Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Life Sci ; 350: 122767, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38843993

ABSTRACT

AIMS: Candida albicans is the most prevalent pathogenic fungus, exhibiting escalating multidrug resistance (MDR). Antimicrobial peptides (AMPs) represent promising candidates for addressing this issue. In this research, five antimicrobial peptides, ACP1 to ACP5 which named ACPs were studied as alternative fungicidal molecules. MAIN METHODS: CD assay was used to analyze the 2D structures, Absorbance method was used to test the antimicrobial activity, haemolytic activity, time-kill kinetics, biofilm inhibition and reduction activity, resistance induction activity and assessment against fluconazole-resistant C. albicans. SEM, TEM, CLSM, flow cytometer and FM were carried out to provide insight into the mechanisms of anti-Candida action. KEY FINDINGS: ACPs possessed an α-helical structure and strong anti-Candida activities, with minimum inhibitory concentrations (MICs) from 3.9 to 15.6 µg/mL. In addition, ACPs did not produce hemolysis at concentrations lower than 10 or 62 × MIC, indicating their low cytotoxicity. Fungicidal kinetics showed that they completely killed C. albicans within 8 h at 2 to 4 × MIC. Notably, ACPs were highly fungicidal against fluconazole-resistant C. albicans and showed low resistance. In addition, they were effective in inhibiting mycelium and biofilm formation. Fluorescence microscopy revealed that while fluconazole had minimal to no inhibitory effect on biofilm-forming cells, ACPs induced apoptosis in all of them. The research on mechanism of action revealed that ACPs disrupted the cell membranes, with ROS increasing and cellular mitochondrial membrane potential decreasing. SIGNIFICANCE: ACPs could be promising candidates for combating fluconazole-resistant C. albicans infections.


Subject(s)
Antifungal Agents , Antimicrobial Peptides , Biofilms , Candida albicans , Fluconazole , Microbial Sensitivity Tests , Candida albicans/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Biofilms/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Fluconazole/pharmacology , Drug Resistance, Fungal/drug effects , Hemolysis/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects
2.
Fundam Clin Pharmacol ; : e13007, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738393

ABSTRACT

Candida spp. is an opportunistic pathogen capable of causing superficial to invasive infections. Morphological transition is one of the main virulence factors of this genus and, therefore, is an important variable to be considered in pharmacological interventions. Riparins I, II, III, and IV are alkamide-type alkaloids extracted from the unripe fruit of Aniba riparia, whose remarkable pharmacological properties were previously demonstrated. This work aimed to evaluate in silico and in vitro the inhibitory effects of Riparins on the morphological transition of Candida albicans, Candida tropicalis, and Candida krusei. Molecular docking was applied to analyze the inhibitory effects of riparins against proteins such as N-acetylglucosamine, CYP-51, and protein kinase A (PKA) using the Ramachandran plot. The ligands were prepared by MarvinSketch and Spartan software version 14.0, and MolDock Score and Rerank Score were used to analyze the affinity of the compounds. In vitro analyses were performed by culturing the strains in humid chambers in the presence of riparins or fluconazole (FCZ). The morphology was observed through optical microscopy, and the size of the hyphae was determined using the ToupView software. In silico analysis demonstrated that all riparins are likely to interact with the molecular targets: GlcNAc (>50%), PKA (>60%), and CYP-51 (>70%). Accordingly, in vitro analysis showed that these compounds significantly inhibited the morphological transition of all Candida strains. In conclusion, this study demonstrated that riparins inhibit Candida morphological transition and, therefore, can be used to overcome the pathogenicity of this genus.

3.
Arch Microbiol ; 206(6): 257, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734773

ABSTRACT

There is a growing imperative for research into alternative compounds for the treatment of the fungal infections. Thus, many studies have focused on the analysis of antifungal proteins and peptides from different plant sources. Among these molecules are protease inhibitors (PIs). Previously, PIs present in the peptide-rich fractions called PEF1, PEF2 and PEF3 were identified from Capsicum chinense seeds, which have strong activity against phytopathogenic fungi. The aim of this study was to evaluate the mechanism of action and antimicrobial activity of PIs from PEF2 and PEF3 on the growth of yeasts of the genus Candida. In this work, analyses of their antimicrobial activity and cell viability were carried out. Subsequently, the mechanism of action by which the PIs cause the death of the yeasts was evaluated. Cytotoxicity was assessed in vitro by erythrocytes lysis and in vivo in Galleria mellonella larvae. PEF2 and PEF3 caused 100% of the growth inhibition of C. tropicalis and C. buinensis. For C. albicans inhibition was approximately 60% for both fractions. The PEF2 and PEF3 caused a reduction in mitochondrial functionality of 54% and 46% for C. albicans, 26% and 30% for C. tropicalis, and 71% and 68% for C. buinensis, respectively. These fractions induced morphological alterations, led to membrane permeabilization, elevated ROS levels, and resulted in necrotic cell death in C. tropicalis, whilst demonstrating low toxicity toward host cells. From the results obtained here, we intend to contribute to the understanding of the action of PIs in the control of fungal diseases of medical importance.


Subject(s)
Antifungal Agents , Candida , Protease Inhibitors , Antifungal Agents/pharmacology , Candida/drug effects , Candida/growth & development , Protease Inhibitors/pharmacology , Microbial Sensitivity Tests , Animals , Capsicum/microbiology , Reactive Oxygen Species/metabolism , Seeds/growth & development , Plant Extracts/pharmacology , Plant Extracts/chemistry , Erythrocytes/drug effects , Larva/microbiology , Larva/growth & development , Larva/drug effects
4.
J Inorg Biochem ; 256: 112572, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38691971

ABSTRACT

Recognizing that metal ions play an important role in modifying the pharmacological properties of known organic-based drugs, the present manuscript addresses the complexation of the antifungal agent voriconazole (vcz) with the biologically relevant silver(I) ion as a strategy for the development of new antimycotics. The synthesized silver(I) complexes with vcz were characterized by mass spectrometry, IR, UV-Vis and NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystallographic results showed that complexes {[Ag(vcz)(H2O)]CH3SO3}n (1), {[Ag(vcz)2]BF4}n (2) and {[Ag(vcz)2]PF6}n (3) have polymeric structures in the solid state, in which silver(I) ions have a distorted tetrahedral geometry. On the other hand, DFT calculations revealed that the investigated silver(I) complexes 1-3 in DMSO exist as linear [Ag(vcz-N2)(vcz-N19)]+ (1a), [Ag(vcz-N2)(vcz-N4)]+ (2a) and [Ag(vcz-N4)2]+ (3a) species, respectively. The evaluated complexes showed an enhanced anti-Candida activity compared to the parent drug with minimal inhibitory concentration (MIC) values in the range of 0.02-1.05 µM. In comparison with vcz, the corresponding silver(I) complexes showed better activity in prevention hyphae and biofilm formation of C. albicans, indicating that they could be considered as promising agents against Candida that significantly inhibit its virulence. Also, these complexes are much better inhibitors of ergosterol synthesis in the cell membrane of C. albicans at the concentration of 0.5 × MIC. This is also confirmed by a molecular docking, which revealed that complexes 1a - 3a showed better inhibitory activity than vcz against the sterol 14α-demethylase enzyme cytochrome P450 (CYP51B), which plays a crucial role in the formation of ergosterol.


Subject(s)
Antifungal Agents , Coordination Complexes , Microbial Sensitivity Tests , Silver , Voriconazole , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Voriconazole/pharmacology , Voriconazole/chemistry , Silver/chemistry , Silver/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Candida albicans/drug effects , Candida/drug effects , Crystallography, X-Ray
5.
Int J Antimicrob Agents ; 63(6): 107172, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608845

ABSTRACT

OBJECTIVES: This study aimed to discover novel antifungals targeting Candida albicans glyceraldehyde-3-phosphate dehydrogenase (CaGAPDH), have an insight into inhibitory mode, and provide evidence supporting CaGAPDH as a target for new antifungals. METHODS: Virtual screening was utilized to discover inhibitors of CaGAPDH. The inhibitory effect on cellular GAPDH was evaluated by determining the levels of ATP, NAD, NADH, etc., as well as examining GAPDH mRNA and protein expression. The role of GAPDH inhibition in C. albicans was supported by drug affinity responsive target stability and overexpression experiments. The mechanism of CaGAPDH inhibition was elucidated by Michaelis-Menten enzyme kinetics and site-specific mutagenesis based on docking. Chemical synthesis was used to produce an improved candidate. Different sources of GAPDH were used to evaluate inhibitory selectivity across species. In vitro and in vivo antifungal tests, along with anti-biofilm activity, were carried out to evaluate antifungal potential of GAPDH inhibitors. RESULTS: A natural xanthone was identified as the first competitive inhibitor of CaGAPDH. It demonstrated in vitro anti-C. albicans potential but also caused hemolysis. XP-W, a synthetic side-chain-optimized xanthone, demonstrated a better safety profile, exhibiting a 50-fold selectivity for CaGAPDH over human GAPDH. XP-W also exhibited potent anti-biofilm activity and displayed broad-spectrum anti-Candida activities in vitro and in vivo, including multi-azole-resistant C. albicans. CONCLUSIONS: These results demonstrate for the first time that CaGAPDH is a valuable target for antifungal drug discovery, and XP-W provides a promising lead.


Subject(s)
Antifungal Agents , Candida albicans , Glyceraldehyde-3-Phosphate Dehydrogenases , Xanthones , Candida albicans/drug effects , Candida albicans/enzymology , Xanthones/pharmacology , Xanthones/chemistry , Antifungal Agents/pharmacology , Glyceraldehyde-3-Phosphate Dehydrogenases/antagonists & inhibitors , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Animals , Biofilms/drug effects , Microbial Sensitivity Tests , Humans , Candidiasis/drug therapy , Candidiasis/microbiology , Molecular Docking Simulation , Enzyme Inhibitors/pharmacology , Mice , Drug Discovery
6.
Antibiotics (Basel) ; 12(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37998767

ABSTRACT

The increasing antifungal resistance rates against conventional drugs reveal the urgent need to search for new therapeutic alternatives. In this context, natural bioactive compounds have a critical role in antifungal drug development. Since evidence demonstrates that abietic acid, a diterpene found in Pinus species, has significant antimicrobial properties, this study aimed to evaluate the antifungal activity of abietic acid against Candida spp and its ability to potentiate the activity of fluconazole. Abietic acid was tested both individually and in combination with fluconazole against Candida albicans (CA INCQS 40006), Candida krusei (CK INCQS 40095), and Candida tropicalis (CT INCQS 40042). The microdilution method was used to determine the IC50 and the cell viability curve. Minimum Fungicidal Concentration (MFC) was determined by subculture in a solid medium. The plasma membrane permeability was measured using a fluorescent SYTOX Green probe. While the IC50 of the drugs alone ranged between 1065 and 3255 µg/mL, the IC50 resulting from the combination of abietic acid and fluconazole ranged between 7563 and 160.1 µg/mL. Whether used in combination with fluconazole or isolated, abietic acid exhibited Minimum Fungicidal Concentration (MFC) values exceeding 1024 µg/mL against Candida albicans, Candida krusei and Candida tropicalis. However, it was observed that the antifungal effect of fluconazole was enhanced when used in combination with abietic acid against Candida albicans and Candida tropicalis. These findings suggest that while abietic acid alone has limited inherent antifungal activity, it can enhance the effectiveness of fluconazole, thereby reducing antifungal resistance.

7.
Molecules ; 28(19)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37836777

ABSTRACT

A comparative study on essential oils extracted from Mentha suaveolens Ehrh. from Italy is reported. Two extraction procedures were investigated: hydrodistillation and steam distillation, carried out as a continuous and fractionated procedure. Fresh and dried plant material from two harvests was used. The hydrodistillation method yielded a higher amount of essential oil. The dried plant was significantly richer in essential oil per kg of starting plant material. Gas chromatography-mass spectrometry analysis of 112 samples showed that the essential oils belong to the piperitenone oxide-rich chemotype. In addition, piperitenone, p-cymen-8-ol, and limonene were among the most abundant compounds in the different samples. A higher amount of piperitenone oxide was obtained by hydrodistillation, while steam distillation gave a higher percentage of piperitenone and limonene. The essential oils were characterized for their anti-Candida albicans activity; higher potency was observed for the samples rich in piperitenone oxide, with MIC values ranging from 0.39 to 0.78 mg·mL-1 (0.039% and 0.078% p/v). The results of this work provide a deep insight into the methodology of essential oil extraction and the associated chemical variability of M. suaveolens Ehrh. Some of the essential oils are potent against C. albicans and could be considered for potential use in therapy.


Subject(s)
Mentha , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Candida , Limonene , Mentha/chemistry , Distillation , Steam , Candida albicans
8.
Molecules ; 28(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37570651

ABSTRACT

Nanoencapsulation is widely considered as a highly effective strategy to enhance essential oils' (EO) stability by protecting them from oxidative deterioration and evaporation. The present study aims to optimize and characterize an efficient technique for encapsulating Cinnamomum (C.) verum essential oil into chitosan nanoparticles using response surface methodology (RSM). Moreover, the optimized C. verum EO nanoparticle was investigated for its antibacterial (against Gram-positive and Gram-negative bacteria), antifungal (against Candida albicans), and antiparasitic activity (against Leishmania parasites). Five parameters were investigated using a Plackett-Burman and Box-Behnken statistical design: the chitosan molecular weight, TPP concentration, C. verum EO/chitosan ratio, mixing method, and the duration of the reaction. Encapsulation efficiency and anti-candida activity were considered as responses. The antibacterial, anticandidal, and anti-leishmanial activities were also assessed using a standard micro-broth dilution assay and the cytotoxicity assay was assessed against the macrophage cell line RAW 264.7. The optimized nanoparticles were characterized using Fourier transform infrared spectroscopy, Zeta potential, and scanning electron microscopy. The study results indicated that under optimal conditions, the nanoencapsulation of C. verum EO into chitosan nanoparticles resulted in an encapsulation efficiency of 92.58%, with a regular distribution, a nanoparticle size of 480 ± 14.55 nm, and a favorable Zeta potential of 35.64 ± 1.37 mV. The optimized C. verum EO/chitosan nanoparticles showed strong antifungal activity against C. albicans pathogens (CMI = 125 µg mL-1), notable antibacterial activity against both Gram-positive and Gram-negative bacteria (ranging from 125 to 250 µg mL-1), high leishmanicidal potential against the promastigotes form of L. tropica and L. major (IC50 = 10.47 and 15.09 µg mL-1, respectively), and a four-fold cytotoxicity reduction compared to non-encapsulated essential oil. These results suggest that C. verum EO-loaded chitosan nanoparticles could be a promising delivery system for the treatment of cutaneous Candida albicans infections.


Subject(s)
Chitosan , Nanoparticles , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Candida , Cinnamomum zeylanicum/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Chitosan/pharmacology , Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Positive Bacteria , Candida albicans , Nanoparticles/chemistry
9.
Nat Prod Res ; 37(14): 2466-2471, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35707900

ABSTRACT

Furofuran lignanes show important biological activities for the treatment of infectious diseases, inflammatory and metabolic pathologies. They have been isolated from leaves and barks of many plants. In Chile the native conifer Araucaria araucana produces eudesmin, matairesinol, secoisolariciresinol and lariciresinol in stemwood, branchwood and knotwood. These compounds were previously isolated by laborious flash chromatography on silica gel. Here we report the easy isolation of eudesmin by soxhlet extraction from milled knots of Araucaria araucana with hexane, followed by cryo-crystallization at -20 °C. Upon bromination of the isolated eudesmin epimerization at one benzylic position occurs, giving epieudesmin and the corresponding mono and di-brominated derivatives. The structures were determined by 1D, 2D NMR and X-ray diffraction. The analysis of products against Candida yeast showed that eudesmin has a moderate activity against different strains of Candida from 62.5 to 500 µg/mL. This activity decreases for epieudesmin, while bromine derivatives are not active.


Subject(s)
Araucaria araucana , Bromine , Candida , Halogenation
10.
Rev. argent. microbiol ; 54(4): 91-100, dic. 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1422970

ABSTRACT

Abstract Diverse habitats have been screened for novel antimicrobial actinomycetes, while others remain unexplored. In this study, we analyzed the bioactivities of actinomycetes cul-tured from rhizosphere soils of the desert plant Artemisia tridentata and the nearby bulk soils. Actinomycetes were screened for antifungal and antibacterial activities toward a panel of plant pathogens; all comparisons were between activities of rhizosphere soil isolates toward those of its counterpart bulk soil. A selected group of the strongest antifungal isolates were also tested against two antifungal-drug resistant strains of Candida albicans. 16S rDNA partial sequences and phylogenetic analysis of isolates that showed broad-spectrum antifungal activities were performed. Forty-two out of 200 and two soil isolated actinomycetes were selected for their strong antifungal activities. The highest proportion of isolates (p <0.05) from rhizosphere soil of an old plant showed antagonism against gram-positive bacteria (0.483 and 0.224 propor-tions against Bacillus subtilis and Rathayibacter tritici, respectively), and phytopathogenic fungi (0.259, 0.431, and 0.345 proportions against Fusarium oxysporum, Rhizoctonia solani and Pythium ultimum, respectively), while the highest antagonism against the gram-negative bacteria predominated in isolates from the bulk soils. Isolates from a rhizosphere soil of a young plant were characterized for strong antagonist activities against Fusarium oxysporum (0.333 proportion, p<0.05). Phylogenetic analysis of 16S rDNA sequences showed that isolates that exhibited strong antifungal activity were genetically similar. We conclude that the rhizosphere soil of A. tridentata is an excellent source for discovery of actinomycetes with potentially novel antifungal compounds.


Resumen En la búsqueda de actinomicetos antimicrobianos se han estudiado diversos hábitats, pero muchos permanecen aún sin explorar. En este estudio analizamos las actividades biológicas de cultivos de actinomicetos provenientes de suelos rizosféricos de la planta desértica Artemisia tridentata y de suelos no asociados a sus raíces. Los actinomicetos fueron seleccionados por sus actividades antifúngicas y antibacterianas contra un panel de patógenos de plantas. Todas las comparaciones fueron entre las actividades de los aislados rizosféricos y aquellas de los aislados no asociados a las raíces. Un grupo selecto de los aislados con las mayores actividades antifúngicas fueron también evaluados contra 2 cepas de Candida albicans resistentes a antifúngicos. Se realizó la secuenciación parcial del ARNr 16S y el análisis filogenético de los aislados que mostraron actividades antifúngicas de amplio espectro. Se seleccionaron 42 de 202 actinomicetos aislados por sus fuertes actividades antifúngicas. La mayor proporción de aislados de suelo rizosférico de plantas viejas mostraron antagonismo contra bacterias gram positivas y hongos fitopatógenos (proporciones de 0,259; 0,431 y 0,345 contra Fusarium oxyspo-rum, Rhizoctonia solani y Pythium ultimum, respectivamente), mientras que la mayor actividad antagónica contra las bacterias gram negativas predominaron en aislados de suelo no asociado a raíces. Los aislados de suelo rizosférico de plantas jóvenes se caracterizaron por una fuerte actividad antagónica contra F. oxysporum (proporción de 0,333, p < 0,05). El análisis filogenético de secuencias del ADNr 16S mostró que los aislados que presentaron fuerte actividad antifúng-ica fueron genéticamente similares. Concluimos que el suelo rizosférico de A. tridentata es una fuente excelente para el descubrimiento de actinomicetos productores de compuestos antifúngicos potencialmente novedosos.

11.
Molecules ; 27(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36080417

ABSTRACT

Infections caused by micro-organisms of the genus Candida are becoming a growing health problem worldwide. These fungi are opportunistic commensals that can produce infections-clinically known as candidiasis-in immunocompromised individuals. The indiscriminate use of different anti-fungal treatments has triggered the resistance of Candida species to currently used therapies. In this sense, propolis has been shown to have potent antimicrobial properties and thus can be used as an approach for the inhibition of Candida species. Therefore, this work aims to evaluate the anti-Candida effects of a propolis extract obtained from the north of Mexico on clinical isolates of Candida species. Candida species were specifically identified from oral lesions, and both the qualitative and quantitative anti-Candida effects of the Mexican propolis were evaluated, as well as its inhibitory effect on C. albicans isolate's germ tube growth and chemical composition. Three Candida species were identified, and our results indicated that the inhibition halos of the propolis ranged from 7.6 to 21.43 mm, while that of the MFC and FC50 ranged from 0.312 to 1.25 and 0.014 to 0.244 mg/mL, respectively. Moreover, the propolis was found to inhibit germ tube formation (IC50 ranging from 0.030 to 1.291 mg/mL). Chemical composition analysis indicated the presence of flavonoids, including pinocembrin, baicalein, pinobanksin chalcone, rhamnetin, and biochanin A, in the Mexican propolis extract. In summary, our work shows that Mexican propolis presents significant anti-Candida effects related to its chemical composition, and also inhibits germ tube growth. Other Candida species virulence factors should be investigated in future research in order to determine the mechanisms associated with antifungal effects against them.


Subject(s)
Candida , Propolis , Antifungal Agents/pharmacology , Candida albicans , Humans , Mexico , Microbial Sensitivity Tests , Plant Extracts/chemistry , Propolis/chemistry , Propolis/pharmacology
12.
Biochim Biophys Acta Gen Subj ; 1866(11): 130218, 2022 11.
Article in English | MEDLINE | ID: mdl-35905923

ABSTRACT

BACKGROUND: Antimicrobial peptides, natural or synthetic, appear as promising molecules for antimicrobial therapy because of their both broad antimicrobial activity and mechanism of action. Herein, we determine the anti-Candida and antimycobacterial activities, mechanism of action on yeasts, and cytotoxicity on mammalian cells in the presence of the bioinspired peptide CaDef2.1G27-K44. METHODS: CaDef2.1G27-K44 was designed to attain the following criteria: high positive net charge; low molecular weight (<3000 Da); Boman index ≤2.5; and total hydrophobic ratio ≥ 40%. The mechanism of action was studied by growth inhibition, plasma membrane permeabilization, ROS induction, mitochondrial functionality, and metacaspase activity assays. The cytotoxicity on macrophages, monocytes, and erythrocytes were also determined. RESULTS: CaDef2.1G27-K44 showed inhibitory activity against Candida spp. with MIC100 values ranging from 25 to 50 µM and the standard and clinical isolate of Mycobacterium tuberculosis with MIC50 of 33.2 and 55.4 µM, respectively. We demonstrate that CaDef2.1G27-K44 is active against yeasts at different salt concentrations, induced morphological alterations, caused membrane permeabilization, increased ROS, causes loss of mitochondrial functionality, and activation of metacaspases. CaDef2.1G27-K44 has low cytotoxicity against mammalian cells. CONCLUSIONS: The results obtained showed that CaDef2.1G27-K44 has great antimicrobial activity against Candida spp. and M. tuberculosis with low toxicity to host cells. For Candida spp., the treatment with CaDef2.1G27-K44 induces a process of regulated cell death with apoptosis-like features. GENERAL SIGNIFICANCE: We show a new AMP bioinspired with physicochemical characteristics important for selectivity and antimicrobial activity, which is a promising candidate for drug development, mainly to control Candida infections.


Subject(s)
Anti-Infective Agents , Fruit , Animals , Anti-Bacterial Agents , Candida , Defensins , Mammals , Peptides , Reactive Oxygen Species
13.
Rev Argent Microbiol ; 54(4): 326-334, 2022.
Article in English | MEDLINE | ID: mdl-35725666

ABSTRACT

Diverse habitats have been screened for novel antimicrobial actinomycetes, while others remain unexplored. In this study, we analyzed the bioactivities of actinomycetes cultured from rhizosphere soils of the desert plant Artemisia tridentata and the nearby bulk soils. Actinomycetes were screened for antifungal and antibacterial activities toward a panel of plant pathogens; all comparisons were between activities of rhizosphere soil isolates toward those of its counterpart bulk soil. A selected group of the strongest antifungal isolates were also tested against two antifungal-drug resistant strains of Candida albicans. 16S rDNA partial sequences and phylogenetic analysis of isolates that showed broad-spectrum antifungal activities were performed. Forty-two out of 200 and two soil isolated actinomycetes were selected for their strong antifungal activities. The highest proportion of isolates (p<0.05) from rhizosphere soil of an old plant showed antagonism against gram-positive bacteria (0.483 and 0.224 proportions against Bacillus subtilis and Rathayibacter tritici, respectively), and phytopathogenic fungi (0.259, 0.431, and 0.345 proportions against Fusarium oxysporum, Rhizoctonia solani and Pythium ultimum, respectively), while the highest antagonism against the gram-negative bacteria predominated in isolates from the bulk soils. Isolates from a rhizosphere soil of a young plant were characterized for strong antagonist activities against Fusarium oxysporum (0.333 proportion, p<0.05). Phylogenetic analysis of 16S rDNA sequences showed that isolates that exhibited strong antifungal activity were genetically similar. We conclude that the rhizosphere soil of A. tridentata is an excellent source for discovery of actinomycetes with potentially novel antifungal compounds.


Subject(s)
Actinobacteria , Artemisia , Streptomyces , Phylogeny , Soil Microbiology , Antifungal Agents , Artemisia/genetics , Artemisia/microbiology , Actinomyces/genetics , Actinobacteria/genetics , Rhizosphere , Soil , DNA, Ribosomal/genetics , Plant Diseases/microbiology
14.
Foods ; 11(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35206065

ABSTRACT

Kiwi fruit samples (Actinidia deliciosa Planch, cv. Hayward) represent a suitable and good source for fibers obtainment as well as for polyphenolic and carotenoid extraction. With this aim, in this study they were submitted to a double phase extraction to separate insoluble fibers by an organic phase containing lipophilic substances and an hydroalcoholic phase containing polyphenols and soluble fibers. Insoluble fibers could be separated by filtration and sent to be micronized and reused. Hydroalcoholic fractions were then furtherly fractionated by solid-phase extraction. Data coming from the color CIEL*a*b* and the HPLC-DAD analyses of the extracts were compared and correlate with those coming from the SPME-GC/MS analysis of either the finely shredded peels or of the extracts. The obtained extracts were also submitted to anti-radical activity evaluation and anti-Candida activity. Results show that all of the obtained residues are value added products. Hypotheses were also made about the nature and the possible recycle of the obtained purified solid residue.

15.
Chem Biodivers ; 19(3): e202100757, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35092349

ABSTRACT

Candida species are responsible for causing invasive candidiasis with high mortality rate and their resistance to available antifungal drugs is a major clinical challenge. Biotransformation process of the labdane diterpene ent-labd-8(17)-en-15,18-dioic acid (1) carried out with Cunninghamella elegans afforded five new derivatives (compounds 2-6). Unusual regioselective hydroxylation of the methyl group at the C-20 position of labdane-type diterpene was achieved and all compounds were subjected to cytotoxicity and antifungal evaluations. Compound 1 and its derivatives were not cytotoxic to normal (MCF-10A) and tumor (MCF-7) cell lines. Compounds 2 and 3 exhibited fungistatic activity against all tested Candida strains at lower concentrations than fluconazole. Both compounds also showed the strongest fungicidal activity against C. albicans, which is the most prevalent fungal agent involved in candidemia.


Subject(s)
Candida , Diterpenes , Antifungal Agents/pharmacology , Biotransformation , Candida/metabolism , Cunninghamella , Diterpenes/metabolism , Diterpenes/pharmacology , Fluconazole , Microbial Sensitivity Tests
16.
Article in English | WPRIM (Western Pacific) | ID: wpr-988258

ABSTRACT

Aims@#The rise of drug-resistant infectious diseases worldwide has spurred experts' interest in developing safe and effective alternative medicine. Melaleuca cajuputi extracts have been shown to exhibit antimicrobial activity in vitro against various bacterial species. This study evaluated the antimicrobial activity of local M. cajuputi leaf extracts (MCEs) against Candida albicans.@*Methodology and results@#Phytoconstituents of aqueous and ethanolic MCEs were screened conventionally using chemical tests. Broth microdilution assay and scanning electron microscope (SEM) were performed to study the anti-Candida activity of the extracts. Both MCEs contained terpenoids, phenols, flavonoids and tannins. Aqueous and ethanolic MCEs showed good fungicidal activity against the tested organism with minimum inhibitory concentration (MIC) values of 50 mg/mL and 25 mg/mL, respectively and a minimum fungicidal concentration (MFC) to MIC ratio of less or equal to 2. Scanning electron micrographs revealed yeast cell surface morphology alterations when treated with both MCEs at 1× MIC.@*Conclusion, significance and impact of study@#In conclusion, MCEs have anti-Candida properties and thus, M. cajuputi extract could be an excellent potential source of natural antimicrobial agents for disease remedies.


Subject(s)
Anti-Infective Agents , In Vitro Techniques , Trees
17.
Pharmaceutics ; 13(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34683994

ABSTRACT

Candida is a common agent of infection in humans, which has a wide distribution and is a colonizer fungus of the body, occasionally assuming the role of a pathogen. The type of treatment depends on the site of infection and the clinical condition of the patient. Superficial infections, such as mucosal infections, can be treated with topical medications. So-called alternative therapies have rarely been studied, although the literature records the effectiveness of some treatments, especially as complementary therapy. The aims of this review were to analyze evidence of the anti-Candida inhibitory activity of essential oils of the Citrus, Cupressus, Litsea, and Melaleuca species; in addition to addressing the chemical composition, probable mechanisms of antifungal action and studies of toxicity, cytotoxicity, and genotoxicity were included. The literature from Medline/PubMed, Science Direct, Scopus, Web of Science, and the Brazilian database Periodic Capes was reviewed. Thirty-eight articles were selected, which included two articles on Litsea spp., seven on Cupressus spp., thirteen articles on Citrus spp., and twenty-one articles on Melaleuca spp. In conclusion, this study showed in vitro evidence for the use of essential oils of the plant species evaluated for the treatment of infections caused by different Candida species.

18.
Chem Biol Drug Des ; 98(5): 903-913, 2021 11.
Article in English | MEDLINE | ID: mdl-34480517

ABSTRACT

This work describes the synthesis, anti-Candida, and molecular modeling studies of eighteen new glucosyl-1,2,3-triazoles derived from eugenol and correlated phenols. The new compounds were characterized by combined Fourier Transform Infrared, 1 H and 13 C nuclear magnetic resonance and spectroscopy of high-resolution mass spectrometry. The synthesized compounds did not show significant cytotoxicity against healthy fibroblast human cells (MCR-5) providing interesting selectivity indexes (SI) to active compounds. Considering the antifungal activity, nine compounds showed anti-Candida potential and the peracetylated triazoles 17 and 18 were the most promising ones. Eugenol derivative 17 was active against three species of Candida at 26.1-52.1 µM. This compound was four times more potent than fluconazole against Candida krusei and less toxic (SI > 6.6) against the MCR-5 cells than fluconazole (SI > 3.3) considering this strain. Dihydroeugenol derivative 18 showed similar activity to 17 and was four times more potent and less toxic than fluconazole against C. krusei. The deacetylated glucosides and non-glucosylated corresponding derivatives did not show considerable antifungal action, suggesting that the acetyl groups are essential for their anti-Candida activity. Molecular docking coupled with molecular dynamics showed that 14α-lanosterol demethylase is a feasible molecular target, since 17 and 18 could bind to this enzyme once deacetylated in vivo, thereby acting as prodrugs. Also, these studies demonstrated the importance of hydrophobic substituents at the phenyl ring.


Subject(s)
Antifungal Agents/chemical synthesis , Eugenol/chemistry , Triazoles/chemical synthesis , Antifungal Agents/pharmacology , Apoptosis/drug effects , Candida/drug effects , Cell Survival/drug effects , Drug Evaluation, Preclinical , Fibroblasts/cytology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Structure-Activity Relationship , Triazoles/pharmacology
19.
Pharmaceutics ; 13(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209453

ABSTRACT

BACKGROUND: Probiotic bacteria have been emerging as a trustworthy choice for the prevention and treatment of Candida spp. infections. This study aimed to develop and characterize an orodispersible film (ODF) for delivering the potentially probiotic Enterococcus faecium CRL 183 into the oral cavity, evaluating its in vitro antifungal activity against Candida albicans. METHODS AND RESULTS: The ODF was composed by carboxymethylcellulose, gelatin, and potato starch, and its physical, chemical, and mechanical properties were studied. The probiotic resistance and viability during processing and storage were evaluated as well as its in vitro antifungal activity against C. albicans. The ODFs were thin, resistant, and flexible, with neutral pH and microbiologically safe. The probiotic resisted the ODF obtaining process, demonstrating high viability (>9 log10 CFU·g-1), up to 90 days of storage at room temperature. The Probiotic Film promoted 68.9% of reduction in fungal early biofilm and 91.2% in its mature biofilm compared to the group stimulated with the control film. Those results were confirmed through SEM images. CONCLUSION: The probiotic ODF developed is a promising strategy to prevent oral candidiasis, since it permits the local probiotic delivery, which in turn was able to reduce C. albicans biofilm formation.

20.
Molecules ; 26(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808822

ABSTRACT

Strawberries, belonging to cultivar Clery (Fragaria × ananassa Duchesne ex Weston) and to a graft obtained by crossing Clery and Fragaria vesca L., were chosen for a study on their health potential, with regard to the prevention of chronic and degenerative diseases. Selected samples, coming from fresh and defrosted berries, submitted to different homogenization techniques combined with thermal and microwave treatments, had been previously analyzed in their polyphenolic content and antioxidant capacity. In the present work, these homogenates were evaluated in relation to their enzymatic inhibition activity towards acetylcholinesterase and butyrylcholinesterase, α-amylase, α-glucosidase and tyrosinase. All these enzymes, involved in the onset of diabetes, and neurodegenerative and other chronic diseases, were modulated by the tested samples. The inhibitory effect on tyrosinase and cholinesterase was the most valuable. Antifungal activity against Candida albicans, recently shown to play a crucial role in human gut diseases as well as diabetes, rheumatoid arthritis and Alzheimer's disease, was also shown in vitro and confirmed by the in vivo text on Galleria mellonella. Overall, the obtained results confirm once again the health potential of strawberries; however, the efficacy is dependent on high quality products submitted to correct processing flow charts.


Subject(s)
Antifungal Agents , Candida/enzymology , Fragaria/chemistry , Fruit/chemistry , Fungal Proteins/antagonists & inhibitors , Glycoside Hydrolase Inhibitors , Polyphenols , alpha-Amylases/antagonists & inhibitors , alpha-Glucosidases , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Polyphenols/chemistry , Polyphenols/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...