Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
2.
Transfus Med Hemother ; 51(3): 140-151, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867807

ABSTRACT

Introduction: Eurotransplant established the acceptable mismatch (AM) program to facilitate timely kidney transplantations of highly sensitized patients, but long-term granular clinical and immunological outcomes regarding overall graft survival and de novo DSA (dnDSA) formation are still intensively researched. The right choice of induction therapy in patients with differing immunological risk is not conclusively determined, as well as the impact of human leukocyte antigen (HLA) epitope matching on dnDSA formation. Methods: This monocentric, retrospective study analyzed 94 patients transplanted within the AM program between 2000 and 2019 compared to case-control matched cohorts of non- (PRA 0-5%; PRA-0) and intermediately sensitized (PRA 6-84%; PRA-6/84) patients transplanted through Eurotransplant Kidney Allocation System. Results: Estimated 10-year overall graft survival between the PRA-0 and AM cohorts was similar, whereas PRA-6/84 was significantly disadvantageous compared to PRA-0. Estimated 10-year incidence of antibody-mediated rejection rates was significantly lower in the PRA-0 group compared to AM and PRA-6/84 groups. Compared to the AM group, estimated incidence of de novo donor-specific antibody (dnDSA) was significantly lower in PRA-0 patients, with no differences between the AM and PRA-6/84 cohorts. The PRA-6/84 cohort was the only subgroup in which interleukin-2 receptor antagonist (IL2RA) induction was associated with longer overall graft survival, patient survival, and graft survival compared to depleting induction (ATG or OKT3). Broad HLA-A, -B, -DR mismatches (mmABDR) and HLA epitope mismatches determined by Eplets and PIRCHE-II were predictive for dnDSA formation in the total cohort, and the AM subgroup. Discussion: The high efforts expended on AM patients are justified to allow timely organ transplantation with acceptable risk profile and non-inferior outcomes. IL2RA induction in intermediately sensitized patients is associated with superior overall graft survival, patient survival, and graft survival compared to ATG/OKT3 induction, without negative effects on rejection episodes or dnDSA formation. In silico epitope matching might further help reduce dnDSA formation, particularly in high-risk AM patients.

3.
Poult Sci ; 102(12): 103065, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37751643

ABSTRACT

Tembusu virus (TMUV), a pathogenic member of the Flavivirus family, is an infectious diseases that seriously jeopardize duck health in 2010 in China. TMUV disease causes significant economic losses to the duck industry. This study aimed to prepare monoclonal antibodies against TMUV prM protein and to identify their epitopes. The 501bp prM gene was amplified to the pET-32a prokaryotic expression vector and expressed as a recombinant protein of size 38 KD in Escherichia coli. The purified recombinant proteins were inoculated into BALB/c mice to generate splenic lymphocytes capable of secreting anti-prM antibodies, and hybridoma cells were obtained after fusion with SP2/0 cells. A new hybridoma cell line named B27, which stably secreted IgG1-antibody against TMUV prM with high antibody titers up to 1:1:3,276,800 was screened. This monoclonal antibody (mAb) is well specific and can be used for ELISA/Western-blot (WB)/indirect fluorescence assay (IFA) etc. The mAb B27 has poor neutralization ability and concentration dependence, with a maximum neutralization degree of 23.87% at antibody dilution 10-6. Next, we truncated prM gene and expressed the truncated protein to screen antigen epitopes. The mAb's linear antigen epitope of the TMUV prM protein was first identified and was accurate to 6 consecutive amino acids 59GYEPED64, which located in the pr protein. Bioinformatic analysis showed that this antigenic epitope was located on the surface of the antigen, which was conducive to the direct contact of antigen antibody and conformed to the properties of antigenic epitopes. In addition, its 6 amino acids are highly homologous among 27 published TMUV strains, indicating that its epitope is stable. This study will help to further understand the protein structure and the function of prM, and lay the foundation for establishing specific prM detection methods and the mechanistic study of TMUV prM protein.


Subject(s)
Flavivirus Infections , Flavivirus , Poultry Diseases , Mice , Animals , Flavivirus Infections/veterinary , Antibodies, Monoclonal , Chickens , Recombinant Proteins/genetics , Epitopes , Amino Acids , Ducks
4.
Avian Pathol ; 52(5): 377-387, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37581283

ABSTRACT

H9N2 subtype of avian influenza virus (AIV) is primarily a bird virus, which is widespread in clinical avian disease, and reported in cases of human infection. As one of the surface proteins of AIV, the neuraminidase (NA) protein plays an important role mainly in viral budding. However, vaccine development and detection methods for NA of H9N2 AIVs are in urgent clinical need. In this study, a truncated NA gene (205-900 bp) was cloned from the NA sequence of H9N2 strain, and then expressed using pET-28a (+) vector. This purified recombinant NA protein was used to immunize BALB/c mice, and the monoclonal antibodies were screened through the indirect enzyme-linked immunosorbent assay (ELISA). Next, eight prokaryotic expression vectors were constructed for epitope identification. After cell fusion, three hybridoma cell lines producing the antibodies special to NA protein were screened by ELISA, western blotting, and indirect immunofluorescence; these were named 1B10, 2B6, and 5B2, respectively. Epitope scanning techniques were used to identify three B-cell epitopes recognized by these three monoclonal antibodies, 196KNATASIIYDGMLVD210, 210DSIGSWSKNIL220 and 221RTQESECVCI230. The subsequent homology analysis revealed the three epitopes were highly conserved in H9N2 AIV strains. The structural predictions of the antigenic epitopes indicated that all three epitopes were located in the catalytic region of NA. These results provide a basis for studying the function of the NA protein of H9N2 AIV and technical support for the development of a universal detection method based on anti-NA monoclonal antibodies.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Humans , Mice , Antibodies, Monoclonal , Antibodies, Viral , Epitopes, B-Lymphocyte , Influenza A Virus, H9N2 Subtype/genetics , Neuraminidase/genetics , Recombinant Proteins/genetics
5.
Virol J ; 20(1): 135, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349792

ABSTRACT

OBJECTIVE: To isolate a prevalent G9P[8] group A rotavirus (RVA) (N4006) in China and investigate its genomic and evolutionary characteristics, with the goal of facilitating the development of a new rotavirus vaccine. METHODS: The RVA G9P[8] genotype from a diarrhea sample was passaged in MA104 cells. The virus was evaluated by TEM, polyacrylamide gel electrophoresis, and indirect immunofluorescence assay. The complete genome of virus was obtained by RT-PCR and sequencing. The genomic and evolutionary characteristics of the virus were evaluated by nucleic acid sequence analysis with MEGA ver. 5.0.5 and DNASTAR software. The neutralizing epitopes of VP7 and VP4 (VP5* and VP8*) were analyzed using BioEdit ver. 7.0.9.0 and PyMOL ver. 2.5.2. RESULTS: The RVA N4006 (G9P[8] genotype) was adapted in MA104 cells with a high titer (105.5 PFU/mL). Whole-genome sequence analysis showed N4006 to be a reassortant rotavirus of Wa-like G9P[8] RVA and the NSP4 gene of DS-1-like G2P[4] RVA, with the genotype constellation G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1 (G9P[8]-E2). Phylogenetic analysis indicated that N4006 had a common ancestor with Japanese G9P[8]-E2 rotavirus. Neutralizing epitope analysis showed that VP7, VP5*, and VP8* of N4006 had low homology with vaccine viruses of the same genotype and marked differences with vaccine viruses of other genotypes. CONCLUSION: The RVA G9P[8] genotype with the G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1 (G9P[8]-E2) constellation predominates in China and may originate from reassortment between Japanese G9P[8] with Japanese DS-1-like G2P[4] rotaviruses. The antigenic variation of N4006 with the vaccine virus necessitates an evaluation of the effect of the rotavirus vaccine on G9P[8]-E2 genotype rotavirus.


Subject(s)
Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Humans , Rotavirus Infections/epidemiology , Phylogeny , Genome, Viral , Genomics , Genotype
6.
Anim Dis ; 3(1): 14, 2023.
Article in English | MEDLINE | ID: mdl-37220551

ABSTRACT

Coronaviruses are widespread in nature and can infect mammals and poultry, making them a public health concern. Globally, prevention and control of emerging and re-emerging animal coronaviruses is a great challenge. The mechanisms of virus-mediated immune responses have important implications for research on virus prevention and control. The antigenic epitope is a chemical group capable of stimulating the production of antibodies or sensitized lymphocytes, playing an important role in antiviral immune responses. Thus, it can shed light on the development of diagnostic methods and novel vaccines. Here, we have reviewed advances in animal coronavirus antigenic epitope research, aiming to provide a reference for the prevention and control of animal and human coronaviruses. Supplementary Information: The online version contains supplementary material available at 10.1186/s44149-023-00080-0.

7.
Immunol Lett ; 259: 30-36, 2023 07.
Article in English | MEDLINE | ID: mdl-37247788

ABSTRACT

BACKGROUND: Systemic lupus erythematosus (SLE) is one of the most common autoimmune diseases in China. At present, there are hundreds of autoantibodies in SLE patients; however, only a dozen of the autoantibodies can be routinely detected, and the available diagnostic antibodies are not sufficient for diagnosis or differential diagnosis of SLE patients with atypical clinical manifestations or other autoimmune diseases. Therefore, it is necessary to find new diagnostic markers to improve the diagnostic effect of SLE. METHODS: The displayed random peptide library and peptide microarray were combined to identify SLE-related epitope peptides. A case-control design was used. The IgG antibodies in the sera from SLE patients, healthy controls, and other autoimmune disease controls underwent a reaction with the phage-display random peptide library, respectively. Selected epitope peptides were used to construct a peptide chip. A total of 644 serum samples (including 296 SLE patients, 168 disease controls, and 180 healthy controls) were used for further screening and verification. Peptides with an area under the curve (AUC) > 0.650 were further verified by ELISA. Finally, 500 serum samples (including 200 SLE patients, 150 disease controls, and 150 healthy controls) were used to verify and evaluate the diagnostic and differential diagnostic efficacy of the selected peptides. RESULTS: After the previous screening, five epitope peptides (SLE_P19, SLE_P20, SLE_P27, SLE_P28, and SLE_P29) may have potential as SLE diagnostic markers. Additionally, SLE_P27 was superior to the other four peptides in the diagnosis and differential diagnosis of SLE and rheumatoid arthritis (RA). The AUC of SLE_P27 was 0.938, the sensitivity was 76.00%, the specificity was 92.70%, the positive likelihood ratio was 10.411, the negative likelihood ratio was 0.259, and the accuracy was 84.40%. The diagnostic efficacy of SLE can be increased by combining the five selected peptides with the anti-double stranded DNA antibody (anti-dsDNA) and anti-Smith antibodies (anti-Sm). CONCLUSIONS: In this study, we identified five peptides that may serve as potential biomarkers for SLE diagnosis using the strategy of combining the displayed random peptide library with the peptide microarray. The combination of selected peptides and existing autoantibodies can significantly improve the diagnostic efficiency. These specific peptides are expected to be new diagnostic markers for SLE.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Humans , Epitopes , Peptide Library , Peptides , Autoantibodies
8.
J Virol ; 97(4): e0005023, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36975794

ABSTRACT

Antigen epitope identification is a critical step in the vaccine development process and is a momentous cornerstone for the development of safe and efficient epitope vaccines. In particular, vaccine design is difficult when the function of the protein encoded by the pathogen is unknown. The genome of Tilapia lake virus (TiLV), an emerging virus from fish, encodes protein functions that have not been elucidated, resulting in a lag and uncertainty in vaccine development. Here, we propose a feasible strategy for emerging viral disease epitope vaccine development using TiLV. We determined the targets of specific antibodies in serum from a TiLV survivor by panning a Ph.D.-12 phage library, and we identified a mimotope, TYTTRMHITLPI, referred to as Pep3, which provided protection against TiLV after prime-boost vaccination; its immune protection rate was 57.6%. Based on amino acid sequence alignment and structure analysis of the target protein from TiLV, we further identified a protective antigenic site (399TYTTRNEDFLPT410) which is located on TiLV segment 1 (S1). The epitope vaccine with keyhole limpet hemocyanin (KLH-S1399-410) corresponding to the mimotope induced the tilapia to produce a durable and effective antibody response after immunization, and the antibody depletion test confirmed that the specific antibody against S1399-410 was necessary to neutralize TiLV. Surprisingly, the challenge studies in tilapia demonstrated that the epitope vaccine elicited a robust protective response against TiLV challenge, and the survival rate reached 81.8%. In conclusion, this study revealed a concept for screening antigen epitopes of emerging viral diseases, providing promising approaches for development and evaluation of protective epitope vaccines against viral diseases. IMPORTANCE Antigen epitope determination is an important cornerstone for developing efficient vaccines. In this study, we attempted to explore a novel approach for epitope discovery of TiLV, which is a new virus in fish. We investigated the immunogenicity and protective efficacy of all antigenic sites (mimotopes) identified in serum of primary TiLV survivors by using a Ph.D.-12 phage library. We also recognized and identified the natural epitope of TiLV by bioinformatics, evaluated the immunogenicity and protective effect of this antigenic site by immunization, and revealed 2 amino acid residues that play important roles in this epitope. Both Pep3 and S1399-410 (a natural epitope identified by Pep3) elicited antibody titers in tilapia, but S1399-410 was more prominent. Antibody depletion studies showed that anti-S1399-410-specific antibodies were essential for neutralizing TiLV. Our study demonstrated a model for combining experimental and computational screens to identify antigen epitopes, which is attractive for epitope-based vaccine development.


Subject(s)
Antibody Formation , Fish Diseases , RNA Virus Infections , Tilapia , Viral Vaccines , Cell Surface Display Techniques , Computer Simulation , Epitopes/immunology , Viral Vaccines/immunology , Antibody Formation/immunology , Tilapia/virology , Cell Line , RNA Viruses/immunology , Animals , Antibodies, Viral/blood , Immunity, Humoral/immunology , RNA Virus Infections/prevention & control , RNA Virus Infections/veterinary , RNA Virus Infections/virology , Fish Diseases/prevention & control , Fish Diseases/virology
9.
Comput Struct Biotechnol J ; 21: 1362-1371, 2023.
Article in English | MEDLINE | ID: mdl-36741787

ABSTRACT

Although multiple vaccines have been developed and widely administered, several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been reported to evade immune responses and spread diffusely. Here, 108 RNA-seq files from coronavirus disease 2019 (COVID-19) patients and healthy donors (HD) were downloaded to extract their TCR immune repertoire by MiXCR. Those extracted TCR repertoire were compared and it was found that disease progression was related negatively with diversity and positively with clonality. Specifically, greater proportions of high-abundance clonotypes were observed in active and severe COVID-19 samples, probably resulting from strong stimulation of SARS-CoV-2 epitopes and a continued immune response in host. To investigate the specific recognition between TCR CDR3 and SARS-CoV-2 epitopes, we constructed an accurate classifier CoV2-TCR with an AUC of 0.967 in an independent dataset, which outperformed several similar tools. Based on this model, we observed a huge range in the number of those TCR CDR3 recognizing those different peptides, including 28 MHC-I epitopes from SARS-CoV-2 and 22 immunogenic peptides from SARS-CoV-2 variants. Interestingly, their proportions of high-abundance, low-abundance and rare clonotypes were close for each peptide. To expand the potential application of this model, we established the webserver, CoV2-TCR, in which users can obtain those recognizing CDR3 sequences from the TCR repertoire of COVID-19 patients based on the 9-mer peptides containing mutation site(s) on the four main proteins of SARS-CoV-2 variants. Overall, this study provides preliminary screening for candidate antigen epitopes and the TCR CDR3 that recognizes them, and should be helpful for vaccine design on SARS-CoV-2 variants.

10.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674531

ABSTRACT

Autoimmune thyroiditis (AIT) is a common endocrine disease which causes a significantly increased risk of miscarriage. Our recent study has shown that the increased ENO1 autoantibody (ENO1Ab) expression in an experimental AIT mouse model was induced by thyroglobulin (Tg) immunization only. In this study, we explored the potential roles of ENO1Ab in miscarriage occurrence among AIT women, and the specific epitopes of ENO1 targeted by ENO1Ab. A total of 432 euthyroid pregnant participants were selected from the project of Subclinical Hypothyroid during Early Pregnancy, including 48 women with AIT and miscarriage, 96 with miscarriage but no AIT, 96 with AIT but no miscarriage, and 192 without either AIT or miscarriage. The enzyme-linked immunosorbent assay was used to determine the serum levels of total IgG against ENO1 and 18 predicted antigen epitopes of ENO1. The results showed that women with AIT and miscarriage had the highest serum levels of ENO1Ab compared to the other groups. Logistic regression analysis showed that the serum ENO1Ab was an independent risk factor for miscarriage, especially among AIT females. The serum level of total IgG against the predicted epitope peptide 6 (i.e., P6 and aa168-183) of ENO1 was significantly increased in women with AIT and miscarriage when compared with those of both the AIT non-miscarriage group and non-AIT miscarriage group. This pilot study suggests that serum ENO1Ab may have a fair predictive value for AIT-related miscarriage, and the autoantibody specific to P6 epitope may especially be more specifically related to this disorder.


Subject(s)
Abortion, Spontaneous , Thyroiditis, Autoimmune , Animals , Female , Mice , Pregnancy , Autoantibodies , Epitopes , Hashimoto Disease , Immunoglobulin G , Phosphopyruvate Hydratase , Pilot Projects , Thyroiditis, Autoimmune/complications , Abortion, Spontaneous/immunology
11.
Viruses ; 14(12)2022 12 08.
Article in English | MEDLINE | ID: mdl-36560743

ABSTRACT

The H9N2 subtype of avian influenza virus (AIV) has been reported to infect not only birds, but also humans. The hemagglutinin (HA) protein is the main surface antigen of AIV and plays an important role in the viral infection. For treatment strategies and vaccine development, HA protein has been an important target for the development of broadly neutralizing antibodies against influenza A virus. To investigate the vital target determinant cluster in HA protein in this work, HA gene was cloned and expressed in the prokaryotic expression vector pET28a. The spleen lymphocytes from BALC/c mice immunized with the purified recombinant HA protein were fused with SP2/0 cells. After Hypoxanthine-Aminopterin-Thymidine (HAT) medium screening and indirect ELISA detection, six hybridoma cell lines producing anti-HA monoclonal antibodies were screened. The gradually truncated HA gene expression and western blotting were used to identify their major locations in epitopes specific to these monoclonal antibodies. It was found that the epitopes were located in three areas: 112NVENLEEL119, 117EELRSLFS124, and 170PIQDAQ175. Epitope 112NVENLEEL119 has a partial amino acid crossover with 117EELRSLFS124, which is located in the vestigial esterase domain "110-helix" of HA, and the monoclonal antibody recognizing these epitopes showed the neutralizing activity, suggesting that the region 112NVENLEELRSLFS124 might be a novel neutralizing epitope. The results of the homology analysis showed that these three epitopes were generally conserved in H9N2 subtype AIV, and will provide valuable insights into H9N2 vaccine design and improvement, as well as antibody-based therapies for treatment of H9N2 AIV infection.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Humans , Animals , Mice , Epitopes , Influenza A Virus, H9N2 Subtype/genetics , Hemagglutinins , Esterases , Antibodies, Monoclonal , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antibodies, Viral , Chickens
12.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 34(3): 286-291, 2022 Jun 24.
Article in Chinese | MEDLINE | ID: mdl-35896492

ABSTRACT

OBJECTIVE: To conduct eukaryotic expression of the leucine-rich repeat containing 15 (LRRC15), a differentially expressed protein in excretory secretory antigens of Taenia solium cysticercus, and predict its antigen epitope. METHODS: The molecular weight, stability, amino acid sequence composition, isoelectric point and T lymphocyte epitope of the LRRC15 protein were predicted using the bioinformatics online softwares ExPASy-PortParam and Protean. The full-length splicing primers were designed using PCR-based accurate synthesis, and the LRRC15 gene was synthesized. The recombinant pcDNA3.4-LRRC15 plasmid was constructed and transfected into HEK293 cells to express the LRRC15 protein. In addition, the LRRC15 protein was characterized by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. RESULTS: The recombinant pcDNA3.4-LRRC15 plasmid was successfully constructed, which expressed the target LRRC15 protein with an approximately molecular weight of 70 kDa. Bioinformatics prediction with the ExPASy-PortParam software showed that LRRC15 was a hydrophilic protein, which was consisted of 644 amino acids and had a molecular weight of 69.89 kDa and an isoelectric point of 5.6. The molecular formula of the LRRC15 protein was C3073H4942N846O953S28 and had an instability coefficient is 50.3, indicating that LRRC15 was an instable protein. Bioinformatics prediction with the Protean software showed that the dominant T-cell antigen epitopes were located in 292 to 295, 353 to 361, 521 to 526 and 555 to 564 amino acids of the LRRC15 protein, and the T-cell antigen epitopes with a high hydrophilicity, good flexibility, high surface accessibility and high antigenicity index were found in 122 to 131, 216 to 233, 249 to 254, 333 to 343, 358 to 361, 368 to 372, 384 to 386, 407 to 412, 445 to 450, 469 to 481, 553 to 564, 588 to 594, 607 to 617 and 624 to 639 amino acids. Following transfection of the recombinant pcDNA3.4-LRRC15 plasmid into HEK293 cells, SDS-PAGE and Western blotting identified LRRC15 proteins in cell secretory culture media, cell lysis supernatants and sediments. The LRRC15-His fusion protein was purified from the cell culture medium, and SDS-PAGE identified a remarkable band at approximately 70 kDa, while Western blotting successfully recognized the band of the recombinant LRRC15 protein. CONCLUSIONS: The eukaryotic expression and antigen epitope prediction of the LRRC15 protein in the excretory secretory antigens of T. solium cysticercus have been successfully performed, which provides insights into further understandings of its biological functions.


Subject(s)
Taenia solium , Amino Acids , Animals , Antigens, Helminth/genetics , Cysticercus/genetics , Epitopes/genetics , Eukaryota , HEK293 Cells , Humans , Leucine-Rich Repeat Proteins , Membrane Proteins , Taenia solium/genetics
13.
Viruses ; 14(6)2022 05 28.
Article in English | MEDLINE | ID: mdl-35746647

ABSTRACT

Avian Influenza (AI) caused by the H9N2 subtype of the avian influenza virus (AIV) poses a serious threat to both the poultry industry and to public health safety. NP is one of the major structural proteins in influenza viruses. B-cell determinants located on NP proteins have attracted increasing attention. In this study, based on the NP sequence of the H9N2 (A/chicken/Shandong/LY1/2017) strain, the truncated NP gene (71 AA-243 AA) was cloned and prokaryotically expressed in a pET-28a (+) vector. BALB/c mice were immunized with a purified recombinant of an NP protein to prepare a monoclonal antibody against NP proteins. The prokaryotic expression of four overlapping fragments, NP-N-96, NP-C-103, NP-C-54 and NP-C-49, were used to recognize an antigenic epitope of the NP protein. The results show that, after cell fusion, one hybridoma cell clone secreted the antibody specific to the NP protein, following screening with ELISA and indirect immunofluorescence, which is named the 4F5 monoclonal antibody (mAb). Western blotting on the overlapping fragments showed that the 230FQTAAQRA237 motif was identified as the minimal motif recognized by 4F5mAb, which was represented as the linear B-cell epitope of the NP protein. Homology analysis of this epitope shows that it was highly conserved in 18 AIVs analyzed in this study, and the epitope prediction results indicate that the epitope may be located on the surface of the NP protein. These results provide a strong experimental basis for studying the function of the NP protein of the H9N2 AIV and also strong technical support for the development of a universal assay based on an anti-NP monoclonal antibody.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Antibodies, Monoclonal , Antibodies, Viral , Chickens , Epitopes, B-Lymphocyte/genetics , Influenza A Virus, H9N2 Subtype/genetics , Mice
14.
Viruses ; 14(4)2022 04 08.
Article in English | MEDLINE | ID: mdl-35458502

ABSTRACT

Porcine deltacoronavirus (PDCoV) mainly causes severe diarrhea and intestinal pathological damage in piglets and poses a serious threat to pig farms. Currently, no effective reagents or vaccines are available to control PDCoV infection. Single-chain fragment variable (scFv) antibodies can effectively inhibit virus infection and may be a potential therapeutic reagent for PDCoV treatment. In this study, a porcine phage display antibody library from the peripheral blood lymphocytes of piglets infected with PDCoV was constructed and used to select PDCoV-specific scFv. The library was screened with four rounds of biopanning using the PDCoV N protein, and the colony with the highest affinity to the PDCoV N protein was obtained (namely, N53). Then, the N53-scFv gene fragment was cloned into plasmid pFUSE-hIgG-Fc2 and expressed in HEK-293T cells. The scFv-Fc antibody N53 (namely, scFv N53) was purified using Protein A-sepharose. The reactive activity of the purified antibody with the PDCoV N protein was confirmed by indirect enzyme-linked immunosorbent assay (ELISA), western blot and indirect immunofluorescence assay (IFA). Finally, the antigenic epitopes that the scFv N53 recognized were identified by a series of truncated PDCoV N proteins. The amino acid residues 82GELPPNDTPATTRVT96 of the PDCoV N protein were verified as the minimal epitope that can be recognized by the scFv-Fc antibody N53. In addition, the interaction between the scFv-Fc antibody N53 and the PDCoV N protein was further analyzed by molecule docking. In conclusion, our research provides some references for the treatment and prevention of PDCoV.


Subject(s)
Bacteriophages , Coronavirus Infections , Single-Chain Antibodies , Swine Diseases , Animals , Antibodies, Viral , Deltacoronavirus , Epitopes , Nucleocapsid Proteins/genetics , Single-Chain Antibodies/genetics , Swine , Technology
15.
Virol J ; 19(1): 14, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35057815

ABSTRACT

BACKGROUND: The Alphapapillomavirus 9 (α-9 HPV) is a member of the Alphapapillomavirus genus and Papillomaviridae family. These viruses are almost all carcinogenic HPV, which is closely related to 75% of invasive cervical cancer worldwide, and has a high prevalence in Sichuan. The carcinogenic function is mainly realized by its E6 oncoprotein. METHODS: Cell samples were collected by cervical scraped for HPV detecting and typing. HPV-16, HPV-31, HPV-33, HPV-52, HPV-58 5 α-9 genus HPV subtype positive samples were selected, their E6 gene was sequenced and analyzed. The positive selection sites of HPV E6 genes were estimated by PAML 4.8 server. The secondary and tertiary structure of E6 protein were predicted by PSIPred and Swiss-model. The T-cell antigen epitopes of E6 protein were predicted by IEDB. RESULTS: α-9 HPV has a high prevalence in Sichuan, China. From 2012 to 2017, 18,067 cell cervical samples were collected, and 3135 were detected with α-9 HPV infection. Among which, 250 cases HPV-16 E6, 96 cases HPV-31 E6, 216 cases HPV-33 E6, 288 cases HPV-52 E6 and 405 cases HPV-58 E6 were successfully amplified, 17, 6, 6, 13, and 4 non-synonymous nucleotide mutations were respectively detected in HPV-16, 31, 33, 52, and 58 E6, 7 positive selection sites of α-9 HPV E6 were selected out (D32E of HPV-16 E6, K35N, K93N and R145I of HPV-33 E6, K93R of HPV-52 E6, K93N and R145K of HPV-58 E6). The structure and antigen epitopes of E6 protein with amino acid substitution differ from those of wild-type E6 protein, especially for the mutation located in the E6 positive selection site. CONCLUSIONS: HPV E6 nucleotide non-synonymous mutation in the positive selection site influence the protein structure and decrease the antigen epitopes affinity of the E6 protein overall, making it more difficult for the HPV-infected cells to be detected by the immune system, and enhancing the HPV adaptability to the environment. Mutations influence the validity of HPV clinical diagnostic probes, the polymorphism analysis of α-9 HPV E6 enrich the data of HR-risk HPV in Sichuan China, and the detection probes designed with the polymorphism data in mind can improve the efficiency of clinical detection; Mutations influence epitopes affinity, the association of E6 polymorphism and epitope affinity can improve the design of therapeutic vaccine with good immunity and high generality antigen epitope; The above study all provide a good theoretical basis for the prevention and treatment of HPV-related diseases.


Subject(s)
Alphapapillomavirus , Oncogene Proteins, Viral , Repressor Proteins , Alphapapillomavirus/genetics , China/epidemiology , Epitopes, T-Lymphocyte/genetics , Female , Human papillomavirus 16 , Humans , Oncogene Proteins, Viral/chemistry , Oncogene Proteins, Viral/genetics , Papillomavirus Infections , Phylogeny , Polymorphism, Single Nucleotide , Repressor Proteins/chemistry , Repressor Proteins/genetics , Uterine Cervical Neoplasms
16.
Front Vet Sci ; 9: 1080927, 2022.
Article in English | MEDLINE | ID: mdl-36937700

ABSTRACT

The regional outbreak of the Swine acute diarrhea syndrome coronavirus (SADS-CoV) has seriously threatened the swine industry. There is an urgent need to discover safe and effective vaccines to contain them quickly. The coronavirus spike protein mediates virus entry into host cells, one of the most important antigenic determinants and a potential vaccine target. Therefore, this study aims to conduct a predictive analysis of the epitope of S protein B cells and T cells (MHC class I and class II) by immunoinformatics methods by screening and identifying protective antigenic epitopes that induce major neutralized antibodies and activate immune responses to construct epitope vaccines. The study explored primary, secondary, and tertiary structures, disulfide bonds, protein docking, immune response simulation, and seamless cloning of epitope vaccines. The results show that the spike protein dominant epitope of the screening has a high conservativeness and coverage of IFN-γ, IL-4-positive Th epitope, and CTL epitope. The constructed epitope vaccine interacts stably with TLR-3 receptors, and the immune response simulation shows good immunogenicity, which could effectively activate humoral and cellular immunity. After codon optimization, it was highly likely to be efficiently and stably expressed in the Escherichia coli K12 expression system. Therefore, the constructed epitope vaccine will provide a new theoretical basis for the design of SADS-CoV antiviral drugs and related research on coronaviruses such as SARS-CoV-2.

17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940949

ABSTRACT

OBJECTIVE@#To conduct eukaryotic expression of the leucine-rich repeat containing 15 (LRRC15), a differentially expressed protein in excretory secretory antigens of Taenia solium cysticercus, and predict its antigen epitope.@*METHODS@#The molecular weight, stability, amino acid sequence composition, isoelectric point and T lymphocyte epitope of the LRRC15 protein were predicted using the bioinformatics online softwares ExPASy-PortParam and Protean. The full-length splicing primers were designed using PCR-based accurate synthesis, and the LRRC15 gene was synthesized. The recombinant pcDNA3.4-LRRC15 plasmid was constructed and transfected into HEK293 cells to express the LRRC15 protein. In addition, the LRRC15 protein was characterized by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting.@*RESULTS@#The recombinant pcDNA3.4-LRRC15 plasmid was successfully constructed, which expressed the target LRRC15 protein with an approximately molecular weight of 70 kDa. Bioinformatics prediction with the ExPASy-PortParam software showed that LRRC15 was a hydrophilic protein, which was consisted of 644 amino acids and had a molecular weight of 69.89 kDa and an isoelectric point of 5.6. The molecular formula of the LRRC15 protein was C3073H4942N846O953S28 and had an instability coefficient is 50.3, indicating that LRRC15 was an instable protein. Bioinformatics prediction with the Protean software showed that the dominant T-cell antigen epitopes were located in 292 to 295, 353 to 361, 521 to 526 and 555 to 564 amino acids of the LRRC15 protein, and the T-cell antigen epitopes with a high hydrophilicity, good flexibility, high surface accessibility and high antigenicity index were found in 122 to 131, 216 to 233, 249 to 254, 333 to 343, 358 to 361, 368 to 372, 384 to 386, 407 to 412, 445 to 450, 469 to 481, 553 to 564, 588 to 594, 607 to 617 and 624 to 639 amino acids. Following transfection of the recombinant pcDNA3.4-LRRC15 plasmid into HEK293 cells, SDS-PAGE and Western blotting identified LRRC15 proteins in cell secretory culture media, cell lysis supernatants and sediments. The LRRC15-His fusion protein was purified from the cell culture medium, and SDS-PAGE identified a remarkable band at approximately 70 kDa, while Western blotting successfully recognized the band of the recombinant LRRC15 protein.@*CONCLUSIONS@#The eukaryotic expression and antigen epitope prediction of the LRRC15 protein in the excretory secretory antigens of T. solium cysticercus have been successfully performed, which provides insights into further understandings of its biological functions.


Subject(s)
Animals , Humans , Amino Acids , Antigens, Helminth/genetics , Cysticercus/genetics , Epitopes/genetics , Eukaryota , HEK293 Cells , Leucine-Rich Repeat Proteins , Membrane Proteins , Taenia solium/genetics
18.
Cent Eur J Immunol ; 45(1): 86-92, 2020.
Article in English | MEDLINE | ID: mdl-32425685

ABSTRACT

Circulating autoantibodies have a close association with autoimmune diseases, which may be seen even in healthy individuals. These are also considered as promising source of new biomarkers in various autoimmune diseases. However, their profile is not completely understood till now. Here, we evaluated autoantibodies against nuclear mitotic apparatus protein located at the carboxy terminus (C-NuMA)in blood circulation of Han Chinese patients, using different technical approaches to discover pathological reaction leading to Behçet's disease (BD). In the first step, the recombinant human carboxy-terminal region of NuMA peptide (C-NuMA) was over-expressed and purified. In the second step, the indirect immunofluorescence method was used with patients' sera, and commercial anti-NuMA antibody was used to determine the NuMA as a potential autoantigen. Results were confirmed at cell level by western blots, indicating that two of ten patients with Behçet's disease could react with the recombinant C-NuMA,and the presence of antibodies were further verified by immunoprecipitation technique. Finally, the corresponding immunoassay (ELISA) was developed and optimized with specific recombinant C-NuMA as an in vitro method to test the confirmed patients with Behçet's disease. Our findings demonstrated that C-terminus of NuMA is an immune target of Behçet's disease in Han Chinese patients.

19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-824818

ABSTRACT

Objective To evaluate the immune responses and protection against human metapneu-movirus ( hMPV) conveyed by influenza virus vectors carrying multiple epitope antigens of hMPV. Methods Two recombinant influenza viruses ( rFLU/hMPV/B and rFLU/hMPV/CTL+Th ) carrying hMPV multi-epitope gene segments in NS gene were generated by reverse genetic techniques of eight-plasmid system. BALB/c mice were immunized intranasally with rFLU/hMPV/B and rFLU/hMPV/CTL+Th twice at a two-week interval. Virus-specific antibody titers and splenocyte cytokines were detected two weeks after the boost immunization. Viral loads in lung tissues and turbinates were detected with digital PCR after the immunized mice were challenged with hMPV and influenza virus. Moreover, HE staining was used to observe lung inju-ries. Results Specific antibodies against both the influenza virus and hMPV were induced in mice immu-nized intranasally with rFLU/hMPV/B, while the influenza virus-specific antibody response and hMPV-spe-cific cytotoxic lymphocyte response ( significant IFN-γ secretion ) were detected in mice immunized with rFLU/hMPV/CTL+Th. Additionally, balanced Th1/Th2 responses were elicited by rFLU/hMPV/B and rFLU/hMPV/CTL+Th. Both rFLU/hMPV/B and rFLU/hMPV/CTL+Th conveyed effective protection against subsequent influenza virus and hMPV challenges with significantly alleviated histopathological dama-ges and reduced viral loads. Conclusions Both rFLU/hMPV/B and rFLU/hMPV/CTL+Th can induce spe-cific humoral immune response against hMPV and/or the influenza virus. Moreover, rFLU/hMPV/CTL+Th can also elicit hMPV-specific CTL immune response. These two recombinant strains can also protect BALB/c mice from the challenges with hMPV and influenza virus, suggesting that they are promising vaccine candi-dates.

20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-798755

ABSTRACT

Objective@#To evaluate the immune responses and protection against human metapneumovirus (hMPV) conveyed by influenza virus vectors carrying multiple epitope antigens of hMPV.@*Methods@#Two recombinant influenza viruses (rFLU/hMPV/B and rFLU/hMPV/CTL+ Th) carrying hMPV multi-epitope gene segments in NS gene were generated by reverse genetic techniques of eight-plasmid system. BALB/c mice were immunized intranasally with rFLU/hMPV/B and rFLU/hMPV/CTL+ Th twice at a two-week interval. Virus-specific antibody titers and splenocyte cytokines were detected two weeks after the boost immunization. Viral loads in lung tissues and turbinates were detected with digital PCR after the immunized mice were challenged with hMPV and influenza virus. Moreover, HE staining was used to observe lung injuries.@*Results@#Specific antibodies against both the influenza virus and hMPV were induced in mice immunized intranasally with rFLU/hMPV/B, while the influenza virus-specific antibody response and hMPV-specific cytotoxic lymphocyte response (significant IFN-γ secretion) were detected in mice immunized with rFLU/hMPV/CTL+ Th. Additionally, balanced Th1/Th2 responses were elicited by rFLU/hMPV/B and rFLU/hMPV/CTL+ Th. Both rFLU/hMPV/B and rFLU/hMPV/CTL+ Th conveyed effective protection against subsequent influenza virus and hMPV challenges with significantly alleviated histopathological damages and reduced viral loads.@*Conclusions@#Both rFLU/hMPV/B and rFLU/hMPV/CTL+ Th can induce specific humoral immune response against hMPV and/or the influenza virus. Moreover, rFLU/hMPV/CTL+ Th can also elicit hMPV-specific CTL immune response. These two recombinant strains can also protect BALB/c mice from the challenges with hMPV and influenza virus, suggesting that they are promising vaccine candidates.

SELECTION OF CITATIONS
SEARCH DETAIL
...