Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 445
Filter
1.
Front Pharmacol ; 15: 1296190, 2024.
Article in English | MEDLINE | ID: mdl-38873420

ABSTRACT

In China, Camellia plants are widely used to reduce atopic dermatitis and inflammation-related diseases, but their protective mechanisms remain unclear. This study investigated the anti-allergic dermatitis, anti-oxidation and anti-inflammation effect and underlying mechanism of five Camellia species, including Camellia ptilophylla Chang, Camellia assamica Chang var. Kucha Chang, Camellia parvisepala Chang, Camellia arborescens Chang, and C. assamica M. Chang. A total of about 110 chemical compositions were detected from five Camellia teas extracts. The level of mast cell infiltration in the model mice skin was determined by HE (Hematoxylin and eosin) staining and toluidine blue staining, and the level of interleukin-1ß (IL-1ß) and nerve growth factor was detected by immunohistochemistry. The five Camellia tea leaf extracts have histamine-induced allergic dermatitis. Lipopolysaccharide (Lipopolysaccharide)-induced murine macrophage RAW264.7 inflammation model was found to secrete NF-κB factor, as shown by immunofluorescence, and reactive oxygen species secretion and related cytokine levels were detected. The results suggested that Camellia's five tea extracts had the ability to resist cellular oxidative stress. In addition, the results of cell inflammatory cytokines including fibronectin (FN) and interleukin-6 (IL-6) suggested that the five tea extracts of Camellia had anti-inflammatory effects. Therefore, it is suggested that five Camellia teas may possess inhibitory properties against allergic reactions, oxidative stress, and inflammation, and may prove beneficial in the treatment of allergies.

2.
J Microencapsul ; 41(5): 390-401, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945157

ABSTRACT

Green-synthesis of biodegradable polymeric curcumin-nanoparticles using affordable biodegradable polymers to enhance curcumin's solubility and anti-oxidative potential. The curcumin-nanoparticle was prepared based on the ionic-interaction method without using any chemical surfactants, and the particle-size, zeta-potential, surface-morphology, entrapmentefficiency, and in-vitro drug release study were used to optimise the formulation. The antioxidant activity was investigated using H2DCFDA staining in the zebrafish (Danio rerio) model. The mean-diameter of blank nanoparticles was 178.2 nm (±4.69), and that of curcuminnanoparticles was about 227.7 nm (±10.4), with a PDI value of 0.312 (±0.023) and 0.360 (±0.02). The encapsulation-efficacy was found to be 34% (±1.8), with significantly reduced oxidative-stress and toxicity (∼5 times) in the zebrafish model compared to standard curcumin. The results suggested that the current way of encapsulating curcumin using affordable, biodegradable, natural polymers could be a better approach to enhancing curcumin's water solubility and bioactivity, which could further be translated into potential therapeutics.


Subject(s)
Antioxidants , Chitosan , Curcumin , Green Chemistry Technology , Gum Arabic , Nanoparticles , Zebrafish , Animals , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/administration & dosage , Curcumin/pharmacokinetics , Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/administration & dosage , Chitosan/chemistry , Gum Arabic/chemistry , Drug Carriers/chemistry , Drug Liberation , Solubility , Oxidative Stress/drug effects , Particle Size
3.
Acta Biomater ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914412

ABSTRACT

Postoperative abdominal adhesion (PAA) widely occurs after abdominal surgery, which often produces severe complications. However, there were still no satisfactory anti-adhesive products including barriers and anti-adhesive agents. Herein, we developed a ROS-responsive and scavenging hydrogel barrier, termed AHBC/PSC, wherein the monomer AHBC was synthesized by phenylboronic acid (PBA)-modified hyaluronic acid (HA-PBA) further grafted with adipic dihydrazide (ADH) and PBA-based chlorogenic acid (CGA) via ROS-sensitive borate ester bond, and the other monomer PSC was constructed by polyvinyl alcohol (PVA) grafted with sulfated betaine (SB) and p-hydroxybenzaldehyde (CHO). Further, the double crosslinked AHBC/PSC hydrogel was successfully fabricated between AHBC and PSC via forming dynamic covalent acylhydrazone bonds and borate ester bonds. Results showed that AHBC/PSC hydrogel had in situ gelation behavior, satisfactory mechanical properties (storage modulus of about 1 kPa and loss factor Tan δ of about 0.5), suitable wet tissue adhesion strength of about 2.3 kPa on rat abdominal wall, and good biocompatibility, achieving an ideal physical barrier. Particularly, CGA could be responsively released from the hydrogel by breakage of borate ester bonds between CGA and PBA based on high reactive oxygen species (ROS) levels of damaged tissue and exhibited great ROS scavenging capability to regulate inflammation and promote the polarization of macrophages from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype. Moreover, the grafted SB as a zwitterionic group could reduce protein adsorption and fibroblast adhesion. Finally, the in vivo experiments revealed that AHBC/PSC hydrogel with good safety and in vivo retention behavior of about 2 weeks, effectively prevented PAA by regulating the inflammatory microenvironment and alleviating the fibrosis process. In brief, the versatile AHBC/PSC hydrogel would provide a more convenient and efficient approach for PAA prevention. STATEMENT OF SIGNIFICANCE: Postoperative abdominal adhesion (PAA) widely occurs after surgery and is often accompanied by severe complications. Excessive inflammation and oxidative stress are very crucial for PAA formation. This study provides a ROS-responsive and scavenging hydrogel with suitable mechanical properties, good biocompatibility and biodegradability, and resistance to protein and fibroblast. The antioxidant and anti-inflammatory active ingredient could be responsively released from the hydrogel via triggering by the high ROS levels in the postoperative microenvironment thereby regulating the inflammatory balance. Finally, the hydrogel would effectively regulate the development process of PAA thereby achieving non-adhesion wound healing.

4.
J Med Food ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717115

ABSTRACT

Aibika (Abelmoschus manihot (L.) Medic) is a garden vegetable whose flower has been shown to have various bioactivities. This study investigated the protective effect of aibika flower flavonoid extract (AFF) on ethanol-induced gastric injury in mice. The experimental results showed that pre-feeding 125 and 250 mg AFF/kg BW for 1 week significantly reduced the gastric injury area in the negative control group from 19.2% to 6.7% and 0.6%, respectively. The results of the pathological sections staining also showed that AFF had a protective ability against alcohol-induced injury of gastric tissue and liver tissue. When the mice were exposed to high concentrations of ethanol, AFF pretreatment significantly upregulated the expression of antioxidant enzymes. The pretreatment also promoted the production of the intracellular antioxidant, reduced glutathione, in both gastric tissue and serum. On the contrary, AFF delayed the lipid peroxidation process, which, in turn, reduced the damage to the gastric mucosa. When acute inflammation was induced by ethanol stimulation, AFF significantly downregulated the proinflammatory cytokines and mediators such as TNF-α, IL-1ß, IL-6, NF-κB, COX-2, and iNOS. Furthermore, AFF pretreatment greatly promoted the production of healing factors, such as matrix metalloproteinase (MMP)-2, MMP-7, and MMP-9, in the gastric tissue. In addition, AFF significantly reduced gastric cell apoptosis induced by ethanol stimulation. These results demonstrate that AFF has a good protective effect on alcohol-induced gastric ulcer and has the potential to be used in gastrointestinal health care.

5.
J Nanobiotechnology ; 22(1): 233, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725011

ABSTRACT

BACKGROUND: Dry Eye Disease (DED) is a prevalent multifactorial ocular disease characterized by a vicious cycle of inflammation, oxidative stress, and mitochondrial dysfunction on the ocular surface, all of which lead to DED deterioration and impair the patients' quality of life and social functioning. Currently, anti-inflammatory drugs have shown promising efficacy in treating DED; however, such drugs are associated with side effects. The bioavailability of ocular drugs is less than 5% owing to factors such as rapid tear turnover and the presence of the corneal barrier. This calls for investigations to overcome these challenges associated with ocular drug administration. RESULTS: A novel hierarchical action liposome nanosystem (PHP-DPS@INS) was developed in this study. In terms of delivery, PHP-DPS@INS nanoparticles (NPs) overcame the ocular surface transport barrier by adopting the strategy of "ocular surface electrostatic adhesion-lysosomal site-directed escape". In terms of therapy, PHP-DPS@INS achieved mitochondrial targeting and antioxidant effects through SS-31 peptide, and exerted an anti-inflammatory effect by loading insulin to reduce mitochondrial inflammatory metabolites. Ultimately, the synergistic action of "anti-inflammation-antioxidation-mitochondrial function restoration" breaks the vicious cycle associated with DED. The PHP-DPS@INS demonstrated remarkable cellular uptake, lysosomal escape, and mitochondrial targeting in vitro. Targeted metabolomics analysis revealed that PHP-DPS@INS effectively normalized the elevated level of mitochondrial proinflammatory metabolite fumarate in an in vitro hypertonic model of DED, thereby reducing the levels of key inflammatory factors (IL-1ß, IL-6, and TNF-α). Additionally, PHP-DPS@INS strongly inhibited reactive oxygen species (ROS) production and facilitated mitochondrial structural repair. In vivo, the PHP-DPS@INS treatment significantly enhanced the adhesion duration and corneal permeability of the ocular surface in DED mice, thereby improving insulin bioavailability. It also restored tear secretion, suppressed ocular surface damage, and reduced inflammation in DED mice. Moreover, it demonstrated favorable safety profiles both in vitro and in vivo. CONCLUSION: In summary, this study successfully developed a comprehensive DED management nanosystem that overcame the ocular surface transmission barrier and disrupted the vicious cycle that lead to dry eye pathogenesis. Additionally, it pioneered the regulation of mitochondrial metabolites as an anti-inflammatory treatment for ocular conditions, presenting a safe, efficient, and innovative therapeutic strategy for DED and other inflammatory diseases.


Subject(s)
Dry Eye Syndromes , Inflammation , Liposomes , Mitochondria , Oxidative Stress , Dry Eye Syndromes/drug therapy , Animals , Mitochondria/drug effects , Mitochondria/metabolism , Mice , Oxidative Stress/drug effects , Liposomes/chemistry , Inflammation/drug therapy , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cornea/metabolism , Cornea/drug effects , Drug Delivery Systems , Oligopeptides
6.
Sports (Basel) ; 12(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38786989

ABSTRACT

To determine the effects of mat Pilates training on blood pressure, inflammatory, and antioxidative markers in hypertensive elderly people, 34 hypertensive subjects aged 60-75 years were randomly divided into a control group (CON; n = 17) and a mat Pilates training group (MP; n = 17). The CON participants conducted normal daily activities and participated in neither organized exercises nor sports training, while those in the MP group received mat Pilates training for 60 min three times/week for 12 weeks. Parameters including blood pressure, cardiovascular function, nitric oxide (NO), tumor necrotic factor-alpha (TNF-α), superoxide dismutase (SOD), and malonaldehyde (MDA) were collected at baseline and the end of 12 weeks. The MP group had significantly decreased blood pressure, improved cardiovascular variables, decreased MDA and TNF-α, and increased NO and SOD compared with the CON group and the pre-training period (p < 0.05). In conclusion, these findings demonstrate the positive effects of 12 weeks of mat Pilates training in terms of reducing blood pressure and increasing blood flow related to improvements in anti-inflammatory and antioxidative markers in hypertensive elderly people. Mat Pilates training might be integrated as an alternative therapeutic exercise modality in clinical practice for hypertensive elderly individuals.

7.
Materials (Basel) ; 17(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38793411

ABSTRACT

We studied a gradient anti-oxidation coating of C/C composite materials for aircraft brake discs with a simple process and low costs. The gradient coating consists of two layers, of which the inner layer is prepared with tetraethyl orthosilicate (Si (OC2H5)4), C2H5OH, H3PO4 and B4C, and the outer layer is prepared with Na2B4O7.10H2O, B2O3, and SiO2 powder. The experimental results show that after being oxidized at 700 °C for 15 h, the oxidation weight loss of the sample with the coating was only -0.17%. At the same time, after 50 thermal cycles in air at 900 °C, the sample's oxidation weight loss was only -0.06%. We conducted the 1:1 dynamic simulation test for aircraft brake discs, and the brake disc did not oxidize, thus meeting the requirements for aircraft use. In addition, the anti-oxidation mechanism of the coating was analyzed via scanning electron microscopy (SEM), X-ray diffraction (XRD), differential thermal analysis (DSC-TGA), and high-temperature in situ SEM.

8.
Chin Herb Med ; 16(2): 263-273, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38706820

ABSTRACT

Objective: Rosa odorata var. gigantea is a popular medicinal plant. Some studies have demonstrated that ethanolic extract of the fruits of R. odorata var. gigantea (FOE) has gastroprotective properties. The aim of this study was to investigate the gastroprotective activity of FOE on water immersion restrained stress (WIRS)-induced gastric mucosal injury in a rat model and elucidate the possible molecular mechanisms involved. Methods: A rat stress ulcer model was established in this study using WIRS. After rats were treated with FOE orally for 7 d, the effect of FOE treatment was analyzed by hematoxylin and eosin (H&E) staining, and the changes of inflammatory factors, oxidative stress factors, and gastric-specific regulatory factors and pepsin in the blood and gastric tissues of rats were examined by ELISA assay. Molecular mechanism of FOE was investigated by immunohistochemical assay and Western blot. Results: Compared with the WIRS group, FOE could diminish both the macroscopic and microscopic pathological morphology of gastric mucosa. FOE significantly preserved the antioxidants glutathione peroxidase (GSH-PX), superoxide dismutase (SOD) and catalase (CAT) contents; anti-inflammatory cytokines interleukin-10 (IL-10) and prostaglandin E2 (PGE2) levels as well as regulatory factors tumor necrosis factor-α (TGF-α) and somatostatin (SS) contents, while decreasing malondialdehyde (MDA), nitric oxide synthase (iNOS), tumor necrosis factor (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), gastrin (GAS) and endothelin (ET) levels. Moreover, FOE distinctly upregulated the expression of Nrf2, HO-1, Bcl2 and proliferating cell nuclear antigen (PCNA). In addition, FOE activated the expression of p-EGFR and downregulated the expression of NF-κB, Bax, Cleaved-caspase-3, Cyto-C and Cleaved-PARP1, thus promoting gastric mucosal cell survival. Conclusion: The current work demonstrated that FOE exerted a gastroprotective activity against gastric mucosal injury induced by WIRS. The underlying mechanism might be associated with the improvement of anti-inflammatory, anti-oxidation and anti-apoptosis systems.

9.
Lab Anim Res ; 40(1): 14, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589968

ABSTRACT

BACKGROUND: Gastrodia elata Blume (GEB), a traditional medicinal herb, has been reported to have pharmacological effect including protection against liver, neuron and kidney toxicity. However, explanation of its underlying mechanisms remains a great challenge. This study investigated the protective effects of GEB extract on vancomycin (VAN)-induced nephrotoxicity in rats and underlying mechanisms with emphasis on the anti-oxidative stress, anti-inflammation and anti-apoptosis. The male Sprague-Dawley rats were randomly divided three groups: control (CON) group, VAN group and GEB group with duration of 14 days. RESULTS: The kidney weight and the serum levels of blood urea nitrogen and creatinine in the GEB group were lower than the VAN group. Histological analysis using hematoxylin & eosin and periodic acid Schiff staining revealed pathological changes of the VAN group. Immunohistochemical analysis revealed that the expression levels of N-acetyl-D-glucosaminidase, myeloperoxidase and tumor necrosis factor-alpha in the GEB group were decreased when compared with the VAN group. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells, phosphohistone and malondialdehyde levels were lower in the GEB group than VAN group. The levels of total glutathione in the GEB group were higher than the VAN group. CONCLUSIONS: The findings of this study suggested that GEB extract prevents VAN-induced renal tissue damage through anti-oxidation, anti-inflammation and anti-apoptosis.

10.
BMC Complement Med Ther ; 24(1): 148, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580956

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of stacked ß-amyloid peptides in the brain and associated with the generation of oxidative stress. So far, there is no cure for AD or a way to stop its progression. Although the neuroprotective effects of Ganoderma lucidum aqueous extract and G. lucidum-derived triterpenoids and polysaccharides have been reported, the influence of G. lucidum-fermented crops on AD still lacks clarity. METHODS: This study aimed to investigate the protective effect of G. lucidum-fermented crop extracts against hydrogen peroxide- or ß-amyloid peptide (Aß25-35)-induced damage in human neuroblastoma SH-SY5Y cells. RESULTS: Various extracts of G. lucidum-fermented crops, including extract A: 10% ethanol extraction using microwave, extract B: 70˚C water extraction, and extract C: 100˚C water extraction followed by ethanol precipitation, were prepared and analyzed. Extract B had the highest triterpenoid content. Extract C had the highest total glucan content, while extract A had the highest gamma-aminobutyric acid (GABA) content. The median inhibitory concentration (IC50, mg/g) for DPPH and ABTS scavenging activity of the fermented crop extracts was significantly lower than that of the unfermented extract. Pretreatment with these extracts significantly increased the cell viability of SH-SY5Y cells damaged by H2O2 or Aß25-35, possibly by reducing cellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels and increasing superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) activities. Moreover, extract B markedly alleviated the activity of acetylcholinesterase (AChE), which is crucial in the pathogenesis of AD. CONCLUSION: These results clearly confirmed the effects of G. lucidum-fermented crop extracts on preventing against H2O2- or Aß25-35-induced neuronal cell death and inhibiting AChE activity, revealing their potential in management of AD.


Subject(s)
Neuroblastoma , Reishi , Humans , Hydrogen Peroxide/toxicity , Acetylcholinesterase , Neuroblastoma/pathology , Antioxidants/pharmacology , Amyloid beta-Peptides/toxicity , Ethanol , Water
11.
Heliyon ; 10(8): e29205, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38638986

ABSTRACT

Spotted babylon were exposed to three different pH levels (7.0, 8.0 and 9.0) and four different concentrations of ammonia nitrogen (0.02, 1.02, 5.10 and 10.20 mg/L) in seawater to determine their acute toxicity and physiological responses to environmental fluctuation. The study evaluated four antioxidant enzymes: catalase (CAT), alkaline, superoxide dismutase (SOD), peroxidase (POD) and glutathione peroxidase (GSH-PX), and two immunoenzymes: acid phosphatase (ACP) and phosphatase (AKP). Over time, the immunoenzyme activity was significantly affected by pH and ammonia nitrogen concentration. After being exposed to pH and ammonia nitrogen, the spotted babylon showed signs of unresponsiveness to external stimuli, reduced vitality, slow movement, and an inability to maintain an upright position. Over time, the spotted babylon exhibited a trend of increasing and then decreasing GSH-PX, CAT, and SOD activities to adapt to the changing environment and enhance its immunity. On the contrary, the POD and ACP activities exhibited a decreasing trend initially, followed by an increasing trend over time and the AKP activity showed a gradual increase with time. The combined effect of pH and ammonia was found to be stronger than the effect of either factor alone. The interaction between pH and ammonia increased the activity of the spotted babylon antioxidant enzymes, induced oxidative stress, and reduced the ability of the spotted babylon's non-specific immune system to reverse it. Thus, the reverse-back of the spotted babylon was higher when pH and ammonia stress were dual than when pH or ammonia were single-factor stresses. The study results will establish a theoretical basis for analyzing the risk of multiple factors to the spotted babylon, and also enrich the basic information about the shellfish immune system.

12.
Foods ; 13(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38611371

ABSTRACT

In order to further realize the resource reuse of walnut meal after oil extraction, walnut meal was used as raw material to prepare polypeptide, and its angiotensin-converting enzyme (ACE) inhibitory activity was investigated. The ACE inhibitory peptides were prepared from walnut meal protein by alkaline solution and acid precipitation. The hydrolysis degree and ACE inhibition rate were used as indexes to optimize the preparation process by single-factor experiment and response surface method. The components with the highest ACE activity were screened by ultrafiltration, and their antioxidant activities were evaluated in vitro. The effect of gastrointestinal digestion on the stability of walnut peptide was analyzed by measuring molecular weight and ACE inhibition rate. The results showed that the optimal extraction conditions were pH 9.10, hydrolysis temperature 54.50 °C, and hydrolysis time 136 min. The ACE inhibition rate of walnut meal hydrolysate (WMH) prepared under these conditions was 63.93% ± 0.43%. Under the above conditions, the fraction less than 3 kDa showed the highest ACE inhibitory activity among the ACE inhibitory peptides separated by ultrafiltration. The IC50 value of scavenging ·OH free radical was 1.156 mg/mL, the IC50 value of scavenging DPPH free radical was 0.25 mg/mL, and the IC50 value of scavenging O2- was 3.026 mg/mL, showing a strong total reducing ability. After simulated gastrointestinal digestion in vitro, the ACE inhibitory rate of walnut peptide decreased significantly, but it still maintained over 90% ACE inhibitory activity. This study provides a reference for the application of low-molecular-weight walnut peptide as a potential antioxidant and ACE inhibitor.

13.
Nanomicro Lett ; 16(1): 185, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687410

ABSTRACT

Durable and efficient bi-functional catalyst, that is capable of both oxygen evolution reaction and hydrogen evolution reaction under acidic condition, are highly desired for the commercialization of proton exchange membrane water electrolysis. Herein, we report a robust L-Ru/HfO2 heterostructure constructed via confining crystalline Ru nanodomains by HfO2 matrix. When assembled with a proton exchange membrane, the bi-functional L-Ru/HfO2 catalyst-based electrolyzer presents a voltage of 1.57 and 1.67 V to reach 100 and 300 mA cm-2 current density, prevailing most of previously reported Ru-based materials as well as commercial Pt/C||RuO2 electrolyzer. It is revealed that the synergistic effect of HfO2 modification and small crystalline domain formation significantly alleviates the over-oxidation of Ru. More importantly, this synergistic effect facilitates a dual-site oxide path during the oxygen evolution procedure via optimization of the binding configurations of oxygenated adsorbates. As a result, the Ru active sites maintain the metallic state along with reduced energy barrier for the rate-determining step (*O→*OOH). Both of water adsorption and dissociation (Volmer step) are strengthened, while a moderate hydrogen binding is achieved to accelerate the hydrogen desorption procedure (Tafel step). Consequently, the activity and stability of acidic overall water splitting are simultaneously enhanced.

14.
Int J Cosmet Sci ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433250

ABSTRACT

OBJECTIVE: Erythema, characterized by the redness of the skin, is a common skin reaction triggered by various endogenous and exogenous factors. This response is often a result of the activation of underlying inflammatory mechanisms within the skin. The objective of this study is to investigate the potential benefits of applying a combination of skincare ingredients, namely allantoin, bisabolol, D-panthenol and dipotassium glycyrrhizinate (AB5D), in the modulation of inflammatory factors associated with erythema. Additionally, the study aims to elucidate the mechanisms by which these ingredients exert their combined actions to alleviate erythema-associated inflammation. METHODS: Human epidermal keratinocytes were exposed to UVB and subsequently treated with AB5D. Transcriptomics profiling was performed to analyse the dose-response effect of AB5D treatment on keratinocytes. The quantitation of inflammatory mediators, including PGE2 , IL-1α, IL-6, IL-8, IL-1RA and TNFα, was performed on cultured media. Additionally, the oxygen radical absorbance capacity (ORAC) assay was carried out to evaluate the total antioxidant capacity of both individual ingredients and the AB5D combination. To assess the in-vitro antioxidant effects of AB5D against UVB-induced oxidative stress in hTERT keratinocytes, real-time quantitation of mitochondrial superoxide was measured through live-cell imaging. RESULTS: The application of AB5D to UVB-exposed keratinocytes downregulated gene sets associated with inflammatory responses, highlighting the anti-inflammatory properties of AB5D. Specifically, AB5D effectively reduced the production of PGE2 , leading to the downregulation of inflammatory cytokines. Moreover, our findings indicate that AB5D exhibits antioxidative capabilities, functioning as both an antioxidant agent and a regulator of antioxidant enzyme expression to counteract the detrimental effects of cellular oxidative stress. CONCLUSION: We demonstrated that AB5D can reduce UVB-induced PGE2 , IL-1α, IL-6, IL-8, IL-1RA and TNFα as well as mitochondrial superoxide. These findings suggest that AB5D may alleviate erythema by modulating inflammation via PGE2 and through antioxidation mechanisms.


L'érythème, caractérisé par une rougeur sur la peau, est une réaction cutanée fréquente déclenchée par divers facteurs endogènes et exogènes. Il s'agit d'une réponse qui résulte souvent de l'activation des mécanismes inflammatoires sous-jacents dans la peau. OBJECTIF: cette étude vise à étudier les bénéfices potentiels de l'application d'une association d'ingrédients de soins cutanés, à savoir l'allantoïne, le bisabolol, le D-panthénol et le glycyrrhizinate dipotassique (AB5D) dans la modulation des facteurs inflammatoires associés à l'érythème. En outre, l'étude vise à élucider les mécanismes par lesquels ces ingrédients exercent leurs actions combinées pour soulager l'inflammation associée à l'érythème. MÉTHODES: les kératinocytes épidermiques humains ont été exposés aux UVB et traités par la suite par AB5D. Un profilage transcriptomique a été effectué pour analyser l'effet dose-réponse du traitement par AB5D sur les kératinocytes. La quantification des médiateurs inflammatoires, y compris PGE2, IL-1α, IL-6, IL-8, IL-1RA et TNFα, a été effectuée sur des milieux de culture. En outre, le dosage de la capacité d'absorption des radicaux oxygénés (Oxygen Radical Absorbance Capacity, ORAC) a été effectué pour évaluer la capacité antioxydante totale des deux ingrédients individuels et de l'association AB5D. Pour évaluer les effets antioxydants in vitro de l'AB5D contre le stress oxydatif induit par les UVB dans les kératinocytes hTERT, on a mesuré la quantification en temps réel du superoxyde mitochondrial par des tests d'imagerie des cellules vivantes. RÉSULTATS: l'application de l'AB5D aux ensembles de gènes régulés à la baisse exposés aux kératinocytes UVB associés à des réponses inflammatoires, a mis en évidence les propriétés anti-inflammatoires de l'AB5D. Plus précisément, l'AB5D a efficacement réduit la production de PGE2, entraînant une régulation négative des cytokines inflammatoires. En outre, nos résultats indiquent que l'AB5D présente des capacités antioxydantes. Il fonctionne à la fois comme un agent antioxydant et comme un régulateur de l'expression enzymatique antioxydante pour contrer les effets néfastes du stress oxydatif cellulaire. CONCLUSION: nous avons montré que l'AB5D pouvait réduire la PGE2 induite par les UVB, l'IL-1α, l'IL-6, IL-8, IL-1RA et le TNFα, ainsi que le superoxyde mitochondrial. Ces résultats suggèrent que l'AB5D pourrait soulager l'érythème en modulant l'inflammation via la PGE2 et via des mécanismes d'antioxydation.

15.
J Control Release ; 368: 318-328, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428530

ABSTRACT

Dry eye disease (DED) is a common and frequent ocular surface disease worldwide, which can cause severe ocular surface discomfort and blurred vision. Inflammation and reactive oxygen species (ROS) play decisive roles in the development of DED. However, existing treatments usually focus on anti-inflammation while ignore the role of ROS in DED. Ever worse, the clinical preparations are easily cleared by nasolacrimal ducts, resulting in poor therapeutic effect. To circumvent these obstacles, here we designed a phenylboronic acid (PBA) modified liposome co-loading immunosuppressant cyclosporin A (CsA) and antioxidant crocin (Cro). The CsA/Cro PBA Lip achieved mucoadhesion through the formation of covalent bonds between PBA and the sialic acid residues on mucin, and consequently improved the retention of drugs on the ocular surface. By inhibiting ROS production and blocking NF-κB inflammatory pathway, CsA/Cro PBA Lip successfully promoted the healing of damaged corneal epithelium, eventually achieving the goal of relieving DED. CsA/Cro PBA Lip is proven a simple yet effective dual-drug delivery system, exhibiting superior antioxidant and anti-inflammatory effects both in vitro and in vivo. This approach holds great potential in the clinical treatment of DED and other related mucosal inflammations.


Subject(s)
Dry Eye Syndromes , Liposomes , Humans , Liposomes/therapeutic use , Antioxidants/therapeutic use , Reactive Oxygen Species , Ophthalmic Solutions , Dry Eye Syndromes/drug therapy , Inflammation/drug therapy , Cyclosporine
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 244-251, 2024 Feb 20.
Article in Chinese | MEDLINE | ID: mdl-38501409

ABSTRACT

OBJECTIVE: To investigate the protective effect of total saponins of Panax japonicus (TSPJ) against CCl4-induced acute liver injury (ALI) in rats and explore the underlying pharmacological mechanisms. METHODS: Male SD rat models of CCl4-induced ALI were given intraperitoneal injections of distilled water, 100 mg/kg biphenyl bisabololol, or 50, 100, and 200 mg/kg TSPJ during modeling (n=8). Liver functions (AST, ALT, TBil and ALP) of the rats were assessed and liver pathologies were observed with HE staining. Immunohistochemistry was used to detect the expressions of PI3K/Akt/NF-κB signaling pathway molecules in liver tissue; ELISA was used to determine the levels of T-SOD, GSH-Px, and MDA. Western blotting was performed to detect the expression levels of PI3K-Akt and SIRT6-NF-κB pathways in the liver tissue. RESULTS: Network pharmacological analysis indicated that the key pathways including PI3K/Akt mediated the therapeutic effect of TSPJ on ALI. In the rat models of ALI, treatments with biphenyl bisabololol and TSPJ significantly ameliorated CCl4-induced increase of serum levels AST, ALT, ALP, TBil and MDA and decrease of T-SOD and GSH-Px levels (all P < 0.01). The rat models of ALI showed significantly increased expression of p-NF-κB (P < 0.01), decreased expressions of PI3K, p-Akt and SIRT6 proteins, and elevated expression levels of p-NF-κB, TNF-α and IL-6 proteins in the liver, which were all significantly improved in the treatment groups (P < 0.05 or 0.01). CONCLUSION: TSPJ can effectively alleviate CCl4-induced ALI in rats by suppressing inflammatory responses and oxidative stress in the liver via regulating the PI3K/Akt and SIRT6/NF-κB pathways.


Subject(s)
Biphenyl Compounds , Panax , Saponins , Sirtuins , Rats , Male , Animals , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Saponins/pharmacology , Saponins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Panax/metabolism , Rats, Sprague-Dawley , Signal Transduction , Liver/metabolism , Sirtuins/metabolism , Sirtuins/pharmacology , Superoxide Dismutase/metabolism
17.
Int J Biol Macromol ; 265(Pt 1): 130810, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484822

ABSTRACT

Polylactide/chlorogenic acid (PLA/CGA) blends with different weight ratios were prepared by melt mixing, and corresponding PLA/CGA fibers were produced via a two-step melt spinning process. For PLA/CGA blends, CGA was distributed uniformly in the PLA matrix. The intermolecular interactions between CGA and PLA existed. The viscosity of PLA/CGA blends was much lower than that of neat PLA. With the increase of CGA content, the viscosity of PLA/CGA blends decreased. As the CGA content increased, the crystallinity of both PLA/CGA blends and fibers decreased. In addition, the tensile strength of PLA/CGA fibers was slightly lower than that of neat PLA fiber. For PLA/CGA fibers, the 6-fold drawn PLA/CGA fiber with 3 % CGA owned the highest tensile strength of 420 MPa. The ultraviolet (UV) resistance of PLA/CGA fibers were enhanced significantly by the introduction of CGA. When the CGA content was not <3 %, the UV transmittance of PLA/CGA fibers was <8 %. Moreover, PLA/CGA fibers exhibited good antioxidant properties. PLA/CGA fibers with 10 % CGA owned the highest antioxidant rate of >90 %. In addition, the 6-fold drawn PLA/CGA fiber with 10 % CGA presented excellent release performance with a 7-day cumulative CGA release rate of 19 %.


Subject(s)
Antioxidants , Chlorogenic Acid , Polyesters/chemistry , Freezing
18.
Phytomedicine ; 128: 155446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518643

ABSTRACT

BACKGROUND: Influenza viral pneumonia is a common complication after influenza virus infection. Xijiao Dihuang Decoction combined with Yinqiao Powder (XDY) is effective on improving influenza viral pneumonia. PURPOSE: This study further explores the anti-inflammatory mechanism of XDY in the treatment of influenza viral pneumonia. STUDY DESIGN: The effects of XDY on inflammation, autophagy, NACHT-LRR-PYD-containing protein 3 (NLRP3) inflammasome and pyroptosis were assessed in the mice with influenza viral pneumonia. In addition, the mouse macrophage cell line (J774A.1) infected with influenza virus was adopted to decode the in vitro effects of XDY on autophagy, reactive oxygen species (ROS), NLRP3 inflammasome and pyroptosis. We analyzed the XDY-induced autophagy, especially the mitophagy-related ROS clearance, and the subsequent inhibition of ROS/NLRP3 inflammasome/pyroptosis signaling in the infected macrophages by different assays based on quantitative polymerase chain reaction, western blot, flow cytometry, immunofluorescence and enzyme-linked immunosorbent assay. RESULTS: In vivo, XDY could effectively improve the lung inflammatory response in the mice with influenza virus pneumonia, due to an intact autophagy flux-promoting effect and the inhibiting roles on NLRP3 inflammasome and pyroptosis. Notably, in vitro, compared with the infected macrophages treated by the NLRP3 inflammasome agonist (Monosodium urate) or the mitochondrial-targeted antioxidant agent, the XDY-dependent treating could inhibit pyroptosis by negatively regulating the signaling axis of ROS/NLRP3 inflammasome/pyroptosis in the influenza virus-infected macrophages. More interestingly, XDY could promote an intact autophagy flux, inducing mitophagy eliminating the damaged mitochondria to reduce the intracellular ROS accumulation, and thus decrease the oxidative stress in the infected macrophages. Especially, the inhibitor of autophagy inition, 3-Methyladenine, could reverse the inhibitory effect of XDY on ROS-NLRP3 inflammasome-mediated pyroptosis, indicating an XDY-promoted mitophagy-dependent ROS scavenging. CONCLUSION: XDY can promote an intact autophagy flux to eliminate damaged mitochondria, namely mitophagy, which reduces the intracellular ROS accumulation contributing to NLRP3 inflammasome activation, restricting pyroptosis and eventually alleviating the influenza virus-induced inflammatory lesions. The obtained results provide new insights into the mechanism of action of XDY in alleviating influenza virus pneumonia, especially the roles of XDY in anti-oxidation, anti-inflammation and anti-pyroptosis, with potential therapeutic targets for future application in integrative medicine.


Subject(s)
Autophagy , Drugs, Chinese Herbal , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Reactive Oxygen Species , Animals , Drugs, Chinese Herbal/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , Reactive Oxygen Species/metabolism , Mice , Autophagy/drug effects , Orthomyxoviridae Infections/drug therapy , Inflammasomes/metabolism , Inflammasomes/drug effects , Macrophages/drug effects , Macrophages/metabolism , Cell Line , Mice, Inbred C57BL , Male , Lung/drug effects , Lung/virology
19.
Pediatr Surg Int ; 40(1): 80, 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38493431

ABSTRACT

BACKGROUND AND AIM: Necrotizing Enterocolitis (NEC) is an inflammation-associated ischemic necrosis of the intestine. To investigate the effects of extra virgin olive oil (EVOO) on inflammation, oxidative stress, apoptosis, and histological changes in NEC-induced newborn rats. MATERIALS AND METHODS: 24 rats were randomly divided into three groups: control, NEC and NEC + EVOO. NEC induction was performed using hypoxia-hyperoxia, formula feeding, and cold stress. The NEC + EVOO group received 2 ml/kg EVOO with high phenolic content by gavage twice a day for 3 days. 3 cm of bowel including terminal ileum, cecum, and proximal colon was excised. RESULTS: Weight gain and clinical disease scores were significantly higher in the NEC + EVOO group than in the NEC group (p < 0.001). EVOO treatment caused significant decreases in IL1ß, IL6 levels (p = 0.016, p = 0.029 respectively) and EGF, MDA levels (p = 0.032, p = 0.013 respectively) compared to NEC group. Significant decreases were observed in IL6 gene expression in the NEC + EVOO group compared to the NEC group (p = 0.002). In the group NEC + EVOO, the number of Caspase-3 positive cells was found to be significantly reduced (p < 0.001) and histopathological examination revealed minimal changes and significantly lower histopathological scores (p < 0.001). CONCLUSION: Phenol-rich EVOO prevents intestinal damage caused by NEC by inhibiting inflammation, oxidative stress, apoptosis.


Subject(s)
Enterocolitis, Necrotizing , Interleukin-6 , Rats , Animals , Olive Oil/therapeutic use , Olive Oil/pharmacology , Interleukin-6/metabolism , Enterocolitis, Necrotizing/pathology , Oxidative Stress , Apoptosis , Inflammation , Phenols/pharmacology , Phenols/therapeutic use , Models, Theoretical , Animals, Newborn
20.
Adv Sci (Weinh) ; 11(17): e2309392, 2024 May.
Article in English | MEDLINE | ID: mdl-38403451

ABSTRACT

MXene-based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti-oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long-term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene-based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water-soluble polymers; while the HSi molecules can act as efficient cross-linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long-term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long-term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene-coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance.

SELECTION OF CITATIONS
SEARCH DETAIL
...