yellow fever outbreak in São Paulo, Brazil, with a high fatality rate. Yellow fever virus can cause, among other symptoms, hemorrhage and disseminated intravascular coagulation, indicating a role for endothelial cells in disease pathogenesis. Here, we conducted a case-control study and measured markers related to endothelial damage in plasma and its association with mortality. We found that angiopoietin 2 is strongly associated with a fatal outcome and could serve as a predictive marker for mortality. This could be used to monitor severe cases and provide care to improve disease outcome.


Subject(s)
Angiopoietin-2 , Biomarkers , Yellow Fever , Yellow fever virus , Humans , Case-Control Studies , Yellow Fever/mortality , Yellow Fever/blood , Yellow Fever/virology , Male , Female , Middle Aged , Adult , Angiopoietin-2/blood , Biomarkers/blood , Brazil/epidemiology , Aged , Young Adult
10.
Cancer Commun (Lond) ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958445

ABSTRACT

BACKGROUND: Lymph node metastasis (LNM) is the primary mode of metastasis in gastric cancer (GC). However, the precise mechanisms underlying this process remain elusive. Tumor cells necessitate lipid metabolic reprogramming to facilitate metastasis, yet the role of lipoprotein lipase (LPL), a pivotal enzyme involved in exogenous lipid uptake, remains uncertain in tumor metastasis. Therefore, the aim of this study was to investigate the presence of lipid metabolic reprogramming during LNM of GC as well as the role of LPL in this process. METHODS: Intracellular lipid levels were quantified using oil red O staining, BODIPY 493/503 staining, and flow cytometry. Lipidomics analysis was employed to identify alterations in intracellular lipid composition following LPL knockdown. Protein expression levels were assessed through immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assays. The mouse popliteal LNM model was utilized to investigate differences in LNM. Immunoprecipitation and mass spectrometry were employed to examine protein associations. In vitro phosphorylation assays and Phos-tag sodium dodecyl-sulfate polyacrylamide gel electrophoresis assays were conducted to detect angiopoietin-like protein 4 (ANGPTL4) phosphorylation. RESULTS: We identified that an elevated intracellular lipid level represents a crucial characteristic of node-positive (N+) GC and further demonstrated that a high-fat diet can expedite LNM. LPL was found to be significantly overexpressed in N+ GC tissues and shown to facilitate LNM by mediating dietary lipid uptake within GC cells. Leptin, an obesity-related hormone, intercepted the effect exerted by ANGPTL4/Furin on LPL cleavage. Circulating leptin binding to the leptin receptor could induce the activation of inositol-requiring enzyme-1 (IRE1) kinase, leading to the phosphorylation of ANGPTL4 at the serine 30 residue and subsequently reducing its binding affinity with LPL. Moreover, our research revealed that LPL disrupted lipid homeostasis by elevating intracellular levels of arachidonic acid, which then triggered the cyclooxygenase-2/prostaglandin E2 (PGE2) pathway, thereby promoting tumor lymphangiogenesis. CONCLUSIONS: Leptin-induced phosphorylation of ANGPTL4 facilitates LPL-mediated lipid uptake and consequently stimulates the production of PGE2, ultimately facilitating LNM in GC.

11.
Subcell Biochem ; 104: 139-179, 2024.
Article in English | MEDLINE | ID: mdl-38963487

ABSTRACT

Lipoprotein lipase (LPL) is a critical enzyme in humans that provides fuel to peripheral tissues. LPL hydrolyzes triglycerides from the cores of lipoproteins that are circulating in plasma and interacts with receptors to mediate lipoprotein uptake, thus directing lipid distribution via catalytic and non-catalytic functions. Functional losses in LPL or any of its myriad of regulators alter lipid homeostasis and potentially affect the risk of developing cardiovascular disease-either increasing or decreasing the risk depending on the mutated protein. The extensive LPL regulatory network tunes LPL activity to allocate fatty acids according to the energetic needs of the organism and thus is nutritionally responsive and tissue dependent. Multiple pharmaceuticals in development manipulate or mimic these regulators, demonstrating their translational importance. Another facet of LPL biology is that the oligomeric state of the enzyme is also central to its regulation. Recent structural studies have solidified the idea that LPL is regulated not only by interactions with other binding partners but also by self-associations. Here, we review the complexities of the protein-protein and protein-lipid interactions that govern LPL structure and function.


Subject(s)
Lipoprotein Lipase , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/chemistry , Lipoprotein Lipase/genetics , Humans , Animals , Protein Binding , Triglycerides/metabolism , Lipid Metabolism
12.
Biomed Pharmacother ; 177: 117052, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38943988

ABSTRACT

Adipose-derived mesenchymal stromal cells (AD-MSCs) are an essential issue in modern medicine. Extensive preclinical and clinical studies have shown that mesenchymal stromal/stem cells, including AD-MSCs, have specific properties (ability to differentiate into other cells, recruitment to the site of injury) of particular importance in the regenerative process. Ongoing research aims to elucidate factors supporting AD-MSC culture and differentiation in vitro. Angiopoietin-like proteins (ANGPTLs), known for their pleiotropic effects in lipid and glucose metabolism, may play a significant role in this context. Regeneration is a complex and dynamic process controlled by many factors. ANGPTL6 (Angiopoietin-related growth factor, AGF), among many activities modulated the biological activity of stem cells. This study examined the influence of synthesized AGF-derived peptides, designated as AGF9 and AGF27, on AD-MSCs. AGF9 and AGF27 enhanced the viability and migration of AD-MSCs and acted as a chemotactic factor for these cells. AGF9 stimulated chondrogenesis and lipid synthesis during AD-MSCs differentiation, influenced AD-MSCs cytokine secretion and modulated transcriptome for such basic cell activities as migration, transport of molecules, and apoptosis. The ability of AGF9 to modulate the biological activity of AD-MSCs warrants the consideration of this peptide a noteworthy therapeutic agent that deserves further investigation for applications in regenerative medicine.


Subject(s)
Adipose Tissue , Angiopoietin-like Proteins , Cell Differentiation , Chondrogenesis , Mesenchymal Stem Cells , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Humans , Adipose Tissue/cytology , Adipose Tissue/metabolism , Cell Differentiation/drug effects , Angiopoietin-like Proteins/metabolism , Chondrogenesis/drug effects , Cell Survival/drug effects , Cells, Cultured , Peptides/pharmacology , Cell Movement/drug effects , Apoptosis/drug effects , Cytokines/metabolism
13.
Mol Cell Biochem ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38880861

ABSTRACT

Acute myocardial infarction is mainly caused by a lack of blood flood in the coronary artery. Angiopoietin-like protein 2 (ANGPTL2) induces platelet activation and thrombus formation in vitro through binding with immunoglobulin-like receptor B, an immunoglobulin superfamily receptor. However, the mechanism by which it regulates platelet function in vivo remains unclear. In this study, we investigated the role of ANGPTL2 during thrombosis in relationship with ST-segment elevation myocardial infarction (STEMI) with spontaneous recanalization (SR). In a cohort of 276 male and female patients, we measured plasma ANGPTL2 protein levels. Using male Angptl2-knockout and wild-type mice, we examined the inhibitory effect of Angptl2 on thrombosis and platelet activation both in vivo and ex vivo. We found that plasma and platelet ANGPTL2 levels were elevated in patients with STEMI with SR compared to those in non-SR (NSR) patients, and was an independent predictor of SR. Angptl2 deficiency accelerated mesenteric artery thrombosis induced by FeCl3 in Angptl2-/- compared to WT animals, promoted platelet granule secretion and aggregation induced by thrombin and collogen while purified ANGPTL2 protein supplementation reversed collagen-induced platelet aggregation. Angptl2 deficiency also increased platelet spreading on immobilized fibrinogen and clot contraction. In collagen-stimulated Angptl2-/- platelets, Src homology region 2 domain-containing phosphatase (Shp)1-Y564 and Shp2-Y580 phosphorylation were attenuated while Src, Syk, and Phospholipase Cγ2 (PLCγ2) phosphorylation increased. Our results demonstrate that ANGPTL2 negatively regulated thrombus formation by activating ITIM which can suppress ITAM signaling pathway. This new knowledge provides a new perspective for designing future antiplatelet aggregation therapies.

14.
Diab Vasc Dis Res ; 21(3): 14791641241259792, 2024.
Article in English | MEDLINE | ID: mdl-38843864

ABSTRACT

PURPOSE: This study examines whether Angiopoietin Like 8 (ANGPTL8) is linked to cardiometabolic risk factors (CMRFs) in Saudi women with type 2 diabetes (T2DM). METHODS: Case-control investigation compared 150 women aged 30-60 with T2DM to 140 healthy women of the same age and gender. RESULTS: ANGPTL8 levels differed significantly between T2DM and non-diabetics. Fasting blood glucose (FBG), insulin resistance (IR), triglycerides (TG), high-sensitivity C-reactive protein (hs-CRP), body mass index (BMI), and atherogenic index (AIP) of plasma all correlated positively with ANGPTL8 concentrations. Insulin levels correlated negatively with ANGPTL8. Multiple linear regression models showed that elevated ANGPTL8 independently predicted higher FBG, hs-CRP, IR, TG, and AIP in T2DM patients. CONCLUSION: The study found a significant association between ANGPTL8 levels and IR, hs-CRP, TG, AIP, and BMI in women with T2DM. These components are classified as CMRFs and have the potential to contribute to the development of cardiovascular disease (CVD).


Subject(s)
Angiopoietin-Like Protein 8 , Angiopoietin-like Proteins , Biomarkers , Blood Glucose , Body Mass Index , Cardiometabolic Risk Factors , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Female , Middle Aged , Angiopoietin-like Proteins/blood , Pilot Projects , Case-Control Studies , Biomarkers/blood , Saudi Arabia/epidemiology , Adult , Blood Glucose/metabolism , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/blood , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Peptide Hormones/blood , Risk Assessment , Triglycerides/blood , Insulin/blood , Risk Factors
15.
Eur J Pediatr ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884820

ABSTRACT

Albuminuria has been considered the golden standard biomarker for diabetic kidney disease (DKD), but appears once significant kidney damage has already occurred. Angiopoietin-2 (Angpt-2) has been implicated in the development and progression of DKD in adults. We aimed to explore the association of serum Angpt-2 levels with DKD in children and adolescents with type 1 diabetes mellitus (T1DM) of short duration (3-5 years) and to evaluate the predictive power of serum Angpt-2 in the early detection of DKD prior to the microalbuminuric phase. The current cross-sectional study included 90 children divided into three age and sex-matched groups based on urinary albumin-to-creatinine ratio (UACR): microalbuminuric diabetic group (n = 30), non-albuminuric diabetic group (n = 30), and control group (n = 30). All participants were subjected to anthropometric measurements, serum Angpt-2 and fasting lipid profile (total cholesterol, triglycerides, LDL-C, HDL-C, and Non-HDL-C) assessment. Glomerular filtration rate was estimated based on serum creatinine (eGFR-Cr). Higher serum Angpt-2 levels were detected in both diabetic groups compared to controls and in microalbuminuric compared to non-albuminuric diabetic group. There was no detected significant difference in eGFR-Cr values across the study groups. Serum Angpt-2 was positively correlated with triglycerides, LDL, Non-HDL-C, HbA1c, and UACR, while UACR, HbA1c, and Non-HDL-C were independent predictors for serum Angpt-2. Serum Angpt-2 at level of 137.4 ng/L could discriminate between microalbuminuric and non-albuminuric diabetic groups with AUC = 0.960 and at level of 115.95 ng/L could discriminate between the non-albuminuric diabetic group and controls with AUC = 0.976.Conclusion: Serum Angpt-2 is a promising potent biomarker for the detection of early stage of DKD in childhood T1DM before albuminuria emerges. What is Known? • Urine albumin-to-creatinine ratio (UACR) and glomerular filtration rate (GFR) are the golden standard but late biomarkers for DKD. • Angiopoietin-2 has been implicated in the development and progression of DKD in adults with diabetes, but has not been explored in T1DM children with DKD. What is New? • Higher serum angiopoietin-2 was detected in diabetic groups compared to controls and in microalbuminuric compared to non-albuminuric group. • Angiopoietin-2 correlated positively with triglycerides, LDL, Non-HDL-C, HbA1c, and UACR. • Serum angiopoietin-2 is a promising early diagnostic biomarker for DKD in children with T1DM.

16.
Neuro Oncol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831719

ABSTRACT

Brain metastases (BM) constitute an increasing challenge in oncology due to their impact on neurological function, limited treatment options, and poor prognosis. BM occur through extravasation of circulating tumor cells across the blood-brain barrier. However, the extravasation processes are still poorly understood. We here propose a brain colonization process which mimics infarction-like microenvironmental reactions, that is dependent on Angiopoietin (Ang-2) and vascular endothelial growth factor (VEGF). In this study, intracardiac BM models were used, and cerebral blood microcirculation was monitored by 2-photon microscopy through a cranial window. BM formation was observed using cranial magnetic resonance, bioluminescent imaging, and post-mortem autopsy. Ang-2/VEGF targeting strategies and Ang-2 gain-of-function (GOF) mice were employed to interfere with BM formation. In addition, vascular and stromal factors as well as clinical outcome were analyzed in BM patients. Blood vessel occlusions by cancer cells were detected, accompanied by significant disturbances of cerebral blood microcirculation, and focal stroke-like histological signs. Cerebral endothelial cells showed an elevated Ang-2 expression both in mouse and human BM. Ang-2 GOF resulted in an increased BM burden. Combined anti-Ang-2/anti-VEGF therapy led to a decrease in brain metastasis size and number. Ang-2 expression in tumor vessels of established human brain metastases negatively correlated with survival. Our observations revealed a relationship between disturbance of cerebral blood microcirculation and brain metastasis formation. This suggests that vessel occlusion by tumor cells facilitates brain metastatic extravasation and seeding, while combined inhibition of microenvironmental effects of Ang-2 and VEGF prevent the outgrowth of macrometastases.

17.
Article in English | MEDLINE | ID: mdl-38847896

ABSTRACT

Intravitreal anti-vascular endothelial growth factor (VEGF) therapy is the standard of care for diabetic macular edema (DME) and neovascular age-related macular degeneration (nAMD); however, vision gains and anatomical improvements are not sustained over longer periods of treatment, suggesting other relevant targets may be needed to optimize treatments. Additionally, frequent intravitreal injections can prove a burden for patients and caregivers. Angiopoietin-2 (Ang-2) has been explored as an additional therapeutic target, due to the involvement of Ang-2 in DME and nAMD pathogenesis. Recent evidence supports the hypothesis that targeting both VEGF and Ang-2 may improve clinical outcomes in DME and nAMD compared with targeting VEGF alone by enhancing vascular stability, resulting in reduced macular leakage, prevention of neovascularization, and diminished inflammation. Faricimab, a novel bispecific antibody that targets VEGF-A and Ang-2, has been evaluated in clinical trials for DME (YOSEMITE/RHINE) and nAMD (TENAYA/LUCERNE). These trials evaluated faricimab against the anti-VEGFA/B and anti-placental growth factor fusion protein aflibercept, both administered by intravitreal injection. In addition to faricimab efficacy, safety, and pharmacokinetics, durability was evaluated during the trials using a treat-and-extend regimen. At 1 year, faricimab demonstrated non-inferior vision gains versus aflibercept across YOSEMITE/RHINE and TENAYA/LUCERNE. In YOSEMITE/RHINE, faricimab improved anatomic parameters versus aflibercept. Reduction of central subfield thickness (CST), and absence of both DME and intraretinal fluid were greater in faricimab- versus aflibercept-treated eyes. In TENAYA/LUCERNE, CST reductions were greater for faricimab than aflibercept at the end of the head-to-head phase (0-12 weeks), and were comparable with aflibercept at year 1, but with less frequent dosing. CST and vision gains were maintained during year 2 of both YOSEMITE/RHINE and TENAYA/LUCERNE. These findings suggest that dual Ang-2/VEGF-A pathway inhibition may result in greater disease control versus anti-VEGF alone, potentially addressing the unmet needs and reducing treatment burden, and improving real-world outcomes and compliance in retinal vascular diseases. Long-term extension studies (RHONE-X, AVONELLE-X) are ongoing. Current evidence suggests that dual inhibition with faricimab heralds the beginning of multitargeted treatment strategies inhibiting multiple, independent components of retinal pathology, with faricimab providing opportunities to reduce treatment burden and improve outcomes compared with anti-VEGF monotherapy.

18.
Expert Rev Endocrinol Metab ; 19(4): 299-306, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866702

ABSTRACT

INTRODUCTION: Familial chylomicronemia syndrome (FCS) is a rare autosomal recessive condition. Effective treatment is important as patients are at risk for severe and potentially fatal acute pancreatitis. We review recent developments in pharmacologic treatment for FCS, namely biological inhibitors of apolipoprotein (apo) C-III and angiopoietin-like protein 3 (ANGPTL3). AREAS COVERED: FCS follows a biallelic inheritance pattern in which an individual inherits two pathogenic loss-of-function alleles of one of the five causal genes - LPL (in 60-80% of patients), GPIHBP1, APOA5, APOC2, and LMF1 - leading to the absence of lipolytic activity. Patients present from childhood with severely elevated triglyceride (TG) levels >10 mmol/L. Most patients with severe hypertriglyceridemia do not have FCS. A strict low-fat diet is the current first-line treatment, and existing lipid-lowering therapies are minimally effective in FCS. Apo C-III inhibitors are emerging TG-lowering therapies shown to be efficacious and safe in clinical trials. ANGPTL3 inhibitors, another class of emerging TG-lowering therapies, have been found to require at least partial lipoprotein lipase activity to lower plasma TG in clinical trials. ANGPTL3 inhibitors reduce plasma TG in patients with multifactorial chylomicronemia but not in patients with FCS who completely lack lipoprotein lipase activity. EXPERT OPINION: Apo C-III inhibitors currently in development are promising treatments for FCS.


Subject(s)
Angiopoietin-Like Protein 3 , Hyperlipoproteinemia Type I , Humans , Hyperlipoproteinemia Type I/genetics , Hyperlipoproteinemia Type I/drug therapy , Hyperlipoproteinemia Type I/therapy , Apolipoprotein C-III/genetics , Apolipoprotein C-III/antagonists & inhibitors , Hypolipidemic Agents/therapeutic use , Lipoprotein Lipase/genetics , Angiopoietin-like Proteins/antagonists & inhibitors , Angiopoietin-like Proteins/genetics , Diet, Fat-Restricted , Receptors, Lipoprotein
19.
Clin Chem Lab Med ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38915251

ABSTRACT

INTRODUCTION: The correlation between serum angiopoietin-2 levels and acute kidney injury (AKI) is a topic of significant clinical interest. This meta-analysis aims to provide a comprehensive evaluation of this relationship. CONTENT: A systematic search was conducted in PubMed, Embase, Web of Science, and Cochrane databases up to October 11, 2023. The included studies were evaluated using the Newcastle-Ottawa Scale (NOS) and Methodological Index for Non-Randomized Studies (MINORS). Weighted mean differences (WMD) and odds ratios (OR) were calculated using random-effects models. Sensitivity analysis, funnel plots, and Egger's test were used to assess the robustness and publication bias of the findings. Subgroup analyses were performed to explore potential variations between adults and children. SUMMARY: Eighteen studies encompassing a total of 7,453 participants were included. The analysis revealed a significant elevation in serum angiopoietin-2 levels in patients with AKI compared to those without (WMD: 4.85; 95 % CI: 0.75 to 0.27; I²=93.2 %, p<0.001). Subgroup analysis indicated significantly higher angiopoietin-2 levels in adults with AKI (WMD: 5.17; 95 % CI: 3.51 to 6.83; I²=82.6 %, p<0.001), but not in children. Additionally, high serum angiopoietin-2 levels were associated with an increased risk of AKI (OR: 1.58; 95 % CI: 1.39 to 1.8; I²=89.1 %, p<0.001). Sensitivity analysis validated the robustness of these results, showing no substantial change in the overall effect size upon the exclusion of individual studies. OUTLOOK: This meta-analysis supports a significant association between elevated serum angiopoietin-2 levels and increased risk of AKI. The observed differential association between adults and children highlights the need for further targeted research to understand these age-specific variations.

20.
Eur Heart J Open ; 4(3): oeae035, 2024 May.
Article in English | MEDLINE | ID: mdl-38895109

ABSTRACT

Aims: APOC3, ANGPTL3, and ANGPTL4 are circulating proteins that are actively pursued as pharmacological targets to treat dyslipidaemia and reduce the risk of atherosclerotic cardiovascular disease. Here, we used human genetic data to compare the predicted therapeutic and adverse effects of APOC3, ANGPTL3, and ANGPTL4 inactivation. Methods and results: We conducted drug-target Mendelian randomization analyses using variants in proximity to the genes associated with circulating protein levels to compare APOC3, ANGPTL3, and ANGPTL4 as drug targets. We obtained exposure and outcome data from large-scale genome-wide association studies and used generalized least squares to correct for linkage disequilibrium-related correlation. We evaluated five primary cardiometabolic endpoints and screened for potential side effects across 694 disease-related endpoints, 43 clinical laboratory tests, and 11 internal organ MRI measurements. Genetically lowering circulating ANGPTL4 levels reduced the odds of coronary artery disease (CAD) [odds ratio, 0.57 per s.d. protein (95% CI 0.47-0.70)] and Type 2 diabetes (T2D) [odds ratio, 0.73 per s.d. protein (95% CI 0.57-0.94)]. Genetically lowering circulating APOC3 levels also reduced the odds of CAD [odds ratio, 0.90 per s.d. protein (95% CI 0.82-0.99)]. Genetically lowered ANGPTL3 levels via common variants were not associated with CAD. However, meta-analysis of protein-truncating variants revealed that ANGPTL3 inactivation protected against CAD (odds ratio, 0.71 per allele [95%CI, 0.58-0.85]). Analysis of lowered ANGPTL3, ANGPTL4, and APOC3 levels did not identify important safety concerns. Conclusion: Human genetic evidence suggests that therapies aimed at reducing circulating levels of ANGPTL3, ANGPTL4, and APOC3 reduce the risk of CAD. ANGPTL4 lowering may also reduce the risk of T2D.

SELECTION OF CITATIONS
SEARCH DETAIL
...