Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34.358
Filter
1.
J Environ Sci (China) ; 147: 582-596, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003073

ABSTRACT

As an emerging environmental contaminant, antibiotic resistance genes (ARGs) in tap water have attracted great attention. Although studies have provided ARG profiles in tap water, research on their abundance levels, composition characteristics, and potential threat is still insufficient. Here, 9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. Additionally, 75 sets of environmental sample data (9 types) were downloaded from the public database. Metagenomics was then performed to explore the differences in the abundance and composition of ARGs. 221 ARG subtypes consisting of 17 types were detected in tap water. Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs, their composition varied. In tap water samples, the three most abundant classes of resistance genes were multidrug, fosfomycin and MLS (macrolide-lincosamide-streptogramin) ARGs, and their corresponding subtypes ompR, fosX and macB were also the most abundant ARG subtypes. Regarding the potential mobility, vanS had the highest abundance on plasmids and viruses, but the absence of key genes rendered resistance to vancomycin ineffective. Generally, the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline. Although the current potential threat to human health posed by ARGs in tap water is limited, with persistent transfer and accumulation, especially in pathogens, the potential danger to human health posed by ARGs should not be ignored.


Subject(s)
Drinking Water , Drug Resistance, Microbial , Metagenomics , Drug Resistance, Microbial/genetics , Drinking Water/microbiology , China , Environmental Monitoring , Anti-Bacterial Agents/pharmacology , Water Microbiology
2.
Pak J Med Sci ; 40(6): 1151-1157, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952496

ABSTRACT

Objective: Metallic copper alloys have gained attention recently as a cutting-edge antibacterial weapon for areas where surface hygiene is crucial. The present study aimed to assess copper coupons (99% Cu) for their potential to decrease the viability of various Enterobacteriaceae strains from inanimate hospital surfaces. Methods: This in vitro-experimental study was conducted at the Microbiology Laboratory, Faculty of Natural and Life Sciences and Earth and Universe Sciences, University of Guelma, and Khodja Ahmed Public Hospital Establishment, Algeria, for a period of six months from January to May 2022. A total of 85 samples were collected from patient room door handles and bed rails at the government hospital in Guelma State, from which 12 enterobacterial isolates were obtained. These isolates were evaluated for susceptibility to copper and polyvinyl chloride (PVC) coupons using plate counts to determine bacterial viability after 72 hours of incubation at 37°C or room temperature (25°C). Antibiotic sensitivity testing was then carried out using a modified Kirby-Bauer disc diffusion method. Copper coupons' ability to either select for or create antibiotic resistance is also determined. Results: Copper showed a bactericidal effect after three hours for Serratia odorifera and six hours for Escherichia coli. Whereas it was shown that within three days of selection, 83.33% of Enterobacteriaceae strains are capable of rapidly acquiring Cu resistance. Indeed, the increase in temperature reduced the effects of Cu (p<0.05; Student's t-test). Antimicrobial susceptibility testing revealed that the copper-resistant bacteria were less sensitive than their predecessors. Citrobacter freundii strains showed the highest incidence of multidrug resistance. The most significant findings included widespread resistance to beta-lactams (100%-75%) and chloramphenicol (66.67%). Conclusion: These results suggest that prolonged copper usage may contribute to the development of antibiotic resistance, which could have significant ramifications.

3.
Cureus ; 16(5): e61424, 2024 May.
Article in English | MEDLINE | ID: mdl-38953074

ABSTRACT

Introduction Pulmonary tuberculosis (TB) remains a global health concern, exacerbated by the emergence of extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis. This study employs advanced molecular techniques, specifically polymerase chain reaction (PCR) profiling, to comprehensively characterize the genetic landscape of XDR pathogenic bacteria in patients diagnosed with pulmonary TB. The objective of the study is to elucidate the genes that are associated with drug resistance in pulmonary TB strains through the application of PCR and analyze specific genetic loci that contribute to the development of resistance against multiple drugs. Materials and methods A total of 116 clinical samples suspected of TB were collected from the tertiary healthcare setting of Saveetha Medical College and Hospitals for the identification of MTB, which includes sputum (n = 35), nasal swabs (n = 17), blood (n = 44), and bronchoalveolar lavage (BAL) (n = 20). The collected specimens were processed and subjected to DNA extraction. As per the protocol, reconstitution of the DNA pellet was carried out. The reconstituted DNA was stored at -20 °C for the PCR assay. From the obtained positive sample specimens, XDR pulmonary TB specimens were focused on the targeted genes, specifically the rpoB gene for rifampicin resistance, inhA, and katG gene for thepromoter region for isoniazid resistance. Results Out of a total of 116 samples obtained, 53 tested positive for pulmonary TB, indicative of a mycobacterial infection. Among these positive cases, 43 patients underwent treatment at a tertiary healthcare facility. Subsequently, a PCR assay was performed with the extracted DNA for the target genes rpoB, inhA, and katG. Specifically, 22 sputum samples exhibited gene expression for rpoB, inhA, and katG, while nine nasal swabs showed expression of the rpoB and inhA genes. Additionally, rpoB gene expression was detected in seven blood specimens, and both rpoB and inhA genes were expressed in five BAL samples. Conclusion The swift diagnosis and efficient treatment of XDR-TB can be facilitated by employing advanced and rapid molecular tests and oral medication regimens. Utilizing both newly developed and repurposed anti-TB drugs like pretomanid, bedaquiline, linezolid, and ethionamide. Adhering to these current recommendations holds promise for managing XDR-TB effectively. Nevertheless, it is significant to conduct well-designed clinical trials and studies to further evaluate the efficacy of new agents and shorter treatment regimens, thus ensuring continuous improvement in the management of this challenging condition.

4.
Front Pharmacol ; 15: 1395673, 2024.
Article in English | MEDLINE | ID: mdl-38953105

ABSTRACT

Group B streptococcal (GBS) is a Gram-positive bacterium that is commonly found in the gastrointestinal tract and urogenital tract. GBS infestation during pregnancy is a significant contributor to maternal and neonatal morbidity and mortality globally. This article aims to discuss the infectious diseases caused by GBS in the field of obstetrics and gynecology, as well as the challenges associated with the detection, treatment, and prevention of GBS.

5.
Microbiol Spectr ; : e0040224, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953323

ABSTRACT

Delayed time to antimicrobial susceptibility results can impact patients' outcomes. Our study evaluated the impact of susceptibility turnaround time (TAT) and inadequate empiric antibacterial therapy (IET) in patients with bloodstream infections (BSI) caused by Enterobacterales (ENT) species on in-hospital mortality and length of stay (LOS). This retrospective, multicenter investigation which included 29,570 blood ENT-positive admissions across 161 US healthcare facilities evaluated the association between antimicrobial susceptibility testing (AST) TAT, carbapenem susceptibility, and empiric therapy on post-BSI in-hospital mortality and LOS following an ENT BSI event in adult patients. After adjusting for outcomes covariates, post-BSI in-hospital mortality was significantly higher for patients in the IET vs adequate empiric therapy (AET) group [odds ratio (OR): 1.61 (95% CI: 1.32, 1.98); P < 0.0001], and when AST TAT was >63 h [OR:1.48 (95% CI: 1.16, 1.90); P = 0.0017]. Patients with carbapenem non-susceptible (carb-NS) ENT BSI had significantly higher LOS (16.6 days, 95% CI: 15.6, 17.8) compared to carbapenem susceptible (carb-S, 12.2 days, 95% CI: 11.8, 12.6), (P < 0.0001). Extended AST TAT was significantly associated with longer LOS for TAT of 57-65 h and >65 h (P = 0.005 and P< 0.0001, respectively) compared to TAT ≤42 h (reference). Inadequate empiric therapy (IET), carb-NS, and delayed AST TAT are significantly associated with adverse hospital outcomes in ENT BSI. Workflows that accelerate AST TAT for ENT BSIs and facilitate timely and adequate therapy may reduce post-BSI in-hospital mortality rate and LOS.IMPORTANCEFor patients diagnosed with bloodstream infections (BSI) caused by Enterobacterales (ENT), delayed time to antimicrobial susceptibility (AST) results can significantly impact in-hospital mortality and hospital length of stay. However, this relationship between time elapsed from blood culture collection to AST results has only been assessed, to date, in a limited number of publications. Our study focuses on this important gap using retrospective data from 29,570 blood ENT-positive admissions across 161 healthcare facilities in the US as we believe that a thorough understanding of the dynamic between AST turnaround time, adequacy of empiric therapy, post-BSI event mortality, and hospital length of stay will help guide effective clinical management and optimize outcomes of patients with ENT infections.

6.
Antimicrob Agents Chemother ; : e0069824, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953622

ABSTRACT

In contrast to the epidemiology 10 years earlier at our hospital when the epidemic restriction endonuclease analysis (REA) group strain BI accounted for 72% of Clostridioides difficile isolates recovered from first-episode C. difficile infection (CDI) cases, BI represented 19% of first-episode CDI isolates in 2013-2015. Two additional REA group strains accounted for 31% of isolates (Y, 16%; DH, 12%). High-level resistance to fluoroquinolones and azithromycin was more common among BI isolates than among DH, Y, and non-BI/DH/Y isolates. Multivariable analysis revealed that BI cases were 2.47 times more likely to be associated with fluoroquinolone exposure compared to non-BI cases (95% confidence interval [CI]: 1.12-5.46). In addition, the odds of developing a CDI after third- or fourth-generation cephalosporin exposure was 2.83 times for DH cases than for non-DH cases (95% CI: 1.06-7.54). Fluoroquinolone use in the hospital decreased from 2005 to 2015 from a peak of 113 to a low of 56 antimicrobial days/1,000 patient days. In contrast, cephalosporin use increased from 42 to 81 antimicrobial days/1,000 patient days. These changes correlated with a decrease in geometric mean MIC for ciprofloxacin (61.03 to 42.65 mg/L, P = 0.02) and an increase in geometric mean MIC for ceftriaxone (40.87 to 86.14 mg/L, P < 0.01) among BI isolates. The BI strain remained resistant to fluoroquinolones, but an overall decrease in fluoroquinolone use and increase in cephalosporin use were associated with a decrease in the prevalence of BI, an increased diversity of C. difficile strain types, and the emergence of strains DH and Y.

7.
Environ Geochem Health ; 46(8): 266, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954124

ABSTRACT

Recently, the hazardous effects of antibiotic micropollutants on the environment and human health have become a major concern. To address this challenge, semiconductor-based photocatalysis has emerged as a promising solution for environmental remediation. Our study has developed Bi2WO6/g-C3N4 (BWCN) photocatalyst with unique characteristics such as reactive surface sites, enhanced charge transfer efficiency, and accelerated separation of photogenerated electron-hole pairs. BWCN was utilized for the oxidation of tetracycline antibiotic (TCA) in different water sources. It displayed remarkable TCA removal efficiencies in the following order: surface water (99.8%) > sewage water (88.2%) > hospital water (80.7%). Further, reusability tests demonstrated sustained performance of BWCN after three cycles with removal efficiencies of 87.3, 71.2 and 65.9% in surface water, sewage, and hospital water, respectively. A proposed photocatalytic mechanism was delineated, focusing on the interaction between reactive radicals and TCA molecules. Besides, the transformation products generated during the photodegradation of TCA were determined, along with the discussion on the potential risk assessment of antibiotic pollutants. This study introduces an approach for utilizing BWCN photocatalyst, with promising applications in the treatment of TCA from various wastewater sources.


Subject(s)
Anti-Bacterial Agents , Oxidation-Reduction , Tetracycline , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents/chemistry , Tetracycline/chemistry , Catalysis , Wastewater/chemistry , Bismuth/chemistry , Graphite/chemistry , Nitrogen Compounds/chemistry , Tungsten Compounds/chemistry , Photolysis , Water Purification/methods , Sewage/chemistry
8.
Infection ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954392

ABSTRACT

Pseudomonas aeruginosa is one of the most common nosocomial pathogens and part of the top emergent species associated with antimicrobial resistance that has become one of the greatest threat to public health in the twenty-first century. This bacterium is provided with a wide set of virulence factors that contribute to pathogenesis in acute and chronic infections. This review aims to summarize the impact of multidrug resistance on the virulence and fitness of P. aeruginosa. Although it is generally assumed that acquisition of resistant determinants is associated with a fitness cost, several studies support that resistance mutations may not be associated with a decrease in virulence and/or that certain compensatory mutations may allow multidrug resistance strains to recover their initial fitness. We discuss the interplay between resistance profiles and virulence from a microbiological perspective but also the clinical consequences in outcomes and the economic impact.

9.
J Hazard Mater ; 476: 135074, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38954855

ABSTRACT

Sulfamethoxazole (SMX) is frequently detected in wastewater where anammox applications are promising. While it has been demonstrated that anammox consortia can adapt to SMX stress, the underlying community adaptation strategy has not yet been fully addressed. Therefore, in this study, we initially ascertained anammox consortia's ability to co-metabolize SMX in batch tests. Then, a 200-day domestication process of anammox consortia under SMX stress was carried out with community variations and transcriptional activities monitored by metagenomic and metatranscriptomic sequencing techniques. Despite the initial drop to 41.88 %, the nitrogen removal efficiency of the anammox consortia rebounded to 84.64 % post-domestication under 5 mg/L SMX. Meanwhile, a 4.85-fold accumulation of antibiotic resistance genes (ARGs) under SMX stress was observed as compared to the control group. Interestingly, the anammox consortia may unlock the SMX-inhibited folate synthesis pathway through a novel interspecies cooperation triangle among Nitrospira (NAA), Desulfobacillus denitrificans (DSS1), and the core anammox population Candidatus Brocadia sinica (AMX1), in which the modified dihydropteroate synthase (encoded by sul1) of NAA reconnected the symbiotic cooperation between AMX1 and DSS1. Overall, this study provides a new model for the adaptation strategies of anammox consortia to SMX stress.

10.
Pediatr Surg Int ; 40(1): 170, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955876

ABSTRACT

INTRODUCTION: The aim of this study was to find statistically valid criteria to preoperatively divide acute appendicitis into simple and complicated to enable surgeons to administer the most appropriate antibiotic prophylaxis/therapy before surgery. MATERIALS AND METHODS: We retrospectively reviewed a cohort of patients who underwent appendectomy from January 2022 to December 2023. Patients included were 0-14 years of age. Exclusion criteria included patients who underwent interval appendectomy or concurrent procedures at the same time of appendectomy. We divided patients into two groups: simple (group S) and complicated (group C) appendicitis according to intraoperative finding. Generalized linear model (GLM) with logit function was developed to identify the predictive variables of the type of appendicitis (S vs C) in terms of CRP value, neutrophils percentage and WBC count adjusted for age and sex of patients. Finally, principal component analysis (PCA) was carried out to identify the cutoff value of statistically significant variables found in the previous analysis. RESULTS: One hundred and twenty patients were eligible (N female = 49, N male = 71) for the study. 74 and 46 patients were included in groups S and C, respectively. In a preliminary analysis using univariate and multivariate GLM, only CRP (p value = < 0.001) and neutrophils percentage (p value = 0.02) were predictive variables for the type of appendicitis. The GLM shows a statistical lower value of CRP (adjusted odds ratio [OR] per unit, 0.17 [95% CI, 0.08-0.39]) and neutrophil percentage (adjusted OR per unit, 0.37 [95% CI, 0.16-0.86]) in the S group compared to C adjusted to age and sex. PCA analysis revealed a P-ROC cutoff of 4.2 mg/dl and 80.1 of CRP value (AUC = 84%) and neutrophil percentage (AUC = 70%), respectively. CONCLUSIONS: We will perform a prospective study giving preoperative prophylactic cefazolin to patients with a CRP value under 4.2 mg/dl and amoxicillin-clavulanate therapy to patient with CRP value over 4.2 mg/dl.


Subject(s)
Anti-Bacterial Agents , Antibiotic Prophylaxis , Appendectomy , Appendicitis , Humans , Appendicitis/surgery , Female , Male , Retrospective Studies , Child , Appendectomy/methods , Adolescent , Antibiotic Prophylaxis/methods , Child, Preschool , Anti-Bacterial Agents/therapeutic use , Infant , Preoperative Care/methods , Acute Disease
11.
Foodborne Pathog Dis ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957952

ABSTRACT

Despite heavy contamination of the Bogotá River with domestic and industrial waste, it remains vital for various purposes, including agricultural use at La Ramada Irrigation District. There are important concerns regarding pathogen concentrations in irrigation water at La Ramada, including the presence of antibiotic-resistant Salmonella spp. This study aimed to estimate the risk of Salmonella-related illness from consuming lettuce irrigated with Bogotá River water at La Ramada. We collected lettuce samples from 4 different sites, all irrigated with water from La Ramada. The methodology involved a process to detach Salmonella spp. from lettuce leaves, quantification through plate counts on SS agar, and establishment of antibiotic-resistant bacteria concentrations through growth on media supplemented with ampicillin or ciprofloxacin. The results showed concentrations of Salmonella spp. of 103.59,102.66, and 104.56 CFU/g lettuce at sites 1, 2, and 3, respectively, and ampicillin-resistant Salmonella spp. of 101.93, 101.31, and 102.07 CFU/g lettuce at sites 1, 2, and 3, respectively. No colonies were obtained from lettuce samples collected from site 4. Notably, we detected no isolates resistant to ciprofloxacin at any of the sites. Salmonella spp. concentrations varied greatly among sampling sites. Salmonella spp. concentrations were used to predict the daily probability of illness, with a probability of 0.59 (0.33 to 0.78, CI 95%) for Salmonella spp. and 0.3 (0.03 to 0.53, CI 95%) for ampicillin-resistant Salmonella spp.

12.
Article in English | MEDLINE | ID: mdl-38957972

ABSTRACT

Background: The prophylactic use of antibiotics in parotid region surgery continues to be a subject of debate. The aim of this study is to elucidate the impact of antibiotic prophylaxis on surgical site infections (SSIs) in parotid region surgery. Patients and Methods: Patients who received antibiotic prophylaxis during the peri-operative period were designated as group 1, whereas those who did not were categorized into group 2. Group 1 cases were further subdivided into three subgroups based on different antibiotic usage patterns. Patient individual information was collected. Clinical data such as surgical duration, post-operative hospital stay, incision infection status, and antibiotic usage were recorded. All data were compared and analyzed among different groups. Results: A total of 357 patients were included in the study, with no statistically significant differences in baseline characteristics. Pre-operative American Society of Anesthesiologists scores did not significantly differ between groups (p = 0.151), but there was a significant distinction in National Nosocomial Infection Surveillance (NNIS) index values (p = 0.044). Furthermore, surgical duration (p = 0.001) and pathology types (p = 0.016) differed significantly. The post-operative hospital stay in group 1 was longer than that in group 2 (p < 0.01). The post-operative SSI rate in group 1 was lower than that in group 2 without statistical significance (2.55% vs. 5.59%, p = 0.141). The logistic regression analysis showed that malignant tumors, longer surgical durations, and higher NNIS index scores correlated positively with post-operative SSI rates. Meanwhile, compared with non-use, all three different antibiotic use modes correlated negatively with SSI occurrence. Conclusions: Antibiotic prophylaxis in parotid gland surgery shows no significant reduction in SSI occurrence. If there is a compelling reason to administer prophylactic antibiotics, pre-operative single dose may be a relatively feasible measure for preventing SSIs.

13.
Article in English | MEDLINE | ID: mdl-38957977

ABSTRACT

Background: Post-partum infection is a major contributor to maternal mortality and is responsible for approximately 10% of maternal fatalities worldwide. The risk of infection is substantially higher in cesarean section procedures. Approximately 8% of women who undergo cesarean sections are susceptible to infection. Although the body of evidence supporting the regular pre-operative utilization of prophylactic antibiotic treatment is steadily expanding, its usefulness in cesarean sections has not yet been standardized, and post-partum infection is still a serious medical challenge. We aimed to retrospectively assess the prophylactic effectiveness of cefazolin in combination with other antibiotic agents in cesarean sections. Materials and Methods: Both uni-variable and multi-variable analyses were conducted to identify factors that may affect cefazolin pre-operative antibiotic prophylaxis in elective cesarean section operations. The uni-variable analysis included timing of administration, operation duration, body mass index (BMI), and wound type. A multi-variable logistic regression model was then created to determine which variables provide independent information in the context of other variables. Results: Time of administration did not affect prophylactic cefazolin efficacy. However, prophylactic cefazolin was 1.43 and 1.77 times more effective when the operation lasted for 45 minutes or more, compared with operations that were shorter than 45 minutes. Patients with a BMI ranging from 18 to 29 kg/m2 showed increased efficacy of prophylactic cefazolin compared with obese patients with a BMI exceeding 30 kg/m2. The effectiveness of prophylactic cefazolin decreased by 95% in patients with clean-contaminated surgical incisions compared with those with clean surgical incisions. Conclusions: Our findings demonstrate that administering pre-operative prophylactic antibiotic agents to women undergoing cesarean section resulted in a reduction in post-partum infections, thereby reducing maternal mortality. Furthermore, optimal timing of administration, re-dosing if necessary, length of prophylactic medication, and dosing adjustments for obese patients are crucial factors in preventing surgical site infections and promoting antimicrobial stewardship.

14.
Dent Med Probl ; 61(3): 373-383, 2024.
Article in English | MEDLINE | ID: mdl-38958119

ABSTRACT

BACKGROUND: Dentists, through inappropriate antibiotic prescription, may contribute to the global problem of antibiotic resistance (AR). OBJECTIVES: Understanding dentists' antibiotic prescription patterns, source of knowledge, and the driving forces behind their prescription practices may be crucial for the effective implementation of the rational use of antibiotics (RUA) in dentistry. MATERIAL AND METHODS: Active members of the Turkish Dental Association were invited to participate in an electronic survey comprising questions focusing on their role, knowledge and perceptions regarding RUA, the perceived barriers to adapting RUA in daily dental work, and the actual antibiotic prescription practices. The potential impact of age, gender, professional experience, and the mode of dental practice was also evaluated. Dentists' prescription practices for periodontal disease/conditions were evaluated as well. RESULTS: Based on 1,005 valid responses, there was consensus on the necessity of RUA (99.1%); however, its implementation was low. The main barriers were dentists' own safety concerns (74.4%), strong patients' demands (42.2%) and the fact that prescribing antibiotics became a professional habit (35.8%). Different educational background resulted in clear variances in everyday prescription practices. CONCLUSIONS: The implementation of RUA was not sufficient and the perceived barriers had an impact on daily prescribing habits. Support for dental professionals through the efficient dissemination of evidencebased clinical guidelines and decision-making aids is likely to require additional help from professional organizations in order to actively combat AR.


Subject(s)
Anti-Bacterial Agents , Practice Patterns, Dentists' , Humans , Anti-Bacterial Agents/therapeutic use , Practice Patterns, Dentists'/statistics & numerical data , Surveys and Questionnaires , Male , Female , Adult , Middle Aged , Turkey , Health Knowledge, Attitudes, Practice , Attitude of Health Personnel , Inappropriate Prescribing/statistics & numerical data
15.
Environ Res ; 259: 119521, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960350

ABSTRACT

Tetracycline (TC) and ciprofloxacin (CF) induce a synergistic effect that alters the biochemical composition, leading to a decrease in the growth and photosynthetic efficiency of microalgae. But the current study provides a novel insight into stress-inducing techniques that trigger a change in macromolecules, leading to an increase in the bioenergy potential and pathogen resistance of Chlorella variabilis biofilm. The study revealed that in a closed system, a light intensity of 167 µmol/m2/s causes 93.5% degradation of TC and 16% degradation of CF after 7 days of exposure, hence availing the products for utilization by C. variabilis biofilm. The resistance to pathogens invasion was linked to 85% and 40% increase in the expression level of photosystem II oxygen-evolving enhancer protein 3 (PsbQ), and mitogen activated kinase (MAK) respectively. The results also indicate that a surge in light intensity triggers 49% increase in the expression level of lysophosphatidylcholine (LPC) (18:2), which is an important lipidomics that can easily undergo transesterification into bioenergy. The thermogravimetric result indicates that the biomass sample of C. variabilis biofilm cultivated under light intensity of 167 µmol/m2/s produces a higher residual mass of 45.5% and 57.5 under air and inert conditions, respectively. The Fourier transform infrared (FTIR) indicates a slight shift in the major functional groups, while the energy-dispersive X-ray spectroscopy (SEM-EDS) and X-ray fluorescence (XRF) indicate clear differences in the morphology and elemental composition of the biofilm biomass in support of the increase bioenergy potential of C. variabilis biofilm. The current study provides a vital understanding of a innovative method of cultivation of C. variabilis biofilm, which is resistant to pathogens and controls the balance between fatty acid and TAG synthesis leading to surge in bioenergy potential and environmental sustainability.

16.
Heliyon ; 10(11): e32468, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961914

ABSTRACT

A simple method to generate antibacterial peptides by alkaline hydrolysis of hen egg whites is reported. The method reproducibly generates short peptides with molecular weight of less than 14.4 kDa that exhibit low to no cytotoxicity on RAW 264.7 macrophage cells, but do inhibit the bacterial growth of Cutibacterium acnes (C. acnes), Staphylococcus aureus (S. aureus) and antibiotic-resistant S. aureus (MRSA), while also reducing nitric oxide production from heat-killed C. acnes-treated RAW 264.7 cells. Peptidomics revealed at least thirty peptides within the complex mixture, of which eight were evaluated individually. Three peptides (PK8, EE9 and RP8) were potent anti-inflammation and antibacterial agents, but notably the complex egg white hydrolysate (EWH) was more effective than the individual peptides. Electron microscopy suggests the antibacterial mechanism of both the hydrolysate and the selected peptides is through disruption of the cell membrane of C. acnes. These findings suggest that EWH and EWH-derived peptides are promising candidates for infection and inflammation treatment, particularly in managing acne and combating antibiotic-resistant bacteria like MRSA.

18.
Prev Vet Med ; 230: 106263, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38964210

ABSTRACT

Reducing the inappropriate use of antibiotics in food animals is a global priority to address antimicrobial resistance (AMR). We investigated practices and factors associated with antibiotic use in small-scale commercial broiler farms in Lilongwe district, Malawi. We used structured questionnaires to collect data on recent antibiotic use practices among 128 broiler farmers, who kept between 50 and 1 000 birds, from December 2022 to March 2023. Logistic regression analysis was used to identify risk factors associated with antibiotic use. Over half (53.1 %, n=68) of the farms reported using antibiotics at least once in the previous production cycle. Overall, 11 different types of antibiotics were used either for treatment and/or preventive purposes, with oxytetracycline (88.2 %), erythromycin (29.4 %), and enrofloxacin (26.5 %) reported as the frequently used. One-third of all antibiotic formulations contained multiple active antibiotic ingredients, with 12 % containing four antibiotics. Covariates associated with an increased likelihood of antibiotic use include disease incidence (OR=13.8, 95 % CI 5.27-42.50, p<0.001) and entry of wild birds into poultry houses (OR=3.56, 95 % CI =1.44-9.61, p=0.008). Our study highlights inappropriate usage of antibiotics, largely associated with reduced biosecurity and disease incidence. These findings underscore the need to strengthen veterinary services, reinforce regulations on antibiotic access and use, and farmer education programs promoting proper husbandry, biosecurity, and responsible antibiotic use.

19.
Article in English | MEDLINE | ID: mdl-38965080

ABSTRACT

Aclarubicin (aclacinomycin A) is one of the anthracycline antineoplastic antibiotics with a multifaceted mechanism of antitumor activity. As a second-generation drug, it offers several advantages compared to standard anthracycline drugs such as doxorubicin or daunorubicin, which could position it as a potential blockbuster drug in antitumor therapy. Key mechanisms of action for aclarubicin include the inhibition of both types of topoisomerases, suppression of tumor invasion processes, generation of reactive oxygen species, inhibition of chymotrypsin-like activity, influence on cisplatin degradation, and inhibition of angiogenesis. Therefore, aclarubicin appears to be an ideal candidate for antitumor therapy. However, despite initial interest in its clinical applications, only a limited number of high-quality trials have been conducted thus far. Aclarubicin has primarily been evaluated as an induction therapy in acute myeloid and lymphoblastic leukemia. Studies have indicated that aclarubicin may hold significant promise for combination therapies with other anticancer drugs, although further research is needed to confirm its potential. This paper provides an in-depth exploration of aclarubicin's diverse mechanisms of action, its pharmacokinetics, potential toxicity, and the clinical trials in which it has been investigated.

20.
Microb Genom ; 10(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38967541

ABSTRACT

Outbreaks of methicillin-resistant Staphylococcus aureus (MRSA) are well described in the neonatal intensive care unit (NICU) setting. Genomics has revolutionized the investigation of such outbreaks; however, to date, this has largely been completed retrospectively and has typically relied on short-read platforms. In 2022, our laboratory established a prospective genomic surveillance system using Oxford Nanopore Technologies sequencing for rapid outbreak detection. Herein, using this system, we describe the detection and control of an outbreak of sequence-type (ST)97 MRSA in our NICU. The outbreak was identified 13 days after the first MRSA-positive culture and at a point where there were only two known cases. Ward screening rapidly defined the extent of the outbreak, with six other infants found to be colonized. There was minimal transmission once the outbreak had been detected and appropriate infection control measures had been instituted; only two further ST97 cases were detected, along with three unrelated non-ST97 MRSA cases. To contextualize the outbreak, core-genome single-nucleotide variants were identified for phylogenetic analysis after de novo assembly of nanopore data. Comparisons with global (n=45) and national surveillance (n=35) ST97 genomes revealed the stepwise evolution of methicillin resistance within this ST97 subset. A distinct cluster comprising nine of the ten ST97-IVa genomes from the NICU was identified, with strains from 2020 to 2022 national surveillance serving as outgroups to this cluster. One ST97-IVa genome presumed to be part of the outbreak formed an outgroup and was retrospectively excluded. A second phylogeny was created using Illumina sequencing, which considerably reduced the branch lengths of the NICU isolates on the phylogenetic tree. However, the overall tree topology and conclusions were unchanged, with the exception of the NICU outbreak cluster, where differences in branch lengths were observed. This analysis demonstrated the ability of a nanopore-only prospective genomic surveillance system to rapidly identify and contextualize an outbreak of MRSA in a NICU.


Subject(s)
Disease Outbreaks , Intensive Care Units, Neonatal , Methicillin-Resistant Staphylococcus aureus , Nanopore Sequencing , Phylogeny , Staphylococcal Infections , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/classification , Humans , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Infant, Newborn , Nanopore Sequencing/methods , Cross Infection/epidemiology , Cross Infection/microbiology , Prospective Studies , Genome, Bacterial , Polymorphism, Single Nucleotide , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...