Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Trends Biochem Sci ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38880687

ABSTRACT

The dynamics behavior of a protein is essential for its functionality. Here, Doucet et al. demonstrate how the evolutionary analysis of conformational pathways within a protein family serves to identify common core scaffolds that accommodate branch-specific functional regions controlled by flexibility switches, offering a model for evolutionary-dynamics based protein design.

2.
Eur J Clin Invest ; 54(7): e14224, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38634717

ABSTRACT

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of end-stage liver disease associated with increased mortality and cardiovascular disease. Obesity and diabetes are the most important risk factors of MASLD. It is well-established that obesity-associated insulin resistance leads to a situation of tissue lipotoxicity characterized by an accumulation of excess fat in non-fat tissues such as the liver, promoting the development of MASLD, and its progression into metabolic dysfunction-associated steatohepatitis. METHODS: Here, we aimed to review the impact of disrupted intestinal permeability, antimicrobial proteins and bacterial endotoxin in the development and progression of MASLD. RESULTS AND CONCLUSION: Recent studies demonstrated that obesity- and obesogenic diets-associated alterations of intestinal microbiota along with the disruption of intestinal barrier integrity, the alteration in antimicrobial proteins and, in consequence, an enhanced translocation of bacterial endotoxin into bloodstream might contribute to this pathological process through to impacting liver metabolism and inflammation.


Subject(s)
Endotoxins , Gastrointestinal Microbiome , Obesity , Animals , Humans , Antimicrobial Cationic Peptides/metabolism , Bacterial Translocation , Endotoxins/metabolism , Fatty Liver/metabolism , Gastrointestinal Microbiome/physiology , Insulin Resistance/physiology , Intestinal Mucosa/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Obesity/complications , Intestinal Barrier Function
3.
J Microbiol ; 62(3): 167-179, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38630349

ABSTRACT

The human gut houses a diverse and dynamic microbiome critical for digestion, metabolism, and immune development, exerting profound effects on human health. However, these microorganisms pose a potential threat by breaching the gut barrier, entering host tissues, and triggering infections, uncontrolled inflammation, and even sepsis. The intestinal epithelial cells form the primary defense, acting as a frontline barrier against microbial invasion. Antimicrobial proteins (AMPs), produced by these cells, serve as innate immune effectors that regulate the gut microbiome by directly killing or inhibiting microbes. Abnormal AMP production, whether insufficient or excessive, can disturb the microbiome equilibrium, contributing to various intestinal diseases. This review delves into the complex interactions between AMPs and the gut microbiota and sheds light on the role of AMPs in governing host-microbiota interactions. We discuss the function and mechanisms of action of AMPs, their regulation by the gut microbiota, microbial evasion strategies, and the consequences of AMP dysregulation in disease. Understanding these complex interactions between AMPs and the gut microbiota is crucial for developing strategies to enhance immune responses and combat infections within the gut microbiota. Ongoing research continues to uncover novel aspects of this intricate relationship, deepening our understanding of the factors shaping gut health. This knowledge has the potential to revolutionize therapeutic interventions, offering enhanced treatments for a wide range of gut-related diseases.


Subject(s)
Gastrointestinal Microbiome , Gastrointestinal Microbiome/physiology , Humans , Animals , Antimicrobial Peptides/metabolism , Immunity, Innate , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Bacteria/metabolism , Intestines/microbiology , Intestines/immunology
4.
Indian J Microbiol ; 64(1): 20-35, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38468748

ABSTRACT

Antimicrobial resistance (AMR) is one of the major leading causes of death around the globe. Present treatment pipelines are insufficient to overcome the critical situation. Prominent biofilm forming human pathogens which can thrive in infection sites using adaptive features results in biofilm persistence. Considering the present scenario, prudential investigations into the mechanisms of resistance target them to improve antibiotic efficacy is required. Regarding this, developing newer and effective treatment options using edge cutting technologies in medical research is the need of time. The reasons underlying the adaptive features in biofilm persistence have been centred on different metabolic and physiological aspects. The high tolerance levels against antibiotics direct researchers to search for novel bioactive molecules that can help combat the problem. In view of this, the present review outlines the focuses on an opportunity of different strategies which are in testing pipeline can thus be developed into products ready to use.

5.
Front Cell Infect Microbiol ; 14: 1375887, 2024.
Article in English | MEDLINE | ID: mdl-38505286

ABSTRACT

Salmonella enterica is a food-borne pathogen able to cause a wide spectrum of diseases ranging from mild gastroenteritis to systemic infections. During almost all stages of the infection process Salmonella is likely to be exposed to a wide variety of host-derived antimicrobial peptides (AMPs). AMPs are important components of the innate immune response which integrate within the bacterial membrane, thus forming pores which lead ultimately to bacterial killing. In contrast to other AMPs Bactericidal/Permeability-increasing Protein (BPI) displayed only weak bacteriostatic or bactericidal effects towards Salmonella enterica sv. Typhimurium (STM) cultures. Surprisingly, we found that sub-antimicrobial concentrations of BPI fold-containing (BPIF) superfamily members mediated adhesion of STM depending on pre-formed type 1 fimbriae. BPIF proteins directly bind to type 1 fimbriae through mannose-containing oligosaccharide modifications. Fimbriae decorated with BPIF proteins exhibit extended binding specificity, allowing for bacterial adhesion on a greater variety of abiotic and biotic surfaces likely promoting host colonization. Further, fimbriae significantly contributed to the resistance against BPI, probably through sequestration of the AMP before membrane interaction. In conclusion, functional subversion of innate immune proteins of the BPIF family through binding to fimbriae promotes Salmonella virulence by survival of host defense and promotion of host colonization.


Subject(s)
Salmonella enterica , Salmonella typhimurium , Fimbriae, Bacterial/metabolism , Bacterial Adhesion , Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism
6.
Fish Shellfish Immunol ; 148: 109520, 2024 May.
Article in English | MEDLINE | ID: mdl-38513915

ABSTRACT

Carcinins are type-I crustins from crustaceans and play an important role in innate immune system. In this study, type-I crustins, carcininPm1 and carcininPm2, from the hemocytes of Penaeus monodon were identified. Comparison of their amino acid sequences and the phylogenetic tree revealed that they were closely related to the other crustacean carcinin proteins, but were clustered into different groups of the carcinin proteins. The full-length amino acids of carcininPm1 and carcininPm2 were 92 and 111 residues, respectively. CarcininPm1 and carcininPm2 were expressed mainly in hemocytes and intestine compared to the other tissues. The expression of carcininPm1 and carcininPm2 were dramatically increased in early time of bacterial challenged shrimp hemocytes. In contrast, the carcininPm1 and carcininPm2 were expressed in response to late state of YHV-infected shrimp hemocytes where the copy number of virus was high. The recombinant carcininPm2 (rcarcininPm2) but not its WAP domain (rcarcininPm2_WAP) exhibited antimicrobial activity against Vibrio harveyi and Vibrio parahaemolyticus AHPND but not other bacteria tested. The rcarcininPm2 was able to prolong the survival rate of VH-treated post larval shrimp from about 102 h to 156 h. These studies indicated that the carcininPm2 possessed the potential and challenges as antibacterial in innate immunity of shrimp.


Subject(s)
Antimicrobial Cationic Peptides , Penaeidae , Vibrio parahaemolyticus , Animals , Phylogeny , Amino Acid Sequence , Arthropod Proteins
7.
Eur J Pediatr ; 183(2): 523-528, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37966493

ABSTRACT

Dental caries represents one of the most prevalent health problems in childhood. Numerous studies have assessed that vitamin D deficiency is highly related to dental caries in primary and permanent teeth in children. The aim of this study is to elaborate a narrative review about proposed mechanisms by which vitamin D deficiency interacts with dental caries process in children. Vitamin D deficiency during pregnancy may cause intrauterine enamel defects, and through childhood is accompanied by insufficient activity of antibacterial peptides, decreased saliva secretion, and a low level of calcium in saliva.  Conclusion: In conclusion, vitamin D deficiency would increase the risk of caries in the primary and/or permanent dentition. Relationship between vitamin D deficiency and dental caries is evident enough for vitamin D deficiency to be considered as a risk factor for dental caries in children. Optimal levels of vitamin D throughout pregnancy and childhood may be considered an additional preventive measure for dental caries in the primary and permanent dentition.


Subject(s)
Dental Caries , Vitamin D Deficiency , Child , Pregnancy , Female , Humans , Dental Caries/etiology , Dental Caries/prevention & control , Vitamin D Deficiency/complications , Vitamin D , Vitamins , Risk Factors
8.
New Phytol ; 240(5): 1976-1989, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37680042

ABSTRACT

Ribotoxins are secreted ribonucleases that specifically target and cleave the universally conserved sarcin-ricin loop sequence of rRNA, which leads to inhibition of protein biosynthesis and subsequently to cell death. We have identified and characterized a secreted Ribo1 protein of plant pathogenic smut fungi. Heterologous expression in different model systems showed that smut Ribo1 has cytotoxic activity against bacteria, yeast, host and nonhost plants. Recombinant expression of Ribo1 in Nicotiana benthamiana induced plant cell death; however, an active site mutant induced cell death only when expressed as a secreted protein. In the maize smut Ustilago maydis, transcription of Ribo1 is specifically induced in early infection stages. While a knockout mutant revealed that Ribo1 is dispensable for U. maydis virulence, the overexpression of Ribo1 in planta had a strong dominant negative effect on virulence and induced host defense responses including cell death. Our findings suggest a function of Ribo1 during the epiphytic development rather than for invasive colonization of the host. Accordingly, in the presence of the biocontrol bacteria Pantoea sp., which were isolated from maize leaves, the ribo1 knockout mutant was significantly impaired in virulence. Together, we conclude that Ribo1 enables smut fungi to compete with host-associated bacteria during epiphytic development.


Subject(s)
Plant Diseases , Ustilago , Plant Diseases/microbiology , Ustilago/genetics , Fungal Proteins/metabolism , Fungi/metabolism , Virulence , Zea mays/microbiology
9.
Cell Host Microbe ; 31(9): 1450-1468.e8, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37652008

ABSTRACT

Loss of antimicrobial proteins such as REG3 family members compromises the integrity of the intestinal barrier. Here, we demonstrate that overproduction of REG3 proteins can also be detrimental by reducing a protective species in the microbiota. Patients with inflammatory bowel disease (IBD) experiencing flares displayed heightened levels of secreted REG3 proteins that mediated depletion of Enterococcus faecium (Efm) from the gut microbiota. Efm inoculation of mice ameliorated intestinal inflammation through activation of the innate immune receptor NOD2, which was associated with the bacterial DL-endopeptidase SagA that generates NOD2-stimulating muropeptides. NOD2 activation in myeloid cells induced interleukin-1ß (IL-1ß) secretion to increase the proportion of IL-22-producing CD4+ T helper cells and innate lymphoid cells that promote tissue repair. Finally, Efm was unable to protect mice carrying a NOD2 gene variant commonly found in IBD patients. Our findings demonstrate that inflammation self-perpetuates by causing aberrant antimicrobial activity that disrupts symbiotic relationships with gut microbes.


Subject(s)
Anti-Infective Agents , Enterococcus faecium , Inflammatory Bowel Diseases , Animals , Mice , Immunity, Innate , Lymphocytes , Inflammation
10.
New Phytol ; 239(6): 2320-2334, 2023 09.
Article in English | MEDLINE | ID: mdl-37222268

ABSTRACT

Biotic and abiotic interactions shape natural microbial communities. The mechanisms behind microbe-microbe interactions, particularly those protein based, are not well understood. We hypothesize that released proteins with antimicrobial activity are a powerful and highly specific toolset to shape and defend plant niches. We have studied Albugo candida, an obligate plant parasite from the protist Oomycota phylum, for its potential to modulate the growth of bacteria through release of antimicrobial proteins into the apoplast. Amplicon sequencing and network analysis of Albugo-infected and uninfected wild Arabidopsis thaliana samples revealed an abundance of negative correlations between Albugo and other phyllosphere microbes. Analysis of the apoplastic proteome of Albugo-colonized leaves combined with machine learning predictors enabled the selection of antimicrobial candidates for heterologous expression and study of their inhibitory function. We found for three candidate proteins selective antimicrobial activity against Gram-positive bacteria isolated from A. thaliana and demonstrate that these inhibited bacteria are precisely important for the stability of the community structure. We could ascribe the antibacterial activity of the candidates to intrinsically disordered regions and positively correlate it with their net charge. This is the first report of protist proteins with antimicrobial activity under apoplastic conditions that therefore are potential biocontrol tools for targeted manipulation of the microbiome.


Subject(s)
Anti-Infective Agents , Arabidopsis , Oomycetes , Parasites , Animals , Arabidopsis/microbiology , Plants , Anti-Infective Agents/pharmacology , Bacteria , Plant Leaves/microbiology
11.
Clin Oral Investig ; 27(6): 3159-3167, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36805805

ABSTRACT

OBJECTIVES: The present case-control study aims to investigate the salivary levels of bactericidal/permeability-increasing protein (BPI) and interleukin-1beta (IL-1ß) in systemically healthy individuals with periodontitis and periodontally healthy for the evaluation of BPI's relation with periodontal inflammation and clinical diagnosis of periodontitis. MATERIALS AND METHODS: A total of 100 participants were enrolled in this study and divided into periodontitis (P group) (n = 50) and periodontally healthy (H group) (n = 50) groups based on their full-mouth periodontal examination results including plaque index, probing pocket depth, gingival index, bleeding on probing, and clinical attachment level. Unstimulated whole saliva was collected. Salivary BPI and IL-1ß levels were determined using an enzyme-linked immunosorbent assay. Receiver operating characteristic (ROC) curves were created to determine the diagnostic value of BPI. RESULTS: The levels of BPI and IL-1ß in saliva were significantly higher in the P group than in the H group (p<0.001). Moreover, salivary BPI and IL-1ß levels correlated significantly with all clinical periodontal parameters (all p<0.001). Interestingly, there was a strong positive correlation between salivary levels of BPI and IL-1ß (r=0.544, p<0.001). In addition, the results of the ROC curve analysis showed that BPI had a high diagnostic potential to distinguish periodontitis from healthy controls with an area under the curve value of 0.94% (p<0.000). CONCLUSION: The significantly higher salivary levels of BPI in periodontitis patients together with strong positive correlations between all periodontal parameters and salivary IL-1ß levels suggest that BPI may be involved in the inflammatory process of periodontal disease. CLINICAL RELEVANCE: The present study for the first time report that salivary BPI levels may serve as a potential biomarker of inflammation in periodontal disease. TRIAL REGISTRATION NUMBER: Thai Clinical Trials.gov (TCTR20211222008) (22 December 2021).


Subject(s)
Chronic Periodontitis , Periodontal Diseases , Periodontitis , Humans , Periodontitis/metabolism , Biomarkers/metabolism , Inflammation/metabolism , Permeability , Chronic Periodontitis/metabolism , Saliva/chemistry , Periodontal Attachment Loss
12.
Front Nutr ; 9: 973003, 2022.
Article in English | MEDLINE | ID: mdl-36458168

ABSTRACT

Caffeine is commonly used by athletes as an energy supplement, but studies on its effects on salivary antimicrobial proteins (sAMPs) in humans during exercise are rare with ambiguous findings. It is also still controversial whether hot environments affect sAMPs. Using a double-blind, randomized crossover design, we examined 12 endurance-trained male collegiate athletes who completed the following two experiments: a caffeine experiment (CAF) and a placebo experiment (PLA). The participants acutely consumed caffeine-containing (6 mg/kg body weight) sports drink (3 ml/kg body weight) or an equivalent amount of placebo sports drink and subsequently performed cycling exercise for 40 min in the heat (33 ± 0.24°C, 64 ± 2.50% relative humidity) at 50% of maximum output power, maintaining a pedal frequency of 60 rpm. Saliva was collected at 60 min pre-exercise (T-60), the start of exercise (T0), 20 min of exercise (T20), and the end of the exercise (T40), and salivary α-amylase (sAA) and lactoferrin (sLac) were tested. The rating of perceived exertion (RPE) was measured at T0-T40, while core body temperature (T re ) and heart rate (HR) were monitored continuously. T re , HR, and RPE increased with time during the exercise (p < 0.01), with no difference in T re and HR between the CAF and PLA (p > 0.05), but RPE was higher in the PLA than in the CAF (p < 0.05). sLac concentrations were significantly higher at T20 and T40 than at T-60 (p < 0.01) and higher at T40 than at T0 and T20 (p < 0.01), with no difference between the CAF and PLA (p > 0.05). Compared with T-60, sAA activity was significantly increased at T0, T20, and T40 (p < 0.01). sAA activity was significantly higher at T40 than at T0 and T20 (p < 0.01), at T20 than at T0 (p < 0.05), and in the CAF than in the PLA (p < 0.01). Heat stress caused by acute exercise in hot environments did not impair the sAMPs parameters of the participants. Instead, the participants showed transient increase in sAA activity and unchanged sLac concentrations. Caffeine may increase salivary markers related to immune response during exercise.

13.
Microb Cell Fact ; 21(1): 267, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36544150

ABSTRACT

The antimicrobial resistance crisis calls for the discovery and production of new antimicrobials. Host defense peptides (HDPs) are small proteins with potent antibacterial and immunomodulatory activities that are attractive for translational applications, with several already under clinical trials. Traditionally, antimicrobial peptides have been produced by chemical synthesis, which is expensive and requires the use of toxic reagents, hindering the large-scale development of HDPs. Alternatively, HDPs can be produced recombinantly to overcome these limitations. Their antimicrobial nature, however, can make them toxic to the hosts of recombinant production. In this review we explore the different strategies that are used to fine-tune their activities, bioengineer them, and optimize the recombinant production of HDPs in various cell factories.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Antimicrobial Cationic Peptides/genetics , Immunity, Innate , Anti-Infective Agents/metabolism , Anti-Bacterial Agents
14.
New Phytol ; 236(5): 1838-1855, 2022 12.
Article in English | MEDLINE | ID: mdl-36052715

ABSTRACT

ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) mediates the induction of defense responses against pathogens in most angiosperms. However, it has recently been shown that a few species have lost EDS1. It is unknown how defense against disease unfolds and evolves in the absence of EDS1. We utilize duckweeds; a collection of aquatic species that lack EDS1, to investigate this question. We established duckweed-Pseudomonas pathosystems and used growth curves and microscopy to characterize pathogen-induced responses. Through comparative genomics and transcriptomics, we show that the copy number of infection-associated genes and the infection-induced transcriptional responses of duckweeds differ from other model species. Pathogen defense in duckweeds has evolved along different trajectories than in other plants, including genomic and transcriptional reprogramming. Specifically, the miAMP1 domain-containing proteins, which are absent in Arabidopsis, showed pathogen responsive upregulation in duckweeds. Despite such divergence between Arabidopsis and duckweed species, we found conservation of upregulation of certain genes and the role of hormones in response to disease. Our work highlights the importance of expanding the pool of model species to study defense responses that have evolved in the plant kingdom independent of EDS1.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Araceae , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plant Diseases/microbiology , DNA-Binding Proteins/metabolism , Araceae/genetics
15.
Antimicrob Agents Chemother ; 66(9): e0050622, 2022 09 20.
Article in English | MEDLINE | ID: mdl-35950843

ABSTRACT

Bacteriophages and bacteriophage-derived peptidoglycan hydrolases (endolysins) present promising alternatives for the treatment of infections caused by multidrug resistant Gram-negative and Gram-positive pathogens. In this study, Gp105, a putative lysozyme murein hydrolase from Enterobacter phage myPSH1140 was characterized in silico, in vitro as well as in vivo using the purified protein. Gp105 contains a T4-type lysozyme-like domain (IPR001165) and belongs to Glycoside hydrolase family 24 (IPR002196). The putative endolysin indeed had strong antibacterial activity against Gram-negative pathogens, including E. cloacae, K. pneumoniae, P. aeruginosa, S. marcescens, Citrobacter sp., and A. baumannii. Also, an in vitro peptidoglycan hydrolysis assay showed strong activity against purified peptidoglycans. This study demonstrates the potential of Gp105 to be used as an antibacterial protein to combat Gram-negative pathogens.


Subject(s)
Bacteriophages , N-Acetylmuramoyl-L-alanine Amidase , Anti-Bacterial Agents/pharmacology , Bacteriophages/metabolism , Endopeptidases/metabolism , Enterobacter/metabolism , Glycoside Hydrolases/metabolism , Klebsiella pneumoniae/metabolism , Muramidase/pharmacology , Myoviridae/metabolism , Peptidoglycan/metabolism , Pseudomonas aeruginosa/metabolism
16.
Food Microbiol ; 107: 104068, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35953175

ABSTRACT

The importance of egg natural defences to prevent bacterial contamination and their relation with hen age in extended production cycles were evaluated. Egg-white from eggs of different hen age groups (up 100-weeks-old) and lines (Hy-Line white and brown) were inoculated with Gram-positive Staphylococcus aureus or Gram-negative Salmonella Typhimurium, ranging from 103-106 CFU/mL. Our results show that concentrations of egg-white lysozyme and, particularly, ovotransferrin are important to modulate bacterial survival in a dose-dependent matter. Depending on protein concentration, their effect ranges from bactericidal to bacteriostatic, with a threshold for bacterial contamination that depends also on hen age and line. The concentrations of lysozyme and ovotransferrin increased with hen age (up to 2 and 22 w/w% of total protein, respectively), and eggs laid by older hens exhibited the greatest potential to prevent the growth of the highest Salmonella inoculum (106 CFU/mL). Salmonella-penetration experiments demonstrated that non-contaminated eggs display significantly higher concentrations of antimicrobial proteins. However, eggs from older hens needed a higher concentration of these proteins (>20% ovotransferrin) to prevent bacterial contamination, showing that antimicrobial protein concentrations in egg-whites was not the only factor influencing bacterial contamination. Finally, this study demonstrated that egg-white of eggs produced by old hens are less prone to contamination by Salmonella.


Subject(s)
Chickens , Egg White , Animals , Anti-Bacterial Agents/pharmacology , Bacteria , Chickens/microbiology , Conalbumin/pharmacology , Eggs/microbiology , Female , Muramidase/pharmacology
17.
Front Cell Infect Microbiol ; 12: 807218, 2022.
Article in English | MEDLINE | ID: mdl-35846767

ABSTRACT

Little is known about the interactions among phagocytes and antifungal agents and the antifungal immunomodulatory activities on Candida species biofilms. Here, inhibition of C. albicans biofilms and the interactions among biofilms and phagocytes alone or in combination with essential oils, biological, and chemical agents, or fluconazole were investigated. Biofilm formation by a panel of 28 C. albicans clinical isolates from hospitalized patients, birds, and cattle was tested. The anti-biofilm activities of cinnamon and clove oils, sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and Enterococcus faecalis cell-free supernatant (CFS) in comparison with fluconazole were investigated using crystal violet and XTT reduction assays, expression of hypha-specific and hyphal regulator genes, and scanning electron microscopy (SEM) analysis. Of the tested C. albicans isolates, 15 of 28 (53.6%) were biofilm producers. Cinnamon followed by E. faecalis-CFS, SDS, and CTAB was the most effective inhibitors of planktonic C. albicans and biofilms. Fluconazole was an ineffective inhibitor of C. albicans biofilms. Sessile minimal inhibitory concentration (SMIC50) of cinnamon, SDS, CTAB, and E. faecalis-CFS downregulated the hypha-specific and regulator genes, albeit to various extents, when compared with untreated biofilms (P < 0.001). SEM analysis revealed disruption and deformity of three-dimensional structures in cinnamon oil-treated biofilms. C. albicans sessile cells within biofilm were less susceptible to phagocytosis than planktonic cells. The additive effects of phagocytes and the tested antifungals enabled phagocytes to engulf C. albicans cells rapidly in cinnamon, E. faecalis-CFS, or SDS-treated biofilms. No differences in anti-Candida or anti-biofilm eradication activities were detected among the tested isolates. Our findings reinforce the substantial anti-biofilm activity of cinnamon oil, SDS, and E. faecalis-CFS and provide new avenues for the development of novel anti-biofilm immunotherapies or antifungals that could be used prior to or during the management of cases with biofilm-associated infections.


Subject(s)
Candidiasis , Oils, Volatile , Animals , Antifungal Agents/pharmacology , Biofilms , Candida , Candida albicans , Candidiasis/microbiology , Cattle , Cetrimonium/pharmacology , Fluconazole/pharmacology , Microbial Sensitivity Tests , Oils, Volatile/pharmacology , Phagocytes
18.
Curr Issues Mol Biol ; 44(3): 1169-1181, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35723299

ABSTRACT

Antimicrobial peptides (AMPs) are important components of innate immunity. Here, we report the antimicrobial properties of a peptide derived from the Male fertility factor kl2 (MFF-kl2) protein of Drosophila melanogaster, which was identified as a functional analog of the mammalian antibacterial chemerin-p4 peptide. The antimicrobial activity of multifunctional chemerin is mainly associated with a domain localized in the middle of the chemerin sequence, Val66-Pro85 peptide (chemerin-p4). Using bioinformatic tools, we found homologs of the chemerin-p4 peptide in the proteome of D. melanogaster. One of them is MFF-p1, which is a part of the MFF kl2 protein, encoded by the gene male fertility factor kl2 (kl-2) located on the long arm of the Y chromosome. The second detected peptide (Z-p1) is a part of the Zizimin protein belonging to DOCK family, which is involved in cellular signaling processes. After testing the antimicrobial properties of both peptides, we found that only MFF-p1 possesses these properties. Here, we demonstrate its antimicrobial potential both in vitro and in vivo after infecting D. melanogaster with bacteria. MFF-p1 strongly inhibits the viable counts of E. coli and B. subtilis after 2 h of treatment and disrupts bacterial cells. The expression of kl-2 is regulated by exposure to bacteria and by the circadian clock.

19.
Int J Mol Sci ; 23(9)2022 May 01.
Article in English | MEDLINE | ID: mdl-35563424

ABSTRACT

The black soldier fly (BSF), Hermetia illucens, has emerged as a promising species for waste bioconversion and source of antimicrobial proteins (AMPs). However, there is a scarcity of research on the element transformation efficiency and molecular characterization of AMPs derived from waste management. Here, food waste treatment was performed using BSF larvae (BSFL) in a C/N ratio of 21:1−10:1, with a focus on the C/N-dependent element bioconversion, AMP antimicrobial activity, and transcriptome profiling. The C-larvae transformation rates were found to be similar among C/Ns (27.0−35.5%, p = 0.109), while the N-larvae rates were different (p = 0.001), with C/N 21:1−16:1 (63.5−75.0%) being higher than C/N 14:1−10:1 (35.0−45.7%). The C/N ratio did not alter the antimicrobial spectrum of AMPs, but did affect the activities, with C/N 21:1 being significantly lower than C/N 18:1−10:1. The lysozyme genes were found to be significantly more highly expressed than the cecropin, defensin, and attacin genes in the AMP gene family. Out of 51 lysozyme genes, C/N 18:1 and C/N 16:1 up-regulated (p < 0.05) 14 and 12 genes compared with C/N 21:1, respectively, corresponding to the higher activity of AMPs. Overall, the element bioconversion efficiency and AMP expression can be enhanced through C/N ratio manipulation, and the C/N-dependent transcriptome regulation is the driving force of the AMP difference.


Subject(s)
Diptera , Refuse Disposal , Animals , Anti-Bacterial Agents/pharmacology , Diptera/genetics , Food , Larva/genetics , Muramidase
20.
Front Pediatr ; 10: 828448, 2022.
Article in English | MEDLINE | ID: mdl-35386262

ABSTRACT

Holder pasteurization (HoP) is the current recommended treatment for donor human milk. Although this method inactivates microbial contaminants, it also negatively affects various milk components. High-pressure processing (HPP, 400, 500, and 600 MPa), ultraviolet-C irradiation (UV-C, 2,430, 3,645, and 4,863 J/L) and thermoultrasonication (TUS, 1,080 and 1,620 kJ/L) were investigated as alternatives to thermal pasteurization (HoP). We assessed the effects of these methods on microbiological safety, and on concentration and functionality of immunoglobulin A, lactoferrin, lysozyme and bile salt-stimulated lipase, with LC-MS/MS-based proteomics and activity assays. HoP, HPP, TUS, and UV-C at 4863 J/L, achieved >5-log10 microbial reduction. Native protein levels and functionality showed the highest reduction following HoP, while no significant reduction was found after less intense HPP and all UV-C treatments. Immunoglobulin A, lactoferrin, and lysozyme contents were also preserved after low intensity TUS, but bile salt-stimulated lipase activity was significantly reduced. This study demonstrated that HPP and UV-C may be considered as suitable alternatives to HoP, since they were able to ensure sufficient microbial inactivation while at the same time better preserving the bioactive components of donor human milk. In summary, our results provide valuable insights regarding the evaluation and selection of suitable processing methods for donor human milk treatment, which may replace HoP in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...