ABSTRACT
In the face of escalating antibiotic resistance, the quest for novel antimicrobial compounds is critical. Actinobacteria is known for producing a substantial fraction of bioactive molecules from microorganisms, nonetheless there is the challenge of metabolic redundancy in bioprospecting. New sources of natural products are needed to overcome these current challenges. Our present work proposes an unexplored potential of Neotropical social wasp-associated microbes as reservoirs of novel bioactive compounds. Using social wasp-associated Tsukamurella sp. strains 8F and 8J, we aimed to determine their biosynthetic potential for producing novel antibiotics and evaluated phylogenetic and genomic traits related to environmental and ecological factors that might be associated with promising bioactivity and evolutionary specialization. These strains were isolated from the cuticle of social wasps and subjected to comprehensive genome sequencing. Our genome mining efforts, employing antiSMASH and ARTS, highlight the presence of BGCs with minimal similarity to known compounds, suggesting the novelty of the molecules they may produce. Previous, bioactivity assays of these strains against bacterial species which harbor known human pathogens, revealed inhibitory potential. Further, our study focuses into the phylogenetic and functional landscape of the Tsukamurella genus, employing a throughout phylogenetic analysis that situates strains 8F and 8J within a distinct evolutionary pathway, matching with the environmental and ecological context of the strains reported for this genus. Our findings emphasize the importance of bioprospecting in uncharted biological territories, such as insect-associated microbes as reservoirs of novel bioactive compounds. As such, we posit that Tsukamurella sp. strains 8F and 8J represent promising candidates for the development of new antimicrobials.
Subject(s)
Anti-Bacterial Agents , Phylogeny , Wasps , Wasps/microbiology , Wasps/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/biosynthesis , Biological Products/pharmacology , Biological Products/metabolism , Genome, Bacterial , Actinomycetales/metabolism , Actinomycetales/genetics , Drug Discovery/methodsABSTRACT
Introduction: The antibiotic crisis is a major human health problem. Bioprospecting screenings suggest that proteobacteria and other extremophile microorganisms have biosynthetic potential for the production novel antimicrobial compounds. An Antarctic Sphingomonas strain (So64.6b) previously showed interesting antibiotic activity and elicitation response, then a relationship between environmental adaptations and its biosynthetic potential was hypothesized. We aimed to determine the genomic characteristics in So64.6b strain related to evolutive traits for the adaptation to the Antarctic environment that could lead to its diversity of potentially novel antibiotic metabolites. Methods: The complete genome sequence of the Antarctic strain was obtained and mined for Biosynthetic Gene Clusters (BGCs) and other unique genes related to adaptation to extreme environments. Comparative genome analysis based on multi-locus phylogenomics, BGC phylogeny, and pangenomics were conducted within the closest genus, aiming to determine the taxonomic affiliation and differential characteristics of the Antarctic strain. Results and discussion: The Antarctic strain So64.6b showed a closest identity with Sphingomonas alpina, however containing a significant genomic difference of ortholog cluster related to degradation multiple pollutants. Strain So64.6b had a total of six BGC, which were predicted with low to no similarity with other reported clusters; three were associated with potential novel antibiotic compounds using ARTS tool. Phylogenetic and synteny analysis of a common BGC showed great diversity between Sphingomonas genus but grouping in clades according to similar isolation environments, suggesting an evolution of BGCs that could be linked to the specific ecosystems. Comparative genomic analysis also showed that Sphingomonas species isolated from extreme environments had the greatest number of predicted BGCs and a higher percentage of genetic content devoted to BGCs than the isolates from mesophilic environments. In addition, some extreme-exclusive clusters were found related to oxidative and thermal stress adaptations, while pangenome analysis showed unique resistance genes on the Antarctic strain included in genetic islands. Altogether, our results showed the unique genetic content on Antarctic strain Sphingomonas sp. So64.6, -a probable new species of this genetically divergent genus-, which could have potentially novel antibiotic compounds acquired to cope with Antarctic poly-extreme conditions.
ABSTRACT
Concern about finding new antibiotics against drug-resistant pathogens is increasing every year. Antarctic bacteria have been proposed as an unexplored source of bioactive metabolites; however, most biosynthetic gene clusters (BGCs) producing secondary metabolites remain silent under common culture conditions. Our work aimed to characterize elicitation conditions for the production of antibacterial secondary metabolites from 34 Antarctic bacterial strains based on MS/MS metabolomics and genome mining approaches. Bacterial strains were cultivated under different nutrient and elicitation conditions, including the addition of lipopolysaccharide (LPS), sodium nitroprusside (SNP), and coculture. Metabolomes were obtained by HPLC-QTOF-MS/MS and analyzed through molecular networking. Antibacterial activity was determined, and seven strains were selected for genome sequencing and analysis. Biosynthesis pathways were activated by all the elicitation treatments, which varies among strains and dependents of culture media. Increased antibacterial activity was observed for a few strains and addition of LPS was related with inhibition of Gram-negative pathogens. Antibiotic BGCs were found for all selected strains and the expressions of putative actinomycin, carotenoids, and bacillibactin were characterized by comparison of genomic and metabolomic data. This work established the use of promising new elicitors for bioprospection of Antarctic bacteria and highlights the importance of new "-omics" comparative approaches for drug discovery.