Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
J Vet Res ; 68(3): 389-394, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39324026

ABSTRACT

Introduction: Microsporum canis is a dermatophyte that mainly affects dogs and cats. However, it can be transmitted to humans by direct contact. This makes it one of the most frequent causative agents of dermatophytosis in humans, reflecting the frequent human close relationships with pets. Conventional treatment relies on antifungal pharmacological agents. However, errors in application have led to the occurrence of fungal resistance and toxic effects. Consequently, new therapeutic alternatives are needed for M. canis infections. Plant extracts have been explored as phytotherapeutics for the treatment of dermatophyte infections, which prompted an attempt to apply extracts of the ethnopharmacologically important plants Artemisia ludoviciana and Cordia boissieri. Material and Methods: Methanolic extracts of these two plants were obtained using a Soxhlet method and were characterised by phytochemical screening. Extracts were evaluated against a M. canis commercial strain (ATCC-11621) using the microdilution method described in the Clinical and Laboratory Standards Institute protocol M38-A, determining its minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC). Subsequently, these concentrations were tested in a human keratinocyte human cell line. Results: Artemisia ludoviciana and C. boissieri extracts showed MIC values of 2,500 and 1,250 µg/mL, and MFC values of 5,000 and 2,500 µg/mL against M. canis, respectively. These extracts did not inhibit HaCaT cell proliferation in vitro. Conclusion: The evaluated extracts showed potential for the treatment of M. canis fungal infections. However, further studies on their phytochemical characterisation, purification, clinical safety and formulation are required.

2.
Rev Iberoam Micol ; 41(1): 7-12, 2024.
Article in English | MEDLINE | ID: mdl-39304433

ABSTRACT

BACKGROUND: Aspergillus fumigatus is a ubiquitous opportunistic pathogen. This fungus can acquire resistance to azole antifungals due to different mutations in the cyp51A gene. Azole resistance has been observed in several continents and appears to be a globally distributed phenomenon. Specific mutations in cyp51A that lead to azole resistance, such as the TR34/L98H modification, have been reported. AIMS: To evaluate the azole resistance in clinically isolated A. fumigatus strains. METHODS: As a result of our passive surveillance strategy, a total of 23 A. fumigatus isolates from clinical origins were identified through a phylogenetic analysis using the ITS region and ß-tubulin gene fragments, and typed with the CSP microsatellite. Azole susceptibility profiles were performed by disk diffusion and microdilution broth methodologies according to CLSI guidelines. RESULTS: Here we describe, for the first time, the detection of azole-resistant A. fumigatus isolates from clinical origins in Chile with mutations in the cyp51A gene. In addition to the TR34/L98H mutation, one isolate exhibited an F46Y/M172V/E427K-type mutation. Furthermore, microsatellite typing based on cell surface protein (CSP) was performed, showing the t02 (TR34/L98H), t15 (F46Y/M172V/E427K) and t01 (susceptible clinical isolates) genotypes. CONCLUSIONS: Our study demonstrates the presence of mutations related to azole resistance in A. fumigatus strains isolated from clinical samples in Chile. In order to obtain information that may help to tackle the spread of antifungal resistance among A. fumigatus populations, and to ensure the efficacy of future treatments against aspergillosis, a further research is necessary.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Azoles , Drug Resistance, Fungal , Fungal Proteins , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/genetics , Aspergillus fumigatus/isolation & purification , Humans , Drug Resistance, Fungal/genetics , Chile , Azoles/pharmacology , Antifungal Agents/pharmacology , Fungal Proteins/genetics , Microbial Sensitivity Tests , Aspergillosis/microbiology , Cytochrome P-450 Enzyme System/genetics , Mutation , Male , Female
3.
Int J Mol Sci ; 25(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39201622

ABSTRACT

Previous reports have demonstrated that the peptide derived from LfcinB, R-1-R, exhibits anti-Candida activity, which is enhanced when combined with an extract from the Bidens pilosa plant. However, the mechanism of action remains unexplored. In this research, a proteomic study was carried out, followed by a bioinformatic analysis and biological assays in both the SC5314 strain and a fluconazole-resistant isolate of Candida albicans after incubation with R-1-R. The proteomic data revealed that treatment with R-1-R led to the up-regulation of most differentially expressed proteins compared to the controls in both strains. These proteins are primarily involved in membrane and cell wall biosynthesis, membrane transport, oxidative stress response, the mitochondrial respiratory chain, and DNA damage response. Additionally, proteomic analysis of the C. albicans parental strain SC5314 treated with R-1-R combined with an ethanolic extract of B. pilosa was performed. The differentially expressed proteins following this combined treatment were involved in similar functional processes as those treated with the R-1-R peptide alone but were mostly down-regulated (data are available through ProteomeXchange with identifier PXD053558). Biological assays validated the proteomic results, evidencing cell surface damage, reactive oxygen species generation, and decreased mitochondrial membrane potential. These findings provide insights into the complex antifungal mechanisms of the R-1-R peptide and its combination with the B. pilosa extract, potentially informing future studies on natural product derivatives.


Subject(s)
Antifungal Agents , Bidens , Candida albicans , Plant Extracts , Proteomics , Antifungal Agents/pharmacology , Proteomics/methods , Bidens/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Candida albicans/drug effects , Drug Synergism , Fungal Proteins/metabolism , Peptides/pharmacology , Peptides/chemistry , Microbial Sensitivity Tests , Drug Resistance, Fungal/drug effects , Fluconazole/pharmacology
4.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39204183

ABSTRACT

Although Candida albicans is the most frequently identified Candida species in clinical settings, a significant number of infections related to the non-albicans Candida (NAC) species, Candida krusei, has been reported. Both species are able to produce biofilms and have been an important resistance-related factor to antimicrobial resistance. In addition, the microbial relationship is common in the human body, contributing to the formation of polymicrobial biofilms. Considering the great number of reports showing the increase in cases of resistance to the available antifungal drugs, the development of new and effective antifungal agents is critical. The inhibitory effect of Organoselenium Compounds (OCs) on the development of Candida albicans and Candida krusei was recently demonstrated, supporting the potential of these compounds as efficient antifungal drugs. In addition, OCs were able to reduce the viability and the development of biofilms, a very important step in colonization and infection caused by fungi. Thus, the objective of this study was to investigate the effect of the Organoselenium Compounds (p-MeOPhSe)2, (PhSe)2, and (p-Cl-PhSe)2 on the development of dual-species biofilms of Candida albicans and Candida krusei produced using either RPMI-1640 or Sabouraud Dextrose Broth (SDB) media. The development of dual-species biofilms was evaluated by the determination of both metabolic activity, using a metabolic assay based on the reduction of XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide sodium salt) assay and identification of either Candida albicans and Candida krusei on CHROMagar Candida medium. Biofilm formation using RPMI-1640 was inhibited in 90, 55, and 20% by 30 µM (p-MeOPhSe)2, (PhSe)2, and (p-Cl-PhSe)2, respectively. However, biofilms produced using SDB presented an inhibition of 62, 30 and 15% in the presence of 30 µM (p-MeOPhSe)2, (PhSe)2, and (p-Cl-PhSe)2, respectively. The metabolic activity of 24 h biofilms was inhibited by 35, 30 and 20% by 30 µM (p-MeOPhSe)2, (PhSe)2, and (p-Cl-PhSe)2, respectively, with RPMI-1640; however, 24 h biofilms formed using SDB were not modified by the OCs. In addition, a great reduction in the number of CFUs of Candida albicans (93%) in biofilms produced using RPMI-1640 in the presence of 30 µM (p-MeOPhSe)2 was observed. However, biofilms formed using SDB and treated with 30 µM (p-MeOPhSe)2 presented a reduction of 97 and 69% in the number of CFUs of Candida albicans and Candida krusei, respectively. These results demonstrated that Organoselenium Compounds, mainly (p-MeOPhSe)2, are able to decrease the metabolic activity of dual-species biofilms by reducing both Candida albicans and Candida krusei cell number during biofilm formation using either RPMI-1640 or SDB. Taken together, these results demonstrated the potential of the OCs to inhibit the development of dual-species biofilms of Candida albicans and Candida krusei.

5.
Braz J Microbiol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110398

ABSTRACT

Candida species resistant to fluconazole have raised concern in the scientific medical community due to high mortality in patients with invasive disease. In developing countries, such as Brazil, fluconazole is the most commonly used antifungal, and alternative treatments are expensive or not readily available. Furthermore, the occurrence of biofilms is common, coupled with their inherent resistance to antifungal therapies and the host's immune system, these microbial communities have contributed to making infections caused by these yeasts an enormous clinical challenge. Therefore, there is an urgent need to develop alternative medicines, which surpass the effectiveness of already used therapies, but which are also effective against biofilms. Therefore, the present study aimed to describe for the first time the antifungal and antibiofilm action of the derivative 2-amino-5,6,7,8-tetrahydro-4 H-cyclohepta[b]thiophene-3-isopropyl carboxylate (2AT) against clinical strains of Candida spp. resistant to fluconazole (FLZ). When determining the minimum inhibitory concentrations (MIC), it was found that the compound has antifungal action at concentrations of 100 to 200 µg/mL, resulting in 100% inhibition of yeast cells. Its synergistic effect with the drug FLZ was also observed. The antibiofilm action of the compound in subinhibitory concentrations was detected, alone and in association with FLZ. Moreover, using scanning electron microscopy, it was observed that the compound 2AT in isolation was capable of causing significant ultrastructural changes in Candida. Additionally, it was also demonstrated that the compound 2AT acts by inducing characteristics compatible with apoptosis in these yeasts, such as chromatin condensation, when visualized by transmission electron microscopy, indicating the possible mechanism of action of this molecule. Furthermore, the compound did not exhibit toxicity in J774 macrophage cells up to a concentration of 4000 µg/mL. In this study, we identify the 2AT derivative as a future alternative for invasive candidiasis therapy, in addition, we highlighted the promise of a strategy combined with fluconazole in combating Candida infections, especially in cases of resistant isolates.

6.
Curr Res Microb Sci ; 7: 100247, 2024.
Article in English | MEDLINE | ID: mdl-38974670

ABSTRACT

The incidence of invasive fungal infections caused by Candida species is increasing, particularly in immunocompromised individuals. This increasing incidence poses a dual challenge, comprising escalating antifungal resistance and the necessity for accurate fungal identification. The Candida haemulonii complex further complicates these challenges due to limited identification tools. Like some other Candida species, infections involving this complex show resistance to multiple antifungals, requiring innovative therapeutic approaches. Rapamycin, known for its antifungal properties and immunosuppressive characteristics, was investigated against the C. haemulonii complex species. Results revealed a rapamycin minimal inhibitory concentration (MIC) range of 0.07 to >20 µM, with fungicidal effects in most strains. In vitro analyses using the rapamycin maximum plasma concentration (0.016 µM) showed reduced surface properties and decreased production of extracellular enzymes. Rapamycin also hindered biofilm formation by some strains. Even when treated at the human therapeutic dose, which is lower than the MIC, phenotypic variations in C. haemulonii were detected, hinting at the possible attenuation of some virulence factors when exposed to rapamycin.

7.
J Fungi (Basel) ; 10(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39057348

ABSTRACT

Invasive fungal disease causes high morbidity and mortality among immunocompromised patients. Resistance to conventional antifungal drugs and the toxicity associated with high doses highlight the need for effective antifungal therapies. In this study, the antifungal potential of the ethanolic extract of Anacardium occidentale (Cashew Leaf) leaves were evaluated against Candida albicans and C. auris. The antifungal activity was tested by the broth microdilution method and growth kinetic test. To further explore its antifungal action mode, spectrofluorophotometry, confocal microscopy and scanning and transmission electron microscopy were performed. Additionally, heterozygous knockout strains associated with resistance to oxidative stress were included in the study. We found that A. occidentale could inhibit the proliferation and growth of C. albicans at concentrations of 62.5 and 125 µg/mL. The doubling time was also drastically affected, going from 2.8 h to 22.5 h, which was also observed in C. auris. The extract induced the accumulation of intracellular reactive oxygen species (ROS), resulting in endoplasmic reticulum stress and mitochondrial dysfunction, while it did not show cytotoxicity or hemolytic activity at the concentrations evaluated. Our work preliminarily elucidated the potential mechanisms of A. occidentale against C. albicans on a cellular level, and might provide a promising option for the design of a new treatment for invasive candidiasis.

8.
Sci Total Environ ; 947: 174662, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38997029

ABSTRACT

The use of recreational waters is a widespread activity worldwide, and one of the risks associated with this practice is the exposure of bathers to microorganisms that may arise due to pollution caused by inadequate infrastructure and sanitation. In the present work, we isolated Candida spp. (n = 24) from five recreational beaches in Rio de Janeiro, Brazil, in order to evaluate their susceptibility to antifungals, the production of virulence attributes and the in vivo virulence using Tenebrio molitor larvae as a model. The ITS1-5.8S-ITS2 gene sequencing identified thirteen isolates (54.1 %) as C. tropicalis, seven (29.1 %) as C. krusei (Pichia kudriavzevii), one (4.2 %) as C. rugosa (Diutina rugosa), one (4.2 %) as C. mesorugosa (Diutina mesorugosa), one (4.2 %) as C. utilis (Cyberlindnera jadinii) and one (4.2 %) as C. parapsilosis. C. tropicalis isolates showed resistance to azoles and susceptibility to amphotericin B, flucytosine and caspofungin. C. krusei isolates were resistant to fluconazole, caspofungin and itraconazole, with 42.8 % resistance to flucytosine, besides susceptibility to voriconazole and amphotericin B. The remaining species were susceptible to all tested antifungals. All Candida isolates adhered to abiotic surfaces and formed biofilm on polystyrene, albeit to varying degrees, and produced aspartic protease and hemolytic activity, which are considered fungal virulence attributes. C. tropicalis, C. krusei and C. utilis isolates produced phytase, while the only esterase producer was C. tropicalis. Regarding resistance to osmotic stress, all isolates of C. tropicalis, C. parapsilosis and C. mesorugosa grew up to 7.5 % NaCl; the remaining isolates grew up to 1.87-3.75 % NaCl. The mortality caused by fungal challenges in T. molitor larvae was variable, with C. tropicalis, C. utilis and C. parapsilosis being more virulent than C. krusei and C. rugosa complex. Collectively, the presence of these yeasts, particularly the virulent and resistant isolates, in recreational waters can pose a significant health risk to bathers.


Subject(s)
Antifungal Agents , Candida , Drug Resistance, Fungal , Brazil , Antifungal Agents/pharmacology , Candida/drug effects , Candida/pathogenicity , Candida/genetics , Virulence , Microbial Sensitivity Tests , Animals , Bathing Beaches
9.
Am J Infect Control ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39059713

ABSTRACT

BACKGROUND: Candida auris, an emerging multidrug-resistant yeast, has become a global concern due to its association with nosocomial outbreaks and resistance to antifungal medications. The COVID-19 pandemic has exacerbated the situation, with several outbreaks reported worldwide, including in Mexico. We describe the clinical and microbiological characteristics of a multicentric outbreak in private institutions in Mexico. METHODS: A retrospective observational study was conducted across 4 Christus Muguerza Hospital Health Care System facilities in Monterrey, Mexico, where simultaneous outbreaks of C auris occurred. Patients with colonization or infection with C auris between September 2020 and December 2023 were included. RESULTS: Analysis revealed 37 cases, predominantly male (median age, 55.8years). While most cases were initially colonization, a significant proportion progressed to infection (32.4%). Patients with documented infection had longer intensive care unit and hospital stays, often requiring mechanical ventilation. Antifungal treatment varied, with empirical fluconazole being the first drug in most cases, followed by anidulafungin and caspofungin. Resistance to fluconazole was widespread, but susceptibility to other antifungals varied. The overall mortality rates were high (40.5%), with no significant difference in median survival between colonized and infected patients. CONCLUSIONS: We reported a high rate of infection in previously colonized cases associated with longer hospital lenght stay, and a high susceptibility to echinocandins.

10.
Future Microbiol ; 19(11): 1027-1040, 2024.
Article in English | MEDLINE | ID: mdl-38904325

ABSTRACT

The emergence of fungal pathogens and changes in the epidemiological landscape are prevalent issues in clinical mycology. Reports of resistance to antifungals have been reported. This review aims to evaluate molecular and nonmolecular mechanisms related to antifungal resistance. Mutations in the ERG genes and overexpression of the efflux pump (MDR1, CDR1 and CDR2 genes) were the most reported molecular mechanisms of resistance in clinical isolates, mainly related to Azoles. For echinocandins, a molecular mechanism described was mutation in the FSK genes. Furthermore, nonmolecular virulence factors contributed to therapeutic failure, such as biofilm formation and selective pressure due to previous exposure to antifungals. Thus, there are many public health challenges in treating fungal infections.


[Box: see text].


Subject(s)
Antifungal Agents , Drug Resistance, Fungal , Fungi , Mycoses , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Drug Resistance, Fungal/genetics , Humans , Mycoses/microbiology , Mycoses/drug therapy , Mycoses/epidemiology , Fungi/drug effects , Fungi/genetics , Fungi/pathogenicity , Biofilms/drug effects , Biofilms/growth & development , Mutation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Azoles/pharmacology , Azoles/therapeutic use , Microbial Sensitivity Tests , Virulence Factors/genetics , Echinocandins/pharmacology , Echinocandins/therapeutic use
11.
Lett Appl Microbiol ; 77(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38658187

ABSTRACT

Species from Candida parapsilosis complex are frequently found in neonatal candidemia. The antifungal agents to treat this infection are limited and the occurrence of low in vitro susceptibility to echinocandins such as micafungin has been observed. In this context, the chaperone Hsp90 could be a target to reduce resistance. Thus, the objective of this research was to identify isolates from the C. parapsilosis complex and verify the action of Hsp90 inhibitors associated with micafungin. The fungal identification was based on genetic sequencing and mass spectrometry. Minimal inhibitory concentrations were determined by broth microdilution method according to Clinical Laboratory and Standards Institute. The evaluation of the interaction between micafungin with Hsp90 inhibitors was realized using the checkerboard methodology. According to the polyphasic taxonomy, C. parapsilosis sensu stricto was the most frequently identified, followed by C. orthopsilosis and C. metapsilosis, and one isolate of Lodderomyces elongisporus was identified by genetic sequencing. The Hsp90 inhibitor geladanamycin associated with micafungin showed a synergic effect in 31.25% of the isolates, a better result was observed with radicicol, which shows synergic effect in 56.25% tested yeasts. The results obtained demonstrate that blocking Hsp90 could be effective to reduce antifungal resistance to echinocandins.


Subject(s)
Antifungal Agents , Candida parapsilosis , Candidemia , HSP90 Heat-Shock Proteins , Micafungin , Humans , Infant, Newborn , Antifungal Agents/pharmacology , Benzoquinones/pharmacology , Candida parapsilosis/drug effects , Candida parapsilosis/isolation & purification , Candida parapsilosis/genetics , Candidemia/microbiology , Drug Resistance, Fungal , Drug Synergism , Echinocandins/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Lactams, Macrocyclic/pharmacology , Lipopeptides/pharmacology , Micafungin/pharmacology , Microbial Sensitivity Tests
12.
Med Mycol Case Rep ; 44: 100642, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38516610

ABSTRACT

Male cat, 2 years old, with a refractory infection by Sporothrix brasiliensis, presents a single nodular lesion in the left auricular pavilion. To confirm the diagnosis, cytology, fungal culture, antifungal susceptibility test, molecular analysis, and, to aid in the differential diagnosis, bacterial culture, antibiogram, and histopathology of the lesion were performed. In the absence of therapeutic success with conventional antifungals, photodynamic therapy (PDT) was introduced, demonstrating a satisfactory response in the sixth treatment session.

13.
Future Microbiol ; 19: 385-395, 2024 03.
Article in English | MEDLINE | ID: mdl-38381028

ABSTRACT

Background: New chemotherapeutics are urgently required to treat Candida infections caused by drug-resistant strains. Methods: The effects of 16 1,10-phenanthroline (phen)/1,10-phenanthroline-5,6-dione/dicarboxylate complexed with Mn(II), Cu(II) and Ag(I) were evaluated against ten different Candida species. Results: Proliferation of Candida albicans, Candida dubliniensis, Candida famata, Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis and Candida tropicalis was inhibited by three of six Cu(II) (MICs 1.52-21.55 µM), three of three Ag(I) (MICs 0.11-12.74 µM) and seven of seven Mn(II) (MICs 0.40-38.06 µM) complexes. Among these [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2].4H2O, where oda = octanedioic acid, exhibited effective growth inhibition (MICs 0.4-3.25 µM), favorable activity indexes, low toxicity against Vero cells and good/excellent selectivity indexes (46.88-375). Conclusion: [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2].4H2O represents a promising chemotherapeutic option for emerging, medically relevant and drug-resistant Candida species.


Candida species are widespread fungi that can cause a variety of infections in humans, and some of them exhibit resistance profile to existing antifungal drugs. Consequently, it is imperative to discover novel treatments for these clinically relevant human infections. Complexes are chemical compounds containing metal ion components that are well-known for their antimicrobial properties, including antifungal activity. In the present study, we investigated the effects of 16 novel complexes against ten medically relevant Candida species, including some strains resistant to commonly used clinical antifungals. Our findings revealed that all complexes containing manganese and silver metals effectively inhibited the growth of all Candida species tested, albeit to varying extents. Some of these complexes exhibited superior antifungal activity and lower toxicity to mammalian cells compared to traditional antifungals, such as fluconazole. In conclusion, these new complexes hold promise as a potential novel approach for treating fungal infections, especially those caused by drug-resistant Candida strains.


Subject(s)
Antifungal Agents , Copper , Phenanthrolines , Animals , Chlorocebus aethiops , Copper/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Silver/pharmacology , Manganese/pharmacology , Vero Cells , Candida , Candida albicans , Microbial Sensitivity Tests , Drug Resistance, Fungal
14.
Antimicrob Agents Chemother ; 68(4): e0162023, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38385701

ABSTRACT

Sporothrix brasiliensis is an emerging zoonotic fungal pathogen that can be difficult to treat. Antifungal susceptibility testing was performed on the mold phase of a convenience sample of 61 Sporothrix spp. isolates from human and cat sporotrichosis cases in Brazil using the Clinical and Laboratory Standards Institute standard M38. A bimodal distribution of azole susceptibility was observed with 50% (28/56) of S. brasiliensis isolates showing elevated itraconazole minimum inhibitory concentrations ≥16 µg/mL. Phylogenetic analysis found the in vitro resistant isolates were not clonal and were distributed across three different S. brasiliensis clades. Single nucleotide polymorphism (SNP) analysis was performed to identify potential mechanisms of in vitro resistance. Two of the 28 resistant isolates (MIC ≥16 mg/L) had a polymorphism in the cytochrome P450 gene, cyp51, corresponding to the well-known G448S substitution inducing azole resistance in Aspergillus fumigatus. SNPs corresponding to other known mechanisms of azole resistance were not identified in the remaining 26 in vitro resistant isolates.


Subject(s)
Sporothrix , Sporotrichosis , Humans , Antifungal Agents/pharmacology , Azoles/pharmacology , Brazil , Phylogeny , Itraconazole/pharmacology , Sporotrichosis/drug therapy , Microbial Sensitivity Tests , Drug Resistance, Fungal/genetics
15.
J Mycol Med ; 34(1): 101451, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38043164

ABSTRACT

Antifungal resistance has often been found in animal sporotrichosis in Southern Brazil. The biological potential of compounds from plants of the Solanaceae family against infectious diseases is known, however, it is still unknown against Sporothrix brasiliensis. This study evaluated the anti-Sporothrix brasiliensis activity, synergism, cytotoxicity, and action mechanism of steroidal lactones (withanolides) and alkaloids isolated from these plants. Pure compounds of withanolide D (WNOD), physalin F (PHYF), withanicandin (WNIC), nicandin B (NICB), solasonine (SSON), and solamargine (SMAR) were tested against 12 Sporothrix brasiliensis isolated from cats (n = 11) and dogs (n = 2) through M38-A2 CLSI. For the compounds with the best activity, a checkerboard assay for synergism, sorbitol protection, and ergosterol effect for action mechanism; and MTT test for cytotoxicity were performed. The withanolides WNOD, PHYF, WNIC, and NICB were not antifungal, but SSON (MIC 0.125-1 mg/mL) and SMAR (MIC 0.5-1 mg/mL) were both fungistatic and fungicidal (MFC 0.5-1 mg/mL for both) against wild-type (WT) and non-WT isolates. The activity of SSON and SMAR was indifferent when combined with itraconazole. In the mechanism of action, cell wall and plasma membrane by complexation with ergosterol seemed to be two target structures of SSON and SMAR. SSON was selected for cytotoxicity, whose cell viability in MDBK cells ranged from 28.85 % to 101.75 %, and was higher than 87.49 % at concentrations ≤0.0015 mg/ml. Only the steroidal alkaloids SSON and SMAR were active against non-WT isolates, being promising antifungal candidates for the treatment of feline and canine sporotrichosis with low susceptibility to itraconazole.


Subject(s)
Alkaloids , Sporothrix , Sporotrichosis , Withanolides , Animals , Cats , Dogs , Antifungal Agents , Itraconazole , Sporotrichosis/microbiology , Withanolides/pharmacology , Vegetables , Microbial Sensitivity Tests
16.
Antibiotics (Basel) ; 12(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37998767

ABSTRACT

The increasing antifungal resistance rates against conventional drugs reveal the urgent need to search for new therapeutic alternatives. In this context, natural bioactive compounds have a critical role in antifungal drug development. Since evidence demonstrates that abietic acid, a diterpene found in Pinus species, has significant antimicrobial properties, this study aimed to evaluate the antifungal activity of abietic acid against Candida spp and its ability to potentiate the activity of fluconazole. Abietic acid was tested both individually and in combination with fluconazole against Candida albicans (CA INCQS 40006), Candida krusei (CK INCQS 40095), and Candida tropicalis (CT INCQS 40042). The microdilution method was used to determine the IC50 and the cell viability curve. Minimum Fungicidal Concentration (MFC) was determined by subculture in a solid medium. The plasma membrane permeability was measured using a fluorescent SYTOX Green probe. While the IC50 of the drugs alone ranged between 1065 and 3255 µg/mL, the IC50 resulting from the combination of abietic acid and fluconazole ranged between 7563 and 160.1 µg/mL. Whether used in combination with fluconazole or isolated, abietic acid exhibited Minimum Fungicidal Concentration (MFC) values exceeding 1024 µg/mL against Candida albicans, Candida krusei and Candida tropicalis. However, it was observed that the antifungal effect of fluconazole was enhanced when used in combination with abietic acid against Candida albicans and Candida tropicalis. These findings suggest that while abietic acid alone has limited inherent antifungal activity, it can enhance the effectiveness of fluconazole, thereby reducing antifungal resistance.

17.
J Fungi (Basel) ; 9(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37998875

ABSTRACT

The genus Aspergillus harbors human infection-causing pathogens and is involved in the complex one-health challenge of antifungal resistance. Here, a 6-year retrospective study was conducted with Aspergillus spp. isolated from patients with invasive, chronic, and clinically suspected aspergillosis in a tertiary teaching hospital. A total of 64 Aspergillus spp. clinical isolates were investigated regarding molecular identification, biofilm, virulence in Galleria mellonella, antifungal susceptibility, and resistance to amphotericin B and azoles. Aspergillus section Fumigati (A. fumigatus sensu stricto, 62.5%) and section Flavi (A. flavus, 20.3%; A. parasiticus, 14%; and A. tamarii, 3.1%) have been identified. Aspergillus section Flavi clinical isolates were more virulent than section Fumigati clinical isolates. Furthermore, scant evidence supports a link between biofilm formation and virulence. The susceptibility of the Aspergillus spp. clinical isolates to itraconazole, posaconazole, voriconazole, and amphotericin B was evaluated. Most Aspergillus spp. clinical isolates (67.2%) had an AMB MIC value equal to or above 2 µg/mL, warning of a higher probability of therapeutic failure in the region under study. In general, the triazoles presented MIC values above the epidemiological cutoff value. The high triazole MIC values of A. fumigatus s.s. clinical isolates were investigated by sequencing the promoter region and cyp51A locus. The Cyp51A amino acid substitutions F46Y, M172V, N248T, N248K, D255E, and E427K were globally detected in 47.5% of A. fumigatus s.s. clinical isolates, and most of them are associated with high triazole MICs. Even so, the findings support voriconazole or itraconazole as the first therapeutic choice for treating Aspergillus infections. This study emphasizes the significance of continued surveillance of Aspergillus spp. infections to help overcome the gap in knowledge of the global fungal burden of infections and antifungal resistance, supporting public health initiatives.

19.
J Mycol Med ; 33(4): 101436, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37774486

ABSTRACT

Fungal infections are a global health problem with high mortality and morbidity rates. Available antifungal agents have high toxicity and pharmacodynamic and pharmacokinetic limitations. Moreover, the increased incidence of antifungal-resistant isolates and the emergence of intrinsically resistant species raise concerns about seeking alternatives for efficient antifungal therapy. In this context, we review literature data addressing the potential action of miltefosine (MFS), an anti-Leishmania and anticancer agent, as a repositioning drug for antifungal treatment. Here, we highlight the in vitro and in vivo data, MFS possible mechanisms of action, case reports, and nanocarrier-mediated MFS delivery, focusing on fungal infection therapy. Finally, many studies have demonstrated the promising antifungal action of MFS in vitro, but there is little or no data on antifungal activity in vertebrate animal models and clinical trials, so have a need to develop more research for the repositioning of MFS as an antifungal therapy.


Subject(s)
Antifungal Agents , Mycoses , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Drug Repositioning , Mycoses/drug therapy , Phosphorylcholine/pharmacology , Phosphorylcholine/therapeutic use
20.
Microbiol Spectr ; : e0511522, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37698428

ABSTRACT

Members of the Meyerozyma guilliermondii species complex are able to cause superficial and life-threatening systemic infections with low susceptibility to azoles and echinocandins. We tested 130 bloodstream M. guilliermondii complex isolates collected from eight Latin American medical centers over 18 years (period 1 = 2000-2008 and period 2 = 2009-2018) to investigate trends in species distribution and antifungal resistance. The isolates were identified by rDNA ITS region sequencing, and antifungal susceptibility tests were performed against fluconazole, voriconazole, anidulafungin, and amphotericin B using the CLSI microbroth method. M. guilliermondii sensu stricto (s.s.; n = 116) was the most prevalent species, followed by Meyerozyma caribbica (n = 12) and Meyerozyma carpophila (n = 2). Based on rDNA ITS identification, three clades within M. guilliermondii sensu stricto were characterized (clade 1 n = 94; clade 2 n = 19; and clade 3 n = 3). In the second period of study, we found a substantial increment in the isolation of M. caribbica (3.4% versus 13.8%; P = 0.06) and clade 2 M. guilliermondii s.s. exhibiting lower susceptibility to one or more triazoles. IMPORTANCE Yeast-invasive infections play a relevant role in human health, and there is a concern with the emergence of non-Candida pathogens causing disease worldwide. There is a lack of studies addressing the prevalence and antifungal susceptibility of different species within the M. guilliermondii complex that cause invasive infections. We evaluated 130 episodes of M. guilliermondii species complex candidemia documented in eight medical centers over 18 years. We detected the emergence of less common species within the Meyerozyma complex causing candidemia and described a new clade of M. guilliermondii with limited susceptibility to triazoles. These results support the relevance of continued global surveillance efforts to early detect, characterize, and report emergent fungal pathogens exhibiting limited susceptibility to antifungals.

SELECTION OF CITATIONS
SEARCH DETAIL