Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Syst Biol ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695290

ABSTRACT

Phylogenomics allows us to uncover the historical signal of evolutionary processes through time and estimate phylogenetic networks accounting for these signals. Insight from genome-wide data further allows us to pinpoint the contributions to phylogenetic signal from hybridization, introgression, and ancestral polymorphism across the genome. Here we focus on how these processes have contributed to phylogenetic discordance among rattlesnakes (genera Crotalus and Sistrurus), a group for which there are numerous conflicting phylogenetic hypotheses based on a diverse array of molecular datasets and analytical methods. We address the instability of the rattlesnake phylogeny using genomic data generated from transcriptomes sampled from nearly all known species. These genomic data, analyzed with coalescent and network-based approaches, reveal numerous instances of rapid speciation where individual gene trees conflict with the species tree. Moreover, the evolutionary history of rattlesnakes is dominated by incomplete speciation and frequent hybridization, both of which have likely influenced past interpretations of phylogeny. We present a new framework in which the evolutionary relationships of this group can only be understood in light of genome-wide data and network-based analytical methods. Our data suggest that network radiations, like seen within the rattlesnakes, can only be understood in a phylogenomic context, necessitating similar approaches in our attempts to understand evolutionary history in other rapidly radiating species.

2.
Syst Biol, in press, syae018, mai, 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5383

ABSTRACT

Phylogenomics allows us to uncover the historical signal of evolutionary processes through time and estimate phylogenetic networks accounting for these signals. Insight from genome-wide data further allows us to pinpoint the contributions to phylogenetic signal from hybridization, introgression, and ancestral polymorphism across the genome. Here we focus on how these processes have contributed to phylogenetic discordance among rattlesnakes (genera Crotalus and Sistrurus), a group for which there are numerous conflicting phylogenetic hypotheses based on a diverse array of molecular datasets and analytical methods. We address the instability of the rattlesnake phylogeny using genomic data generated from transcriptomes sampled from nearly all known species. These genomic data, analyzed with coalescent and network-based approaches, reveal numerous instances of rapid speciation where individual gene trees conflict with the species tree. Moreover, the evolutionary history of rattlesnakes is dominated by incomplete speciation and frequent hybridization, both of which have likely influenced past interpretations of phylogeny. We present a new framework in which the evolutionary relationships of this group can only be understood in light of genome-wide data and network-based analytical methods. Our data suggest that network radiations, like seen within the rattlesnakes, can only be understood in a phylogenomic context, necessitating similar approaches in our attempts to understand evolutionary history in other rapidly radiating species.

3.
Genome Biol Evol ; 15(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37243541

ABSTRACT

The evolutionary histories of individual loci in a genome can be estimated independently, but this approach is error-prone due to the limited amount of sequence data available for each gene, which has led to the development of a diverse array of gene tree error correction methods which reduce the distance to the species tree. We investigate the performance of two representatives of these methods: TRACTION and TreeFix. We found that gene tree error correction frequently increases the level of error in gene tree topologies by "correcting" them to be closer to the species tree, even when the true gene and species trees are discordant. We confirm that full Bayesian inference of the gene trees under the multispecies coalescent model is more accurate than independent inference. Future gene tree correction approaches and methods should incorporate an adequately realistic model of evolution instead of relying on oversimplified heuristics.


Subject(s)
Genome , Models, Genetic , Phylogeny , Bayes Theorem
4.
Genes (Basel) ; 13(5)2022 04 26.
Article in English | MEDLINE | ID: mdl-35627151

ABSTRACT

Relationships among laurasiatherian clades represent one of the most highly disputed topics in mammalian phylogeny. In this study, we attempt to disentangle laurasiatherian interordinal relationships using two independent genome-level approaches: (1) quantifying retrotransposon presence/absence patterns, and (2) comparisons of exon datasets at the levels of nucleotides and amino acids. The two approaches revealed contradictory phylogenetic signals, possibly due to a high level of ancestral incomplete lineage sorting. The positions of Eulipotyphla and Chiroptera as the first and second earliest divergences were consistent across the approaches. However, the phylogenetic relationships of Perissodactyla, Cetartiodactyla, and Ferae, were contradictory. While retrotransposon insertion analyses suggest a clade with Cetartiodactyla and Ferae, the exon dataset favoured Cetartiodactyla and Perissodactyla. Future analyses of hitherto unsampled laurasiatherian lineages and synergistic analyses of retrotransposon insertions, exon and conserved intron/intergenic sequences might unravel the conflicting patterns of relationships in this major mammalian clade.


Subject(s)
Eutheria , Retroelements , Animals , Genome , Mammals/genetics , Phylogeny , Retroelements/genetics
5.
Genome Biol Evol ; 13(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-34432005

ABSTRACT

Species are indisputable units for biodiversity conservation, yet their delimitation is fraught with both conceptual and methodological difficulties. A classic example is the taxonomic controversy surrounding the Gila robusta complex in the lower Colorado River of southwestern North America. Nominal species designations were originally defined according to weakly diagnostic morphological differences, but these conflicted with subsequent genetic analyses. Given this ambiguity, the complex was re-defined as a single polytypic unit, with the proposed "threatened" status under the U.S. Endangered Species Act of two elements being withdrawn. Here we re-evaluated the status of the complex by utilizing dense spatial and genomic sampling (n = 387 and >22 k loci), coupled with SNP-based coalescent and polymorphism-aware phylogenetic models. In doing so, we found that all three species were indeed supported as evolutionarily independent lineages, despite widespread phylogenetic discordance. To juxtapose this discrepancy with previous studies, we first categorized those evolutionary mechanisms driving discordance, then tested (and subsequently rejected) prior hypotheses which argued phylogenetic discord in the complex was driven by the hybrid origin of Gila nigra. The inconsistent patterns of diversity we found within G. robusta were instead associated with rapid Plio-Pleistocene drainage evolution, with subsequent divergence within the "anomaly zone" of tree space producing ambiguities that served to confound prior studies. Our results not only support the resurrection of the three species as distinct entities but also offer an empirical example of how phylogenetic discordance can be categorized within other recalcitrant taxa, particularly when variation is primarily partitioned at the species level.


Subject(s)
Cyprinidae , Rivers , Animals , Colorado , Cyprinidae/genetics , Phylogeny , Uncertainty
6.
Natl Sci Rev ; 8(12): nwab127, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34987842

ABSTRACT

Multispecies coalescent (MSC) is the extension of the single-population coalescent model to multiple species. It integrates the phylogenetic process of species divergences and the population genetic process of coalescent, and provides a powerful framework for a number of inference problems using genomic sequence data from multiple species, including estimation of species divergence times and population sizes, estimation of species trees accommodating discordant gene trees, inference of cross-species gene flow and species delimitation. In this review, we introduce the major features of the MSC model, discuss full-likelihood and heuristic methods of species tree estimation and summarize recent methodological advances in inference of cross-species gene flow. We discuss the statistical and computational challenges in the field and research directions where breakthroughs may be likely in the next few years.

7.
Proc Biol Sci ; 287(1940): 20202102, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33290680

ABSTRACT

Genome-scale data have greatly facilitated the resolution of recalcitrant nodes that Sanger-based datasets have been unable to resolve. However, phylogenomic studies continue to use traditional methods such as bootstrapping to estimate branch support; and high bootstrap values are still interpreted as providing strong support for the correct topology. Furthermore, relatively little attention has been given to assessing discordances between gene and species trees, and the underlying processes that produce phylogenetic conflict. We generated novel genomic datasets to characterize and determine the causes of discordance in Old World treefrogs (Family: Rhacophoridae)-a group that is fraught with conflicting and poorly supported topologies among major clades. Additionally, a suite of data filtering strategies and analytical methods were applied to assess their impact on phylogenetic inference. We showed that incomplete lineage sorting was detected at all nodes that exhibited high levels of discordance. Those nodes were also associated with extremely short internal branches. We also clearly demonstrate that bootstrap values do not reflect uncertainty or confidence for the correct topology and, hence, should not be used as a measure of branch support in phylogenomic datasets. Overall, we showed that phylogenetic discordances in Old World treefrogs resulted from incomplete lineage sorting and that species tree inference can be improved using a multi-faceted, total-evidence approach, which uses the most amount of data and considers results from different analytical methods and datasets.


Subject(s)
Anura/physiology , Phylogeny , Animals , Genomics
8.
Syst Biol ; 68(6): 937-955, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31135914

ABSTRACT

Palaeognathae represent one of the two basal lineages in modern birds, and comprise the volant (flighted) tinamous and the flightless ratites. Resolving palaeognath phylogenetic relationships has historically proved difficult, and short internal branches separating major palaeognath lineages in previous molecular phylogenies suggest that extensive incomplete lineage sorting (ILS) might have accompanied a rapid ancient divergence. Here, we investigate palaeognath relationships using genome-wide data sets of three types of noncoding nuclear markers, together totaling 20,850 loci and over 41 million base pairs of aligned sequence data. We recover a fully resolved topology placing rheas as the sister to kiwi and emu + cassowary that is congruent across marker types for two species tree methods (MP-EST and ASTRAL-II). This topology is corroborated by patterns of insertions for 4274 CR1 retroelements identified from multispecies whole-genome screening, and is robustly supported by phylogenomic subsampling analyses, with MP-EST demonstrating particularly consistent performance across subsampling replicates as compared to ASTRAL. In contrast, analyses of concatenated data supermatrices recover rheas as the sister to all other nonostrich palaeognaths, an alternative that lacks retroelement support and shows inconsistent behavior under subsampling approaches. While statistically supporting the species tree topology, conflicting patterns of retroelement insertions also occur and imply high amounts of ILS across short successive internal branches, consistent with observed patterns of gene tree heterogeneity. Coalescent simulations and topology tests indicate that the majority of observed topological incongruence among gene trees is consistent with coalescent variation rather than arising from gene tree estimation error alone, and estimated branch lengths for short successive internodes in the inferred species tree fall within the theoretical range encompassing the anomaly zone. Distributions of empirical gene trees confirm that the most common gene tree topology for each marker type differs from the species tree, signifying the existence of an empirical anomaly zone in palaeognaths.


Subject(s)
Genome/genetics , Palaeognathae/classification , Palaeognathae/genetics , Phylogeny , Animals , Genomics
9.
Mol Biol Evol ; 35(1): 159-179, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29087487

ABSTRACT

The phylogenetic relationships among extant gibbon species remain unresolved despite numerous efforts using morphological, behavorial, and genetic data and the sequencing of whole genomes. A major challenge in reconstructing the gibbon phylogeny is the radiative speciation process, which resulted in extremely short internal branches in the species phylogeny and extensive incomplete lineage sorting with extensive gene-tree heterogeneity across the genome. Here, we analyze two genomic-scale data sets, with ∼10,000 putative noncoding and exonic loci, respectively, to estimate the species tree for the major groups of gibbons. We used the Bayesian full-likelihood method bpp under the multispecies coalescent model, which naturally accommodates incomplete lineage sorting and uncertainties in the gene trees. For comparison, we included three heuristic coalescent-based methods (mp-est, SVDQuartets, and astral) as well as concatenation. From both data sets, we infer the phylogeny for the four extant gibbon genera to be (Hylobates, (Nomascus, (Hoolock, Symphalangus))). We used simulation guided by the real data to evaluate the accuracy of the methods used. Astral, while not as efficient as bpp, performed well in estimation of the species tree even in presence of excessive incomplete lineage sorting. Concatenation, mp-est and SVDQuartets were unreliable when the species tree contains very short internal branches. Likelihood ratio test of gene flow suggests a small amount of migration from Hylobates moloch to H. pileatus, while cross-genera migration is absent or rare. Our results highlight the utility of coalescent-based methods in addressing challenging species tree problems characterized by short internal branches and rampant gene tree-species tree discordance.


Subject(s)
Hylobates/classification , Hylobates/genetics , Sequence Analysis, DNA/methods , Algorithms , Animals , Bayes Theorem , Computer Simulation , Evolution, Molecular , Genetic Speciation , Genetics, Population/methods , Genomics/methods , Models, Genetic , Phylogeny
10.
Genetics ; 204(4): 1353-1368, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27927902

ABSTRACT

The multispecies coalescent (MSC) model has emerged as a powerful framework for inferring species phylogenies while accounting for ancestral polymorphism and gene tree-species tree conflict. A number of methods have been developed in the past few years to estimate the species tree under the MSC. The full likelihood methods (including maximum likelihood and Bayesian inference) average over the unknown gene trees and accommodate their uncertainties properly but involve intensive computation. The approximate or summary coalescent methods are computationally fast and are applicable to genomic datasets with thousands of loci, but do not make an efficient use of information in the multilocus data. Most of them take the two-step approach of reconstructing the gene trees for multiple loci by phylogenetic methods and then treating the estimated gene trees as observed data, without accounting for their uncertainties appropriately. In this article we review the statistical nature of the species tree estimation problem under the MSC, and explore the conceptual issues and challenges of species tree estimation by focusing mainly on simple cases of three or four closely related species. We use mathematical analysis and computer simulation to demonstrate that large differences in statistical performance may exist between the two classes of methods. We illustrate that several counterintuitive behaviors may occur with the summary methods but they are due to inefficient use of information in the data by summary methods and vanish when the data are analyzed using full-likelihood methods. These include (i) unidentifiability of parameters in the model, (ii) inconsistency in the so-called anomaly zone, (iii) singularity on the likelihood surface, and (iv) deterioration of performance upon addition of more data. We discuss the challenges and strategies of species tree inference for distantly related species when the molecular clock is violated, and highlight the need for improving the computational efficiency and model realism of the likelihood methods as well as the statistical efficiency of the summary methods.


Subject(s)
Models, Genetic , Phylogeny , Animals , Likelihood Functions , Polymorphism, Genetic
11.
Ann N Y Acad Sci ; 1360: 36-53, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25873435

ABSTRACT

The heterogeneity of signals in the genomes of diverse organisms poses challenges for traditional phylogenetic analysis. Phylogenetic methods known as "species tree" methods have been proposed to directly address one important source of gene tree heterogeneity, namely the incomplete lineage sorting that occurs when evolving lineages radiate rapidly, resulting in a diversity of gene trees from a single underlying species tree. Here we review theory and empirical examples that help clarify conflicts between species tree and concatenation methods, and misconceptions in the literature about the performance of species tree methods. Considering concatenation as a special case of the multispecies coalescent model helps explain differences in the behavior of the two methods on phylogenomic data sets. Recent work suggests that species tree methods are more robust than concatenation approaches to some of the classic challenges of phylogenetic analysis, including rapidly evolving sites in DNA sequences and long-branch attraction. We show that approaches, such as binning, designed to augment the signal in species tree analyses can distort the distribution of gene trees and are inconsistent. Computationally efficient species tree methods incorporating biological realism are a key to phylogenetic analysis of whole-genome data.


Subject(s)
Databases, Genetic , Genome/genetics , Models, Genetic , Phylogeny , Animals , Databases, Genetic/standards , Genetic Speciation , Humans , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...