Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 16(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38730594

ABSTRACT

Oral cancer is the 16th most common malignant tumor worldwide. The risk of recurrence and mortality is high, and the survival rate is low over the following five years. Recent studies have shown that curcumin causes apoptosis in tumor cells by affecting FoF1-ATP synthase (ATP synthase) activity, which, in turn, hinders cell energy production, leading to a loss of cell viability. Additionally, irradiation of curcumin within cells can intensify its detrimental effects on cancer cell viability and proliferation (photodynamic therapy). We treated the OHSU-974 cell line, a model for human head and neck squamous cell carcinoma (HNSCC), and primary human fibroblasts. The treatment involved a 1 h exposure of cells to 0.1, 1.0, and 10 µM curcumin, followed or not by irradiation or the addition of the same concentration of pre-irradiated curcumin. Both instances involved a diode laser with a wavelength of 450 nm (0.25 W, 15 J, 60 s, 1 cm2, continuous wave mode). The treatment with non-irradiated 1 and 10 µM curcumin caused ATP synthase inhibition and a consequent reduction in the oxygen consumption rate (OCR) and the ATP/AMP ratio, which was associated with a decrement in lipid peroxidation accumulation and a slight increase in glutathione reductase and catalase activity. By contrast, 60 s curcumin irradiation with 0.25 W-450 nm caused a further oxidative phosphorylation (OxPhos) metabolism impairment that induced an uncoupling between respiration and energy production, leading to increased oxidative damage, a cellular growth and viability reduction, and a cell cycle block in the G1 phase. These effects appeared to be more evident when the curcumin was irradiated after cell incubation. Since cells belonging to the HNSCC microenvironment support tumor development, curcumin's effects have been analyzed on primary human fibroblasts, and a decrease in cell energy status has been observed with both irradiated and non-irradiated curcumin and an increase in oxidative lipid damage and a slowing of cell growth were observed when the curcumin was irradiated before or after cellular administration. Thus, although curcumin displays an anti-cancer role on OHSU-974 in its native form, photoactivation seems to enhance its effects, making it effective even at low dosages.

2.
Curr Issues Mol Biol ; 46(4): 3063-3080, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38666922

ABSTRACT

Maize is the third most vital global cereal, playing a key role in the world economy and plant genetics research. Despite its leadership in production, maize faces a severe threat from banded leaf and sheath blight, necessitating the urgent development of eco-friendly management strategies. This study aimed to understand the resistance mechanisms against banded leaf and sheath blight (BLSB) in maize hybrid "Vivek QPM-9". Seven fungicides at recommended doses (1000 and 500 ppm) and two plant defense inducers, salicylic acid (SA) and jasmonic acid (JA) at concentrations of 50 and 100 ppm, were applied. Fungicides, notably Azoxystrobin and Trifloxystrobin + Tebuconazole, demonstrated superior efficacy against BLSB, while Pencycuron showed limited effectiveness. Field-sprayed Azoxystrobin exhibited the lowest BLSB infection, correlating with heightened antioxidant enzyme activity (SOD, CAT, POX, ß-1,3-glucanase, PPO, PAL), similar to the Validamycin-treated plants. The expression of defense-related genes after seed priming with SA and JA was assessed via qRT-PCR. Lower SA concentrations down-regulated SOD, PPO, and APX genes but up-regulated CAT and ß-1,3-glucanase genes. JA at lower doses up-regulated CAT and APX genes, while higher doses up-regulated PPO and ß-1,3-glucanase genes; SOD gene expression was suppressed at both JA doses. This investigation elucidates the effectiveness of certain fungicides and plant defense inducers in mitigating BLSB in maize hybrids and sheds light on the intricate gene expression mechanisms governing defense responses against this pathogen.

3.
Environ Pollut ; 344: 123300, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38199483

ABSTRACT

Seed nano-priming can be used as an advanced technology for enhancing seed germination, plant growth, and crop productivity; however, the potential role of seed nano-priming in ameliorative cadmium (Cd) bio-toxicity under Cd stress has not yet been sufficiently investigated. Therefore, in this study we investigated the beneficial impacts of seed priming with low (L) and high (H) concentrations of nanoparticles including nSiO2 (50/100 mg L-1), nTiO2 (20/60 mg L-1), nZnO (50/100 mg L-1), nFe3O4 (100/200 mg L-1), nCuO (50/100 mg L-1), and nCeO2 (50/100 mg L-1) on lettuce growth and antioxidant enzyme activities aiming to assess their efficacy for enhancing plant growth and reducing Cd phytotoxicity. The results showed a significant increase in plant growth, biomass production, antioxidant enzyme activities, and photosynthetic efficiency in lettuce treated with nano-primed nSiH + Cd (100 mg L-1), nTiH + Cd (60 mg L-1), and nZnL + Cd (50 mg L-1) under Cd stress. Moreover, nano-priming effectively reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) in lettuce shoots. Interestingly, nano-primed nSiH + Cd, nTiH + Cd, and nZnL + Cd demonstrated efficient reduction of Cd uptake, less translocation factor of Cd with high tolerance index, ultimately reducing toxicity by stabilizing the root morphology and superior accumulation of critical nutrients (K, Mg, Ca, Fe, and Zn). Thus, this study provides the first evidence of alleviating Cd toxicity in lettuce by using multiple nanoparticles via priming strategy. The findings highlight the potential of nanoparticles (Si, Zn, and Ti) as stress mitigation agents for improved crop growth and yield in Cd contaminated areas, thereby offering a promising and advanced approach for remediation of Cd contaminated environments.


Subject(s)
Cadmium , Nanoparticles , Cadmium/toxicity , Antioxidants/pharmacology , Lactuca , Seeds , Nanoparticles/toxicity
4.
Int J Mol Sci ; 24(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894810

ABSTRACT

Metabolic changes under stress are often studied in short-term experiments, revealing rapid responses in gene expression, enzyme activity, and the amount of antioxidants. In a long-term experiment, it is possible to identify adaptive changes in both primary and secondary metabolism. In this study, we characterized the physiological state of tobacco plants and assessed the amount and spectrum of phenolic compounds and the lignification of axial organs under excess copper stress in a long-term experiment (40 days). Plants were treated with 100 and 300 µM CuSO4, as well as a control (Knop solution). Copper accumulation, the size and anatomical structure of organs, stress markers, and the activity of antioxidant enzymes were studied. Lignin content was determined with the cysteine-assisted sulfuric method (CASA), and the metabolite profile and phenolic spectrum were determined with UHPLC-MS and thin-layer chromatography (TLC). Cu2+ mainly accumulated in the roots and, to a lesser extent, in the shoots. Copper sulfate (100 µM) slightly stimulated stem and leaf growth. A higher concentration (300 µM) caused oxidative stress; H2O2 content, superoxide dismutase (SOD), and guaiacol peroxidase (GPOX) activity increased in roots, and malondialdehyde (MDA) increased in all organs. The deposition of lignin increased in the roots and stems compared with the control. The content of free phenolics, which could be used as substrates for lignification, declined. The proportions of ferulic, cinnamic, and p-coumaric acids in the hydrolysate of bound phenolics were higher, and they tended toward additional lignification. The metabolic profile changed in both roots and stems at both concentrations, and changed in leaves only at a concentration of 300 µM. Thus, changes in the phenolic spectrum and the enhanced lignification of cell walls in the metaxylem of axial (root and stem) organs in tobacco can be considered important metabolic responses to stress caused by excess CuSO4.


Subject(s)
Copper Sulfate , Copper , Copper Sulfate/pharmacology , Copper/pharmacology , Copper/metabolism , Nicotiana/metabolism , Hydrogen Peroxide/metabolism , Lignin/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress , Plant Roots/metabolism
5.
Nanomaterials (Basel) ; 13(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37446486

ABSTRACT

Silver nanoparticles (AgNPs) are of great interest due to their antimicrobial properties, but their reactivity and toxicity pose a significant risk to aquatic ecosystems. In biological systems, AgNPs tend to aggregate and dissolve, so they are often stabilized by agents that affect their physicochemical properties. In this study, microalga Chlorella vulgaris was used as a model organism to evaluate the effects of AgNPs in aquatic habitats. Algae were exposed to AgNPs stabilized with citrate and cetyltrimethylammonium bromide (CTAB) agents and to AgNO3 at concentrations that allowed 75% cell survival after 72 h. To investigate algal response, silver accumulation, ROS content, damage to biomolecules (lipids, proteins, and DNA), activity of antioxidant enzymes (APX, PPX, CAT, SOD), content of non-enzymatic antioxidants (proline and GSH), and changes in ultrastructure were analyzed. The results showed that all treatments induced oxidative stress and adversely affected algal cells. AgNO3 resulted in the fastest death of algae compared to both AgNPs, but the extent of oxidative damage and antioxidant enzymatic defense was similar to AgNP-citrate. Furthermore, AgNP-CTAB showed the least toxic effect and caused the least oxidative damage. These results highlight the importance of surface-stabilizing agents in determining the phytotoxicity of AgNPs and the underlying mechanisms affecting aquatic organisms.

6.
Methods Protoc ; 6(2)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37104014

ABSTRACT

Mitochondrial dysfunction and cytosolic oxidative stress are pathological biomarkers interlinked in several chronic diseases and cellular toxicity promoted by high-energy radiation or xenobiotics. Thus, assessing the activities of the mitochondrial redox chain complexes and the cytosolic antioxidant enzymes in the same cell culture system is a valuable approach to addressing the challenge of chronic diseases or unveiling the molecular mechanisms underlying the toxicity of physical and chemical stress agents. The present article gathers the experimental procedures to obtain, from isolated cells, a mitochondria-free cytosolic fraction and a mitochondria-rich fraction. Furthermore, we describe the methodologies to evaluate the activity of the main antioxidant enzymes in the mitochondria-free cytosolic fraction (superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase), and the activity of the individual mitochondrial complexes I, II and IV, as well as the conjugated activity of complexes I-III and complexes II-III in the mitochondria-rich fraction. The protocol to test the citrate synthase activity was also considered and used to normalize complexes. The procedures were optimized within an experimental setup to allow that each condition to be tested only requires sampling of one T-25 flask of cells 2D cultured, as the typical results presented and discussed here.

7.
Plants (Basel) ; 11(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36559542

ABSTRACT

The growth and development of rice face many issues, including its exposure to high soil salinity. This issue can be alleviated using new approaches to overwhelm the factors that restrict rice productivity. The objective of our investigation was the usage of the rhizobacteria (Pseudomonas koreensis and Bacillus coagulans) as plant growth-promoting rhizobacteria (PGPRs) and nano-silicon, which could be a positive technology to cope with the problems raised by soil salinity in addition to improvement the morpho-physiological properties, and productivity of two rice varieties (i.e., Giza 177 as salt-sensitive and Giza 179 as salt-tolerant). The findings stated that the application of combined PGPRs and nano-Si resulted in the highest soil enzymes activity (dehydrogenase and urease), root length, leaf area index, photosynthesis pigments, K+ ions, relative water content (RWC), and stomatal conductance (gs) while resulted in the reduction of Na+, electrolyte leakage (EL), and proline content. All these improvements are due to increased antioxidant enzymes activity such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), which decreased hydrogen peroxide (H2O2) and malondialdehyde (MDA) under soil salinity in rice plants compared to the other treatments. Combined application of PGPRs and nano-Si to Giza 177 significantly surpassed Giza 179, which was neither treated with PGPR nor nano-Si in the main yield components (number of grains/panicles, 1000 grain weight, and grain yield as well as nutrient uptake. In conclusion, both PGPRs and nano-Si had stimulating effects that mitigated the salinity-deleterious effects and encouraged plant growth, and, therefore, enhanced the grain yield.

8.
Antioxidants (Basel) ; 10(7)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34356377

ABSTRACT

Lichens represent an important resource for common traditional medicines due to their numerous metabolites that can exert diverse pharmacological activities including anticancer effects. To find new anticancer compounds with fewer side effects and low tumor resistance, a bioprospective study of Usnea barbata (L.) F.H. Wigg. (U. barbata), a lichen from the Calimani Mountains (Suceava county, Romania) was performed. The aim of this research was to investigate the anticancer potential, morphologic changes, wound healing property, clonogenesis, and oxidative stress biomarker status of four extracts of U. barbata in different solvents (methanol, ethanol, acetone, and ethyl acetate), and also of usnic acid (UA) as a positive control on the CAL-27 (ATCC® CRL-2095™) oral squamous carcinoma (OSCC) cell line and V79 (ATCC® CCL-93™) lung fibroblasts as normal cells. Using the MTT assay and according to IC50 values, it was found that the most potent anticancer property was displayed by acetone and ethyl acetate extracts. All U. barbata extracts determined morphological modifications (losing adhesion capacity, membrane shrinkage, formation of abnormal cellular wrinkles, and vacuolization) with higher intensity in tumor cells than in normal ones. The most intense anti-migration effect was established in the acetone extract treatment. The clonogenic assay showed that some U. barbata extracts decreased the ability of cancer cells to form colonies compared to untreated cells, suggesting a potential anti-tumorigenic property of the tested extracts. Therefore, all the U. barbata extracts manifest anticancer activity of different intensity, based, at least partially, on an imbalance in antioxidant defense mechanisms, causing oxidative stress.

9.
Plants (Basel) ; 10(5)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065369

ABSTRACT

We investigated the impact of Bacillus thuringiensis as seed treatment and application with silicon on lettuce plants exposed to salinity levels (4 dS m-1 and 8 dS m-1). Results revealed that leaves number, head weight, total yield, relative water content (RWC), and chlorophyll a and b declined considerably due to two salinity levels. Oxidative stress markers, i.e., hydrogen peroxide (H2O2), superoxide (O2-), and lipid peroxidation (MDA) dramatically augmented in stressed plants. On the other hand, leaves number, total yield, RWC, and chlorophyll a, b in stressed lettuce plants were considerably enhanced because of the application of Si or B. thuringiensis. In contrast, EL%, MDA, and H2O2 were considerably reduced in treated lettuce plants with Si and B. thuringiensis. In addition, the treatment with Si and B. thuringiensis increased head weight (g) and total yield (ton hectare-1), and caused up-regulation of proline and catalase, superoxide dismutase, peroxidase, and polyphenol oxidase activity in lettuce leaves under salinity conditions.

10.
Antioxidants (Basel) ; 9(6)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575563

ABSTRACT

The aim of the present study was to assess the effects of l-buthionine-(S,R)-sulfoximine (BSO), a glutathione (GSH) synthesis inhibitor, and GBR 12909, a dopamine reuptake inhibitor, administered alone or in combination to Sprague-Dawley rats during early postnatal development (p5-p16), on the levels of reactive oxygen species (ROS), lipid peroxidation (LP) and the activities of antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione disulfide reductase (GR) in peripheral tissues (liver, kidney) and selected brain structures (prefrontal cortex, PFC; hippocampus, HIP; and striatum, STR) of 16-day-old rats. The studied parameters were analyzed with reference to the content of GSH and sulfur amino acids, methionine (Met) and cysteine (Cys) described in our previous study. This analysis showed that treatment with a BSO + GBR 12909 combination caused significant decreases in the lipid peroxidation levels in the PFC and HIP, in spite of there being no changes in ROS. The reduction of lipid peroxidation indicates a weakening of the oxidative power of the cells, and a shift in balance in favor of reducing processes. Such changes in cellular redox signaling in the PFC and HIP during early postnatal development may result in functional changes in adulthood.

11.
Physiol Mol Biol Plants ; 26(3): 459-474, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32205923

ABSTRACT

To study the possibility of increasing the drought tolerance of common bean with the exogenous application of 24-epibrassinolide (EBL), an experiment was conducted in 2016 and 2017. In this experiment, two irrigation levels (optimal irrigation and drought stress) were applied to the main plots and two common bean genotypes (Kusha cultivar and COS16 genotype) and four EBL concentrations (0, 2, 4, and 6 µM) were allocated to sub-plots as factorial. In the flowering stage, drought stress was applied and plants were sprayed with EBL. The results showed that drought stress reduced relative water content (RWC) and increased proline content, malondialdehyde (MDA) content, and antioxidant enzymes activity. However, exogenous application of EBL reduced the seed yield loss and increased the drought stress tolerance in both common bean genotypes by decreasing the MDA content and increasing the RWC, proline content, antioxidant enzymes activity, and nitrate reductase activity. It can be concluded that foliar spray of 4 µM EBL as the best concentration may increase the seed yield and enhance the drought stress tolerance of common bean. Also, Cu/Zn-SOD was up-regulated in response to the drought stress and exogenous EBL. The COS16 genotype showed better response to the drought stress and exogenous EBL than the Kusha cultivar, because of the higher up-regulation of Cu/Zn-SOD in this genotype compared to the Kusha cultivar. Therefore, EBL can be used as a plant growth regulator to enhance drought stress tolerance and minimize the seed yield loss of common bean caused by water deficit.

12.
J Food Biochem ; 43(3): e12735, 2019 03.
Article in English | MEDLINE | ID: mdl-31353551

ABSTRACT

This study evaluated the neuroprotective efficacy of the pigmented and non-pigmented rice bran extract, against LPS induced neurotransmitter imbalance and oxidative stress markers. Male wistar rats were orally supplemented with 2% ethanolic rice bran extracts daily for two weeks. On the last day of experiment, rats were challenged intraperitoneally (i.p) with LPS for 4 hr. LPS exposure resulted in the elevation of malondialdehyde and nitrite levels, decreased GSH, increased antioxidant enzymes activity and led to imbalance in neurotransmitters, norepinephrine, dopamine and serotonin and their metabolites 3,4-dihydroxyphenylacetic acid, homovanillic levels and acetylcholinesterase activity. Pre-treatment with rice bran extracts significantly attenuated LPS induced oxidative stress by improving the antioxidant systems, acetylcholinesterase activity and neurotransmitters imbalance with the higher potency for pigmented bran extracts. The findings suggest the possibility of utilization of pigmented bran extract for the prevention of neurodegenerative diseases and promote the overall good health of the brain. PRACTICAL APPLICATION: Present study provides the current evidence for the neuroprotective efficacy of bran extracts from pigmented and non-pigmented rice. These findings indicate the beneficial effects of pre-treatment of rice bran extracts on LPS induced oxidative stress and neurochemical imbalance by improvement in the antioxidant machinery and neurotransmitters level. This study emphasizes the possibility of utilization of pigmented bran extract as a food ingredient to improve the overall brain health.


Subject(s)
Neurodegenerative Diseases/prevention & control , Neurotransmitter Agents/metabolism , Oryza/chemistry , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Animals , Dopamine/metabolism , Humans , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/adverse effects , Male , Malondialdehyde/metabolism , Neurodegenerative Diseases/metabolism , Nitrites/metabolism , Norepinephrine/metabolism , Rats , Rats, Wistar , Serotonin/metabolism
13.
Aquat Toxicol ; 209: 70-80, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30739875

ABSTRACT

Research into plants plays an important role in evaluations of water pollution with pesticides. Lemna minor (common duckweed) is widely used as an indicator organism in environmental risk assessments. The aim of this study was to determine by biological Lemna test and chemical methods the effect of glyphosate (GlyPh) concentrations of 0-40 µM on duckweed, an important link in the food chain. There are no published data on glyphosate's effects on the activity of enzymes of the amine biosynthesis pathway: ornithine decarboxylase, S-adenosylmethionine decarboxylase, tyrosine decarboxylase, lysine decarboxylase and arginine decarboxylase, and the content of shikimic acid and glyphosate residues in the tissues of common duckweed. It was found that glyphosate was taken up by duckweed. In plants exposed to 3 µM of glyphosate for 7 days, glyphosate content exceeded the acceptable Maximum Residue Level (MRL) 10-fold. Glyphosate accumulation in plant tissues exerted toxic effects on duckweed by decreasing its growth and yield, inhibiting the synthesis of chlorophyll a and b and carotenoids, and decreasing the photochemical activity of photosystem II (PSII). However, glyphosate increased the concentration of shikimic acid in the tested plants. The activity of ornithine decarboxylase increased 4-fold in plants exposed to 20 µM of the herbicide. As a water pollutant, glyphosate increased the content of biogenic amines tyramine, putrescine, cadaverine, spermidine and spermine. The activity of peroxidase and catalase was highest in duckweed exposed to 20 µM and 7 µM of the herbicide, respectively. The predicted toxic units were calculated based on glyphosate content and the computed EC values. The mean effective concentration calculated for all morphological and biochemical parameters of duckweed was determined at EC10 = 1.55, EC25 = 3.36, EC50 = 6.62 and EC90 = 14.08 µM of glyphosate. The study demonstrated that glyphosate, the active ingredient of Roundup Ultra 360 SL herbicide, induces morphological and biochemical changes in non-target plants and exerts toxic effects on aquatic ecosystems even during short-term exposure.


Subject(s)
Araceae/drug effects , Glycine/analogs & derivatives , Herbicides/toxicity , Araceae/growth & development , Biogenic Amines/metabolism , Biomass , Carboxy-Lyases/metabolism , Catalase/metabolism , Chlorophyll A/metabolism , Glycine/toxicity , Peroxidase/metabolism , Shikimic Acid/metabolism , Species Specificity , Water Pollutants, Chemical , Glyphosate
14.
Front Physiol ; 9: 808, 2018.
Article in English | MEDLINE | ID: mdl-30034344

ABSTRACT

Ophraellacommuna LeSage is an effective biological control agent of common ragweed, Ambrosia artemisiifolia L., which competes with crops and causes allergic rhinitis and asthma. However, thermal stress negatively affects the developmental fitness and body size of this beetle. High temperatures cause a variety of physiological stress responses in insects, which can cause oxidative damage. We investigated the total protein content and activity of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and peroxidases (PODs) in O. communa adults when its different developmental stages were exposed to high temperatures (40, 42, and 44°C) for 3 h each day for 3, 5, 5, and 5 days, respectively (by stage), and a whole generation to high temperatures (40, 42, and 44°C) for 3 h each day. A control group was reared at 28 ± 2°C. Under short-term daily phasic high-temperature stress, total protein contents were close to the control as a whole; overall, SOD activities increased significantly, CAT activities were closer to or even higher than the control, POD activities increased at 40°C, decreased at 42 or 44°C; stage-specific response was also observed. Under long-term daily phasic high-temperature stress, total protein content increased significantly at 44°C, SOD activities increased at higher temperatures, decreased at 44°C; CAT activities of females increased at ≤42°C, and decreased at 44°C, CAT activities of males decreased significantly; POD activities of females increased at 40°C, decreased at ≥42°C, POD activities of males decreased at 44°C; and antioxidant enzymes activities in females were significantly higher than those in males. Antioxidative enzymes protect O. communa from oxidative damage caused by thermal stress.

15.
Zhongguo Zhong Yao Za Zhi ; 42(24): 4819-4826, 2017 Dec.
Article in Chinese | MEDLINE | ID: mdl-29493153

ABSTRACT

In order to study the potential application value of lavender volatile oil (LVO), the chemical composition of the volatile oil of lavender was analyzed by GC-MS, and the mouse model of Alzheimer's disease (AD) was established. Additionally, the antioxidant enzymes activity of T-SOD, GSH-PX, CAT and MDA content were studied. Experimental results showed that 55 kinds of chemical constituents including terpene, terpene alcohol and ester compounds from LVO were identified, and the content of linalool and linalyl acetate was the highest, accounting for 49.71% of the total volatile oil. The ability of mouse platform memory was improved significantly. The levels of GSH-PX, CAT and T-SOD of mouse brain tissue in the treatment group were significantly higher than those in the model group (P<0.05). The level of MDA reached the maximum value in the model group, while there was no notable difference between the levels of MDA in the drug group and the normal group. The result indicated the significant oxidative activity of LVO, the possibility of induced oxidative stress reduction in neurons, and the reversal effect of memory acquired disorder.


Subject(s)
Alzheimer Disease/drug therapy , Lavandula/chemistry , Memory Disorders/drug therapy , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Animals , Disease Models, Animal , Mice , Oxidative Stress
16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-338196

ABSTRACT

In order to study the potential application value of lavender volatile oil (LVO), the chemical composition of the volatile oil of lavender was analyzed by GC-MS, and the mouse model of Alzheimer's disease (AD) was established. Additionally, the antioxidant enzymes activity of T-SOD, GSH-PX, CAT and MDA content were studied. Experimental results showed that 55 kinds of chemical constituents including terpene, terpene alcohol and ester compounds from LVO were identified, and the content of linalool and linalyl acetate was the highest, accounting for 49.71% of the total volatile oil. The ability of mouse platform memory was improved significantly. The levels of GSH-PX, CAT and T-SOD of mouse brain tissue in the treatment group were significantly higher than those in the model group (P<0.05). The level of MDA reached the maximum value in the model group, while there was no notable difference between the levels of MDA in the drug group and the normal group. The result indicated the significant oxidative activity of LVO, the possibility of induced oxidative stress reduction in neurons, and the reversal effect of memory acquired disorder.

17.
Int J Mol Sci ; 17(3): 399, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26999126

ABSTRACT

Scrophularia kakudensis is an important medicinal plant with pharmaceutically valuable secondary metabolites. To develop a sustainable source of naturaceuticals with vital therapeutic importance, a cell suspension culture was established in S. kakudensis for the first time. Friable calli were induced from the leaf explants cultured on a Murashige and Skoog (MS) medium containing 3.0 mg·L(-1) 6-benzyladenine (BA) in a combination with 2 mg·L(-1) 2,4-dichlorophenoxy acetic acid (2,4-D). From the callus cultures, a cell suspension culture was initiated and the cellular differentiation was investigated. In addition, the effect of biotic elicitors such as methyl jasmonate (MeJa), salicylic acid (SA), and sodium nitroprusside (SNP) on the accumulation of secondary metabolites and antioxidant properties was demonstrated. Among the elicitors, the MeJa elicited the accumulation of total phenols, flavonoids, and acacetin, a flavonoid compound with multiple pharmaceutical values. Similarly, the higher concentrations of the MeJa significantly modulated the activities of antioxidant enzymes and enhanced the scavenging potentials of free radicals of cell suspension extracts. Overall, the outcomes of this study can be utilized for the large scale production of pharmaceutically important secondary metabolites from S. kakudensis through cell suspension cultures.


Subject(s)
Antioxidants/metabolism , Cell Culture Techniques/methods , Scrophularia/metabolism , Acetates/pharmacology , Cyclopentanes/pharmacology , Flavonoids/metabolism , Nitroprusside/pharmacology , Oxylipins/pharmacology , Phenols/metabolism , Salicylic Acid/pharmacology , Scrophularia/cytology , Scrophularia/growth & development
18.
Chemosphere ; 121: 110-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25496741

ABSTRACT

The objective of this work was to identify the optimal dose range for good anti-algal effect of linoleic acid (LA) sustained-release microspheres and investigate their impact on the antioxidant enzymes (super oxide dismutase, Catalase and Peroxidase) activity changes of Microcystis aeruginosa, as well as the production and release of microcystins (MCs). Based on measured changes in algal cell density and inhibitory ratio (IR), the optimal dose of LA microspheres was 0.3 g L(-1) with over 90% of IR in this study. The Chlorophyll a content and antioxidant enzymes activity in the LA microspheres group decreased markedly until beyond the minimal detection limit after 16 d and 9 d, respectively. In addition, LA microspheres demonstrated no significant impact on the extracellular release of MCs during the culturing period. The amount of intracellular microcystin-LR (MC-LR) per 10(6) algal cells in LA microspheres group was highest among all groups during the whole experimental process. Under the sustained stress of LA released from LA microspheres, the LA microspheres could decrease the production and release of algal toxins. There was no increase in the total amount of MC-LR in the algal cell culture medium. These indicated that LA sustained-release microspheres represent a high degree of ecological safety and their practical applications for the treatment of water undergoing algal blooms need further study.


Subject(s)
Antioxidants/metabolism , Eutrophication/drug effects , Linoleic Acid/pharmacology , Microcystins/metabolism , Microcystis/drug effects , Microcystis/enzymology , Chlorophyll/analysis , Chlorophyll A , Delayed-Action Preparations , Linoleic Acid/chemistry , Marine Toxins , Microspheres , Oxidation-Reduction
19.
Rep Biochem Mol Biol ; 3(1): 14-20, 2014 Oct.
Article in English | MEDLINE | ID: mdl-26989732

ABSTRACT

BACKGROUND: The aim of this study was to evaluate the possible protective effect of sodium selenite on serum, liver, and kidney antioxidant enzymes activities in alloxan-induced type 1 diabetic rats. METHODS: Forty Sprague-Dawley male rats were randomly divided into four groups; Group one as control, Group two as sham-treated with sodium selenite by 1 mg/kg intraperitoneal (i.p.) injections daily, Group three as diabetic untreated, and Group four as diabetic treated with sodium selenite by 1 mg/kg i.p. injections daily .Diabetes was induced in the third and fourth groups by subcutaneous alloxan injections. After eight weeks the animals were euthanized and livers and kidneys were immediately removed and used fresh or kept frozen until analysis. Before the rats were killed blood samples were also collected to measure glutathione peroxidase (GPX) and catalase (CAT) activities in sera. RESULTS: Glutathione peroxidase and CAT activities serum, liver, and kidney were all significantly less in the diabetic rats than in the controls. Sodium selenite treatment of the diabetic rats resulted in significant increases in GPX activity in the kidneys and livers, and CAT activity in the sera and livers. CONCLUSIONS: Our results indicate that sodium selenite might be a potent antioxidant that exerts beneficial effects on both GPX and CAT activities in alloxan-induced type 1 diabetic rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...