Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 234
Filter
1.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38994757

ABSTRACT

Cancer incidence is increasing globally, presenting a growing public health challenge. While anticancer drugs are crucial in treatment, their limitations, including poor targeting ability and high toxicity, hinder effectiveness and patient safety, requiring relentless scientific research and technological advancements to develop safer and more effective therapeutics. Cinnamaldehyde (CA), an active compound derived from the natural plant cinnamon, has garnered attention in pharmacological research due to its diverse therapeutic applications. CA has potential in treating a wide array of conditions, including cardiovascular diseases, diabetes, inflammatory disorders and various forms of cancer. The present review comprehensively summarizes the physicochemical and pharmacokinetic profiles of CA, and delves into the latest advancements in elucidating its potential mechanisms and targets across various cancer types. CA and its derivatives have antitumor effects, which encompass inhibiting cell proliferation, arresting the cell cycle, inducing apoptosis, limiting cell migration and invasion, and suppressing angiogenesis. Additionally, the present review explores targeted formulations of CA, laying a scientific foundation for further exploration of its implications in cancer prevention and treatment strategies.


Subject(s)
Acrolein , Antineoplastic Agents , Neoplasms , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Acrolein/therapeutic use , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Proliferation/drug effects
2.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791419

ABSTRACT

Human malignancies are one of the major health-related issues throughout the world and are anticipated to rise in the future. Despite huge investments made in anticancer drug development, limited success has been obtained and the average number of FDA approvals per year is declining. So, an increasing interest in drug repurposing exists. Metformin (MET) and aspirin (ASP) possess anticancer properties. This work aims to test the effect of these two drugs in combination on colorectal cancer (CRC) cells in vitro. The effects of MET and/or ASP on cell proliferation, viability, migratory ability, anchorage-independent growth ability (colony formation), and nutrient uptake were determined in two (HT-29 and Caco-2) human CRC cell lines. Individually, MET and ASP possessed antiproliferative, cytotoxic, and antimigratory effects and reduced colony formation in HT-29 cells (BRAF- and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PI3KCA)-mutant), although MET did not affect either 3H-deoxy-D-glucose or 14C-butyrate uptake and lactate production, and ASP caused only a small decrease in 14C-butyrate uptake. Moreover, in these cells, the combination of MET and ASP resulted in a tendency to an increase in the cytotoxic effect and in a potentiation of the inhibitory effect on colony formation, although no additive antiproliferative and antimigratory effects, and no effect on nutrient uptake and lactate production were observed. In contrast, MET and ASP, both individually and in combination, were almost devoid of effects on Caco-2 cells (BRAF- and PI3KCA-wild type). We suggest that inhibition of PI3K is the common mechanism involved in the anti-CRC effect of both MET, ASP and their combination and, therefore, that the combination of MET + ASP may especially benefit PI3KCA-mutant CRC cases, which currently have a poor prognostic.


Subject(s)
Aspirin , Cell Movement , Cell Proliferation , Colorectal Neoplasms , Metformin , Humans , Metformin/pharmacology , Aspirin/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cell Proliferation/drug effects , Caco-2 Cells , Cell Movement/drug effects , HT29 Cells , Mutation , Drug Synergism , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Cell Line, Tumor
3.
Prostate ; 84(9): 814-822, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558458

ABSTRACT

BACKGROUND: Tumor initiation and progression necessitate a metabolic shift in cancer cells. Consequently, the progression of prostate cancer (PCa), a leading cause of cancer-related deaths in males globally, involves a shift from lipogenic to glycolytic metabolism. Androgen deprivation therapy (ADT) serves as the standard treatment for advanced-stage PCa. However, despite initial patient responses, castrate resistance emerges ultimately, necessitating novel therapeutic approaches. Therefore, in this study, we aimed to investigate the role of monocarboxylate transporters (MCTs) in PCa post-ADT and evaluate their potential as therapeutic targets. METHODS: PCa cells (LNCaP and C4-2 cell line), which has high prostate-specific membrane antigen (PSMA) and androgen receptor (AR) expression among PCa cell lines, was used in this study. We assessed the expression of MCT1 in PCa cells subjected to ADT using charcoal-stripped bovine serum (CSS)-containing medium or enzalutamide (ENZ). Furthermore, we evaluated the synergistic anticancer effects of combined treatment with ENZ and SR13800, an MCT1 inhibitor. RESULTS: Short-term ADT led to a significant upregulation in folate hydrolase 1 (FOLH1) and solute carrier family 16 member 1 (SLC16A1) gene levels, with elevated PSMA and MCT1 protein levels. Long-term ADT induced notable changes in cell morphology with further upregulation of FOLH1/PSMA and SLC16A1/MCT1 levels. Treatment with ENZ, a nonsteroidal anti-androgen, also increased PSMA and MCT1 expression. However, combined therapy with ENZ and SR13800 led to reduced PSMA level, decreased cell viability, and suppressed expression of cancer stem cell markers and migration indicators. Additionally, analysis of human PCa tissues revealed a positive correlation between PSMA and MCT1 expression in tumor regions. CONCLUSIONS: Our results demonstrate that ADT led to a significant upregulation in MCT1 levels. However, the combination of ENZ and SR13800 demonstrated a promising synergistic anticancer effect, highlighting a potential therapeutic significance for patients with PCa undergoing ADT.


Subject(s)
Androgen Antagonists , Benzamides , Monocarboxylic Acid Transporters , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms , Symporters , Male , Humans , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/genetics , Cell Line, Tumor , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Nitriles/pharmacology , Symporters/metabolism , Symporters/antagonists & inhibitors , Symporters/genetics , Benzamides/pharmacology
4.
Oncol Lett ; 27(4): 182, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38476209

ABSTRACT

Ginsenoside Rg3 (GS-Rg3), a sterol molecule isolated from ginseng, has demonstrated various immunological properties, including inhibition of cancer cell proliferation and metastasis, reversal of drug resistance and enhancement of chemotherapy sensitivity. The recent surge in attention towards GS-Rg3 can be attributed to its potential as an antitumor angiogenesis agent and as a therapeutic candidate for immunotherapy. The development of GS-Rg3 as an agent for these purposes has accelerated research on its mechanisms of action. The present review summarizes recent studies investigating the antitumor activity of GS-Rg3 and its underlying mechanisms, as well as providing essential information for future studies on GS-Rg3.

5.
Cancers (Basel) ; 16(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473320

ABSTRACT

Efforts have been made to develop bromodomain inhibitors as cancer treatments. Sub-pathways, particularly in ovarian cancer, affected by bromodomain-containing protein (BRD) remain unclear. This study verified the antitumor effects of a new drug that can overcome OPT-0139-chemoresistance to treat ovarian cancer. A mouse xenograft model of human ovarian cancer cells, SKOV3 and OVCAR3, was used in this study. Cell viability and proliferation were assessed using MTT and ATP assays. Cell cycle arrest and apoptosis were determined using flow cytometry. BRD4 and c-Myc expression and apoptosis-related molecules were detected using RT-PCR and real-time PCR and Western blot. We confirmed the OPT-0139 effect and mechanism of action in epithelial ovarian cancer. OPT-0139 significantly reduced cell viability and proliferation and induced apoptosis and cell cycle arrest. In the mouse xenograft model, significant changes in tumor growth, volume, weight, and BRD4-related gene expression were observed, suggesting the antitumor effects of BRD4 inhibitors. Combination therapy with cisplatin promoted apoptosis and suppressed tumor growth in vitro and in vivo. Our results suggest OPT-0139, a BRD4 inhibitor, as a promising anticancer drug for the treatment of ovarian cancer by inhibiting cell proliferation, decreasing cell viability, arresting cell cycle, and inducing apoptosis.

6.
Curr Issues Mol Biol ; 46(2): 1621-1634, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38392223

ABSTRACT

Docetaxel (DTX), a semi-synthetic analogue of paclitaxel (taxol), is known to exert potent anticancer activity in various cancer cells by suppressing normal microtubule dynamics. In this study, we examined how the anticancer effect of DTX is regulated by polyphenols extracted from Korean Artemisia annua L. (pKAL) in DU145 prostate cancer cells (mutant p53) and HCT116 colorectal cancer cells (wild-type p53). Here, we show that the anticancer effect of DTX was enhanced more significantly by pKAL in HCT116 cells than in DU145 cells via phase-contrast microscopy, CCK-8 assay, Western blot, and flow cytometric analysis of annexin V/propidium iodide-stained cells. Notably, mutant p53 was slightly downregulated by single treatment of pKAL or DTX in DU145 cells, whereas wild-type p53 was significantly upregulated by pKAL or DTX in HCT116 cells. Moreover, the enhanced anticancer effect of DTX by pKAL in HCT116 cells was significantly associated with the suppression of DTX-induced p53 upregulation, increase of DTX-induced phospho-p38, and decrease of DTX-regulated cyclin A, cyclin B1, AKT, caspase-8, PARP1, GM130, NF-κB p65, and LDHA, leading to the increased apoptotic cell death and plasma membrane permeability. Our results suggest that pKAL could effectively improve the anticancer effect of DTX-containing chemotherapy used to treat various cancers expressing wild-type p53.

7.
Anticancer Res ; 44(3): 1087-1095, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38423661

ABSTRACT

BACKGROUND/AIM: Methyl jasmonate (MeJa) is a botanical stress hormone that serves as a defense mechanism to inhibit growth in stressed plants. It is well known that MeJa exhibits an anticancer effect by reducing intracellular ATP, activating reactive oxygen species (ROS) production, and promoting mitogen-activated protein kinase (MAPK) activity. Presently, no report has been published on MeJa-induced changes in intracellular Mg2+ concentration ([Mg2+]i), and TRPM7 as an Mg2+ transporter in cancer cells. Therefore, this study aimed to investigate the Mg2+ homeostatic changes and apoptotic effects following MeJa treatment using the MCF-7 human breast cancer cell line. MATERIALS AND METHODS: The MTT assay was used to assess the cell viability and half-inhibitory concentration, microscopic two-photon excitation wavelength spectrophotometry was used to measure the [Mg2+]i, a luminescent assay determined intracellular ATP levels, western blot assay measured TRPM7 levels, antioxidant capacities, endoplasmic reticulum (ER) stress, and MAPK signaling pathways, while the fluorescence assay evaluated ROS concentrations and the cell apoptotic index. RESULTS: This study provides evidence that MeJa has an antiapoptotic effect on MCF-7 cells. The increase in [Mg2+]i led to decreased TRPM7 expression, which is related to elevated ROS production, in addition to elevated ER stress and MAPK signaling pathway activity and decreased ATP content. CONCLUSION: The increase in [Mg2+]i leads to decreased TRPM7 expression and may be the epicenter of MeJa-induced apoptotic cell death in MCF-7 cells.


Subject(s)
Acetates , Breast Neoplasms , Cyclopentanes , Oxylipins , TRPM Cation Channels , Humans , Female , Reactive Oxygen Species/metabolism , Magnesium/metabolism , Magnesium/pharmacology , TRPM Cation Channels/metabolism , Breast Neoplasms/drug therapy , Apoptosis , Adenosine Triphosphate , Endoplasmic Reticulum Stress , Protein Serine-Threonine Kinases/metabolism
8.
Fitoterapia ; 174: 105875, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417678

ABSTRACT

Grapefruit mint (Mentha suaveolens × piperita) is a hybrid, perennial, and aromatic plant widely cultivated all over the world and used in the food, cosmetics, and pharmaceutical industries mostly for its valuable essential oil. Herein, we evaluated the anticancer activity of the grapefruit mint essential oil, cultivated in Iran. For the chemical composition analysis of essential oil, GC-MS was used. MTT assay was utilized for assessing the cytotoxic activity of the essential oil. The type of cell death was determined by annexin V/PI staining. Essential oil effect on the expression of maternally expressed gene 3 (MEG3), a regulatory lncRNA involved in cell growth, proliferation, and metastasis, was studied using qRT-PCR. Linalool (43.9%) and linalool acetate (40.1%) were identified as the dominant compounds of essential oil. Compared with MCF-7, the MDA-MB-231 cells were more sensitive to essential oil (IC50 = 7.6 µg/ml in MCF-7 and 5.9 µg/ml in MDA-MB-231 after 48 h). Essential oil induced cell death by apoptosis. Wound healing scratch assay confirmed the anti-invasive effect of essential oil. In addition, essential oil upregulated the tumor suppressor MEG3 in breast cancer cells. These results provide new insights into grapefruit mint essential oil potential application as an anticancer adjuvant in combination treatments for breast cancer patients.


Subject(s)
Acyclic Monoterpenes , Breast Neoplasms , Citrus paradisi , Mentha , Oils, Volatile , Humans , Female , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Mentha/chemistry , Molecular Structure , Breast Neoplasms/drug therapy , Mentha piperita
9.
Drug Dev Ind Pharm ; 50(3): 223-235, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38305197

ABSTRACT

BACKGROUND: Breast cancer (BC) stands as the second-leading cause of mortality among women worldwide. Many chemotherapeutic treatments for BC come with significant adverse effects. Additionally, BC is recognized as one of the most resistant forms of malignancy to treatment. Consequently, there exists a critical need for innovative therapeutic agents that are both highly effective and exhibit reduced toxicity and side effects for patients. Deferasirox (DFX), an iron-chelating drug approved by the FDA for oral use, emerges as a promising contender in the fight against BC proliferation. DFX, primarily administered orally, is utilized to address chronic iron excess resulting from blood transfusions, and it is the inaugural treatment for chronic iron overload syndrome. However, DFX encounters limitations due to its poor water solubility. AIM: This study aimed at incorporating DFX into lipid nanocapsules (DFX-LNCs) followed by investigating the anticancer effect of the DFX nanoform as compared to free DFX in-vitro and on an orthotopic BC mouse model in-vivo. METHODS: The DFX-LNCs was prepared and imaged using TEM and also characterized in terms of particle size (PS), zeta potential (ZP), and polydispersity index (PDI) using DLS. Moreover, drug release, cytotoxicity, and anticancer effect were assessed in-vitro, and in-vivo. RESULTS: The results revealed that DFX-LNCs are more cytotoxic than free DFX with IC50 of 4.417 µg/ml and 16.114 µg/ml, respectively, while the plain LNCs didn't show any cytotoxic effect on the 4T1 cell line (IC50 = 122.797 µg/ml). Besides, the apoptotic effect of DFX-LNCs was more pronounced than that of free DFX, as evidenced by Annexin V/PI staining, increased BAX expression, and decreased expression of BcL-2. Moreover, DFX-LNCs showed a superior antitumor effect in-vivo with potent antioxidant and anti-proliferative effects. CONCLUSION: The newly developed DFX nanoform demonstrated a high potential as a promising therapeutic agent for BC treatment.


Subject(s)
Breast Neoplasms , Iron Overload , Humans , Female , Mice , Animals , Deferasirox/pharmacology , Deferasirox/therapeutic use , Breast Neoplasms/drug therapy , Iron Chelating Agents/adverse effects , Iron/therapeutic use , Iron Overload/chemically induced , Iron Overload/drug therapy
10.
Food Chem ; 441: 138360, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38219361

ABSTRACT

Camellia japonica L. is rich in bioactive compounds, but its health-enhancing potential is often overshadowed by its ornamental value. Notably, triterpenoid saponins are prominent due to their surfactant properties. MolNetEnhancer revealed 537 compounds in C. japonica leaves water extract, classified into 32 categories, including 38 triterpenoid saponins. To enrich triterpenoid saponins, the process of D101 resin chromatography was employed. Molecular networking analysis based on UPLC-Q-TOF and quantitative analysis based on HPLC revealed saponins concentrated in fractions 3 and 4 (68.3% transfer). MS2LDA and NAP predicted structures for 38 triterpenoid saponins, revealing nearly half of them are potential new compounds. Comprehensive chromatographic and spectroscopic methods were used for purification and structural illustration of triterpenoid saponins, yielding 13, including 7 new compounds. Statistical analysis and in vitro assays revealed the cytotoxic and anti-inflammatory activities of these triterpenoid saponins played a crucial role in the anticancer effects.


Subject(s)
Antineoplastic Agents , Camellia , Saponins , Triterpenes , Chromatography, High Pressure Liquid/methods , Camellia/chemistry , Mass Spectrometry , Saponins/chemistry , Triterpenes/analysis
11.
Int J Pharm ; 652: 123765, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38195032

ABSTRACT

Despite the successful use of the radiopharmaceutical radium-223 dichloride ([223Ra]RaCl2) for targeted alpha therapy of castration-resistant prostate cancer patients with bone metastases, some short-term side effects, such as diarrhea and vomiting, have been documented, causing patient discomfort. Hence, we prepared a nanosized micellar solution of [223Ra]RaCl2 and evaluated its biodistribution, pharmacokinetics, and induced biochemical changes in healthy mice up to 96 h after intraperitoneal administration as an alternative to overcome the previous limitations. In addition, we evaluated the bone specificity of micellar [223Ra]RaCl2 in patient-derived xenografts in the osteosarcoma model. The biodistribution studies revealed the high bone-targeting properties of the micellar [223Ra]RaCl2. Interestingly, the liver uptake remained significantly low (%ID/g = 0.1-0.02) from 24 to 96 h after administration. In addition, the micellar [223Ra]RaCl2 exhibited a significantly higher uptake in left (%ID/g = 0.85-0.23) and right (%ID/g = 0.76-0.24) kidneys than in small (%ID/g = 0.43-0.06) and large intestines (%ID/g = 0.24-0.09) over time, suggesting its excretion pathway is primarily through the kidneys into the urine, in contrast to the non-micellar [223Ra]RaCl2. The micellar [223Ra]RaCl2 also had low distribution volume (0.055 ± 0.003 L) and longer elimination half-life (28 ± 12 days). This nanosystem was unable to change the enzymatic activities of alanine aminotransferase, aspartate aminotransferase, gamma GT, glucose, and liquiform lipase in the treated mice. Finally, microscopic examination of the animals' osteosarcoma tumors treated with micellar [223Ra]RaCl2 indicated regression of the tumor, with large areas of necrosis. In contrast, in the control group, we observed tumor cellularity and cell anaplasia, mitotic figures and formation of neoplastic extracellular bone matrix, which are typical features of osteosarcoma. Therefore, our findings demonstrated the efficiency and safety of nanosized micellar formulations to minimize the gastrointestinal excretion pathway of the clinical radiopharmaceutical [223Ra]RaCl2, in addition to promoting regression of the osteosarcoma. Further studies must be performed to assess dose-response outcomes and organ/tissue dosimetry for clinical translation.


Subject(s)
Bone Neoplasms , Osteosarcoma , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Animals , Mice , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution , Renal Elimination , Bone Neoplasms/drug therapy , Bone Neoplasms/radiotherapy , Osteosarcoma/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology
12.
J Food Sci ; 89(1): 671-683, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37983860

ABSTRACT

In this study, we investigated the biological profile of lectins isolated from raw and boiled Japanese red Kintoki beans (red kidney beans [RKB]; Phaseolus vulgaris). Lectins in beans showing agglutination activity were retained after heating. Raw and boiled RKB lectins were fractionated using carboxymethyl- and diethylaminoethyl-Sepharose, respectively. Boiled RKB lectins were evaluated for carbohydrate specificity as well as cytokine-inducing and antiproliferative activities against cancer cells and compared with raw RKB lectins. Raw RKB lectins showed specificity for thyroglobulin and fetuin, whereas boiled lectins showed specificity for N-acetylneuraminic acid. Raw RKB lectins showed low resistance to proteases and tolerated temperatures greater than 80°C for 5 min. Notably, lectins from raw and boiled beans showed antiproliferative activity against five types of cancer cells B16, LM8, HeLa, HepG2, and Colo 679. In particular, lectins from raw beans exhibited a significantly stronger activity than those from boiled beans. Anti-inflammatory effects were notably observed in crude extracts from raw and boiled beans. Specifically, lectins fractionated from boiled beans markedly inhibited the expression of tumor necrosis factor-α and interleukin-6. Overall, our results showed that RKB lectins from boiled beans exert anti-inflammatory and anticancer effects and could be developed as potential chemopreventive agents. PRACTICAL APPLICATION: Japanese red kidney beans (RKB) are cultivated in numerous parts of the temperate zone and consumed in many countries. Lectins from boiled beans exhibited anticancer activity, similar to lectins from raw beans. Additionally, crude and fractionated lectins from boiled beans showed anti-inflammatory activity. Thus, boiled RKB lectins have the potential to be used as a bioactive protein for medical research and could be developed as anticancer agents.


Subject(s)
Lectins , Phaseolus , Lectins/pharmacology , Vegetables , Endopeptidases
13.
Vet Med Sci ; 10(1): e1323, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37997503

ABSTRACT

BACKGROUND: Reactive oxygen species (ROS) have been shown to promote tumour growth and metastasis in human cell lines. The superoxide anion (•O2 - ) is produced during ROS formation and is involved in tumour cell signalling. OBJECTIVES: Superoxide dismutase (SOD) has been applied to canine mammary gland tumours to investigate its antitumour effects in vitro. METHODS: Cell proliferation, cell cycle cell migration assays, reverse transcription-quantitative polymerase chain reaction, and western blot analysis were performed to determine the effects of SOD on canine mammary tumour cell line. RESULTS: SOD treatment resulted in anti-proliferative effects and mediated cell cycle arrest in the canine mammary gland tumour cell lines (CIPp and CIPm). It also downregulated the expression of N-cadherin and Vimentin. CONCLUSIONS: The results confirmed that SOD inhibits tumour cell proliferation and migration, thus supporting the potential applications of SOD as a chemotherapeutic agent for canine mammary gland tumours.


Subject(s)
Mammary Glands, Human , Superoxide Dismutase , Animals , Dogs , Humans , Reactive Oxygen Species/metabolism , Mammary Glands, Human/metabolism , Cell Line, Tumor
14.
Life Sci ; 336: 122308, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38030059

ABSTRACT

AIMS: Epidermal growth factor receptor (EGFR) has been documented in many malignancies as participating in the progression of cancer cells. Here, we present a novel EGFR tyrosine kinase inhibitor, ZZC4, and examine its effect on cancer cell proliferation, migration, and tumor-bearing xenograft models. MAIN METHODS: The antiproliferative effect of ZZC4 was assessed in vitro by MTT assay, colony formation, and wound healing assay and in vivo with tumor-bearing xenograft nude mice. Further, Western blotting analysis and computational network pharmacology were used to explore and understand the mechanism of ZZC4. KEY FINDINGS: The results showed that ZZC4 potently inhibited the proliferation of lung, breast, and melanoma cells, and was more sensitive to lung cancer cells HCC827, H1975, and breast cancer cell T47D. In vitro findings were corroborated in vivo as results showed the suppressive effect of ZZC4 on HCC827 and H1975 tumor growth. Western blotting analysis confirmed that ZZC4 is an effective inhibitor of the EGFR pathways as it down-regulated p-EGFR, p-Akt, and p-MAPK. Computational molecular docking confirmed the strong binding affinity between ZZC4 and EGFR. Moreover, network pharmacology suggested that ZZC4 might play a suppressive role in the progression of malignancies with EGFR/PI-3K/Akt axis dysregulation or in cancer-related drug resistance. SIGNIFICANCE: Our study showed that ZZC4 is an anticancer drug candidate.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Mice, Nude , Molecular Docking Simulation , Network Pharmacology , Proto-Oncogene Proteins c-akt , Protein Kinase Inhibitors/pharmacology , ErbB Receptors/metabolism , Lung Neoplasms/pathology , Cell Proliferation , Drug Resistance, Neoplasm , Purines/pharmacology , Cell Line, Tumor , Xenograft Model Antitumor Assays
15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1011470

ABSTRACT

Bladder cancer (BCa) is the most common malignant tumor of the urinary system, and its incidence is increasing year by year. At present, for all patients with resectable non-metastatic muscle-invasive BCa, radical cystectomy + bilateral pelvic lymph node dissection is strongly recommended, but they still face the risk of recurrence, metastasis and death. In recent years, the proportion of patients with advanced and metastatic BCa is increasing among patients with newly diagnosed BCa. Although current treatment models are diverse, they often struggle to achieve significant efficacy due to their low effectiveness and adverse effects, resulting in low survival rates for patients with advanced and metastatic BCa. Therefore, the treatment of BCa still faces great challenges, and there is an urgent need to discover an effective new antitumor drug. With the improvement of medical standards, traditional Chinese medicine has shown great advantages in the treatment of BCa. Traditional Chinese medicine is mild and easy to accept, and can inhibit tumor progression through a multi-pathway, multi-way and multi-target manner, so as to exert its anticancer effect. Taraxaci Herba is a medicinal and food homologous plant, which has many biological activities, such as antibacterial, anti-inflammatory, anti-oxidation, anti-tumor, protecting liver and gallbladder, reducing blood sugar and enhancing immunity, and it has shown a clear anticancer effect in breast cancer, liver cancer, gastric cancer, tongue cancer and lung cancer. By reviewing previous studies worldwide, this article summarizes the mechanism of Taraxaci Herba extract in inducing autophagy and apoptosis, inhibiting cell migration and invasion, regulating cell cycle and proliferation, regulating cell metabolism, inhibiting tumor angiogenesis, combining the effects of chemotherapeutic drugs, and regulating the transduction of related signal pathways. On this basis, this study systematically elaborates on the potential mechanism of Taraxaci Herba against BCa, in order to provide a theoretical basis for the research and treatment of BCa.

16.
Int J Mol Sci ; 24(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38139333

ABSTRACT

Recent studies suggest that the anticancer activity of ß-lapachone (ß-Lap) could be improved by different types of bioactive phytochemicals. The aim of this study was to elucidate how the anticancer effect of ß-Lap is regulated by polyphenols extracted from Korean Artemisia annua L. (pKAL) in parental HCT116 and oxaliplatin-resistant (OxPt-R) HCT116 colorectal cancer cells. Here, we show that the anticancer effect of ß-Lap is more enhanced by pKAL in HCT116-OxPt-R cells than in HCT116 cells via a CCK-8 assay, Western blot, and phase-contrast microscopy analysis of hematoxylin-stained cells. This phenomenon was associated with the suppression of OxPt-R-related upregulated proteins including p53 and ß-catenin, the downregulation of cell survival proteins including TERT, CD44, and EGFR, and the upregulation of cleaved HSP90, γ-H2AX, and LC3B-I/II. A bioinformatics analysis of 21 proteins regulated by combined treatment of pKAL and ß-Lap in HCT116-OxPt-R cells showed that the enhanced anticancer effect of ß-Lap by pKAL was related to the inhibition of negative regulation of apoptotic process and the induction of DNA damage through TERT, CD44, and EGFR-mediated multiple signaling networks. Our results suggest that the combination of pKAL and ß-Lap could be used as a new therapy with low toxicity to overcome the OxPt-R that occurred in various OxPt-containing cancer treatments.


Subject(s)
Antineoplastic Agents , Artemisia annua , Colorectal Neoplasms , Humans , Oxaliplatin/pharmacology , HCT116 Cells , Polyphenols/pharmacology , Colorectal Neoplasms/drug therapy , ErbB Receptors , Cell Line, Tumor , Antineoplastic Agents/pharmacology
17.
J Educ Health Promot ; 12: 361, 2023.
Article in English | MEDLINE | ID: mdl-38144022

ABSTRACT

The jackfruit (Artocarpus heterophyllus) is one of the natural remedies significantly used in folk medicine. The ethnopharmacological applications of jackfruit are mainly concerned with the management of inflammation, diarrhea, and diabetes mellitus. Flavonoids, stilbenoids, aryl benzofurans, and lectin jacalin are abundant in jackfruit species. Jacalin is a good indicator for evaluating the immunological state of HIV-1 patients. The extracts and metabolites of jackfruit, particularly those from the leaves, bark, stem, and fruit, contain several beneficial bioactive mixtures. New studies are focused on exploring these bioactive compounds used in various biological activities such as antiviral, antiplatelet, anticancer, antiatherosclerotic, immunomodulatory effects, inhibitors of 5-alpha reductase activity, and the formulation of fast-dissolving tablets (orodispersible, rapid melts porous). Multidisciplinary programs that integrate traditional and modern technology play a crucial role in the lies ahead expansion of jackfruit as the prospective inception of therapeutic compounds. This review aims to highlight significant results on the identification, production, and bioactivity of metabolites found in jackfruit, with current developments in jackfruit research in the control and prevention of human diseases.

18.
RNA Biol ; 20(1): 875-892, 2023 01.
Article in English | MEDLINE | ID: mdl-37966982

ABSTRACT

RNA methyltransferase DNMT2/TRDMT1 is the most conserved member of the DNMT family from bacteria to plants and mammals. In previous studies, we found some determinants for tRNA recognition of DNMT2/TRDMT1, but the preference mechanism of this enzyme for substrates tRNA and DNA remains to be explored. In the present study, CFT-containing target recognition domain (TRD) and target recognition extension domain (TRED) in DNMT2/TRDMT1 play a crucial role in the substrate DNA and RNA selection during the evolution. Moreover, the classical substrate tRNA for DNMT2/TRDMT1 had a characteristic sequence CUXXCAC in the anticodon loop. Position 35 was occupied by U, making cytosine-38 (C38) twist into the loop, whereas C, G or A was located at position 35, keeping the C38-flipping state. Hence, the substrate preference could be modulated by the easily flipped state of target cytosine in tRNA, as well as TRD and TRED. Additionally, DNMT2/TRDMT1 cancer mutant activity was collectively mediated by five enzymatic characteristics, which might impact gene expressions. Importantly, G155C, G155V and G155S mutations reduced enzymatic activities and showed significant associations with diseases using seven prediction methods. Altogether, these findings will assist in illustrating the substrate preference mechanism of DNMT2/TRDMT1 and provide a promising therapeutic strategy for cancer.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , Neoplasms , Animals , Humans , DNA (Cytosine-5-)-Methyltransferases/metabolism , Methyltransferases , DNA , RNA, Transfer/genetics , Cytosine/metabolism , Mammals/genetics
19.
Front Oncol ; 13: 1181176, 2023.
Article in English | MEDLINE | ID: mdl-37916167

ABSTRACT

Objective: Our previous studies have demonstrated that Plasmodium immunotherapy (infection) has antitumor effects in mice. However, as a new form of immunotherapy, this therapy has a weakness: its specific killing effect on tumor cells is relatively weak. Therefore, we tested whether Plasmodium immunotherapy combined with gemcitabine (Gem), a representative chemotherapy drug, has synergistic antitumor effects. Methods: We designed subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) models to test the antitumor effect of Plasmodium chabaudi ASS (Pc) infection in combination with Gem treatment and explored its underlying mechanisms. Results: We found that both Pc infection alone and Gem treatment alone significantly inhibited tumor growth in the subcutaneous model, and combination therapy was more effective than either monotherapy. Monotherapy only tended to prolong the survival of tumor-bearing mice, while the combination therapy significantly extended the survival of mice, indicating a significant synergistic effect of the combination. In the mechanistic experiments, we found that the combination therapy significantly upregulated E-cadherin and downregulated Snail protein expression levels, thus inhibiting epithelial-mesenchymal transition (EMT) of tumor cells, which may be due to the blockade of CXCR2/TGF-ß-mediated PI3K/Akt/GSK-3ß signaling pathway. Conclusion: The combination of Pc and Gem plays a synergistic role in inhibiting tumor growth and metastasis, and prolonging mice survival in murine lung cancer models. These effects are partially attributed to the inhibition of EMT of tumor cells, which is potentially due to the blockade of CXCR2/TGF-ß-mediated PI3K/Akt/GSK-3ß/Snail signaling pathway. The clinical transformation of Plasmodium immunotherapy combined with Gem for lung cancer is worthy of expectation.

20.
Pharmacol Res ; 197: 106978, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37923027

ABSTRACT

Animal venom is an important evolutionary innovation in nature. As one of the most representative animal venoms, scorpion venom contains an extremely diverse set of bioactive peptides. Scorpion venom peptides not only are 'poisons' that immobilize, paralyze, kill, or dissolve preys but also become important candidates for drug development and design. Here, the review focuses on the molecular diversity of scorpion venom peptides, their typical structural characteristics, and their multiple therapeutic or pharmaceutical applications in channelopathies, viral infections and cancers. Especially, the group of scorpion toxin TRPTx targeting transient receptor potential (TRP) channels is systematically summarized and worthy of attention because TRP channels play a crucial role in the regulation of homeostasis and the occurrence of diseases in human. We also further establish the potential relationship between the molecular characteristics and functional applications of scorpion venom peptides to provide a research basis for modern drug development and clinical utilization of scorpion venom resources.


Subject(s)
Channelopathies , Neoplasms , Scorpion Venoms , Virus Diseases , Animals , Humans , Scorpion Venoms/therapeutic use , Neoplasms/drug therapy , Biological Evolution
SELECTION OF CITATIONS
SEARCH DETAIL
...