Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Int J Biol Macromol ; 273(Pt 2): 133095, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866265

ABSTRACT

Mussel byssal proteins are of biomimetic importance for the development of novel underwater bio-adhesive agents. It is important to maintain a reduced state during the process of byssus adhesion. There are 19 mussel foot proteins (MFPs) have been reported in previous studies, among which only MFP-6 had been confirmed as an antioxidant protein in mussel byssus due to the function of cysteines, and playing an essential role in the redox balance of mussel byssus during adhesion process. Although the other four MFPs (MFP-16 ~ MFP-19) also have abundant cysteines, their function is still unknown. In this study, a novel mussel foot protein, named MFP-20, was identified from Mytilus coruscus foot. The sequential features, expression profile, and function of recombinant MFP-20 were verified. The results showed that MFP-20 has more abundant cysteines than other MFPs, the relative expression of mfp-20 was upregulated in Fe3+ stress and low pH seawater. In addition, different adhesive substrates induced significant changes of expression level of mfp-20. Furthermore, rMFP-20 showed strong antioxidant capacity in the DPPH assay, and the abundant cysteines in its sequence may play vital roles in the antioxidation activity. Our findings revealed the possible function of MFP-20 with a totally different sequence from the reported MFP-6 and provided new clues for exploring the redox balance of mussel byssus during the adhesion process.


Subject(s)
Antioxidants , Mytilus , Proteins , Animals , Mytilus/metabolism , Mytilus/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/metabolism , Proteins/chemistry , Proteins/metabolism , Amino Acid Sequence , Oxidation-Reduction , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
2.
J Cell Biochem ; 124(11): 1825-1834, 2023 11.
Article in English | MEDLINE | ID: mdl-37877550

ABSTRACT

Efficient and accurate identification of antioxidant proteins is of great significance. In recent years, many models for identifying antioxidant proteins have been proposed, but the low sensitivity and high dimensionality of the models are common problems. The generalization ability of the model needs to be improved. Researchers have tried different feature extraction algorithms and feature selection algorithms to obtain the most effective feature combination and have chosen more appropriate classification algorithms and tools to improve model performance. In this article, we systematically reviewed the data set of the most frequently used antioxidant proteins and the method selection for each step of model establishment and discussed the characteristics of each method. We have conducted a detailed analysis of recent research and believe that the practical ability and efficiency of model application can be improved by reducing model dimensions. The key to improving the performance of antioxidant protein recognition models in the future may lie in feature selection, so this paper also focuses on the combination of feature extraction and selection steps in the analysis of the model building process.


Subject(s)
Algorithms , Antioxidants , Machine Learning , Proteins
3.
Eur J Med Res ; 28(1): 426, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37821922

ABSTRACT

OBJECTIVE: To investigate the factors influencing the degree of disability in patients with neuromyelitis optica spectrum disorder (NMOSD) and provide evidence for disease monitoring and clinical intervention. METHODS: Eighty-four patients with NMOSD at Xuanwu Hospital Capital Medical University were enrolled in this retrospective study. Before treatment, blood was collected from all patients, and their expanded disability status scores were assessed. RESULTS: Of the 84 patients assessed, 66 (78.57%) had an expanded disability status scale score < 7, and 18 (21.43%) had scores ≥ 7. The univariate analysis showed that the total bilirubin (TBil), cerebrospinal fluid albumin (CSF ALB), cerebrospinal fluid immunoglobulin G (CSF IgG), QALB, and QIgG levels in the group with scores ≥ 7 were significantly different from those with scores < 7 (P < 0.05). In addition, Spearman's correlation analysis showed a significant correlation between ALB and expanded disability status scores in patients with NMOSD (P < 0.05), and the multivariate logistic regression analysis showed that TBil was an independent factor influencing the degree of disability in patients with NMOSD (P < 0.05). The receiver operating characteristic curve was constructed using TBil values; the area under the curve of TBil was 0.729 (P < 0.01), and the best cut-off value was 11.015 g/L. Its sensitivity in predicting the severity of disability in NMOSD patients was 51.5% while its specificity was 88.9%. CONCLUSION: TBil is an independent factor that influences the severity of disability in patients with NMOSD. In addition, ALB is closely related to NMOSD severity, and some factors associated with the BBB are significantly increased in severely disabled NMOSD patients.


Subject(s)
Neuromyelitis Optica , Humans , Neuromyelitis Optica/cerebrospinal fluid , Neuromyelitis Optica/complications , Retrospective Studies , Blood-Brain Barrier
4.
Brain Pathol ; 33(5): e13180, 2023 09.
Article in English | MEDLINE | ID: mdl-37331354

ABSTRACT

Alzheimer's disease (AD) is characterized by the accumulation of pathological amyloid-ß (Aß) and Tau proteins. According to the prion-like hypothesis, both proteins can seed and disseminate through brain regions through neural connections and glial cells. The amygdaloid complex (AC) is involved early in the disease, and its widespread connections with other brain regions indicate that it is a hub for propagating pathology. To characterize changes in the AC as well as the involvement of neuronal and glial cells in AD, a combined stereological and proteomic analysis was performed in non-Alzheimer's disease and AD human samples. The synaptic alterations identified by proteomic data analysis could be related to the volume reduction observed in AD by the Cavalieri probe without neuronal loss. The pathological markers appeared in a gradient pattern with the medial region (cortical nucleus, Co) being more affected than lateral regions, suggesting the relevance of connections in the distribution of the pathology among different brain regions. Generalized astrogliosis was observed in every AC nucleus, likely related to deposits of pathological proteins. Astrocytes might mediate phagocytic microglial activation, whereas microglia might play a dual role since protective and toxic phenotypes have been described. These results highlight the potential participation of the amygdala in the disease spreading from/to olfactory areas, the temporal lobe and beyond. Proteomic data are available via ProteomeXchange with identifier PXD038322.


Subject(s)
Alzheimer Disease , Proteomics , Humans , Alzheimer Disease/pathology , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Brain/pathology , Microglia/pathology , Amygdala/metabolism , Amygdala/pathology
5.
Front Pharmacol ; 13: 896523, 2022.
Article in English | MEDLINE | ID: mdl-35754467

ABSTRACT

Obesity-related acute pancreatitis (AP) is characterized by increasing prevalence worldwide and worse clinical outcomes compared to AP of other etiologies. Chaiqin chengqi decoction (CQCQD), a Chinese herbal formula, has long been used for the clinical management of AP but its therapeutic actions and the underlying mechanisms have not been fully elucidated. This study has investigated the pharmacological mechanisms of CQCQD in a novel mouse model of obesity-related alcohol-induced AP (OA-AP). The mouse OA-AP model was induced by a high-fat diet for 12 weeks and subsequently two intraperitoneal injections of ethanol, CQCQD was administered 2 h after the first injection of ethanol. The severity of OA-AP was assessed and correlated with changes in transcriptomic profiles and network pharmacology in the pancreatic and adipose tissues, and further docking analysis modeled the interactions between compounds of CQCQD and their key targets. The results showed that CQCQD significantly reduced pancreatic necrosis, alleviated systemic inflammation, and decreased the parameters associated with multi-organ dysfunction. Transcriptomics and network pharmacology analysis, as well as further experimental validation, have shown that CQCQD induced Nrf2/HO-1 antioxidant protein response and decreased Akt phosphorylation in the pancreatic and adipose tissues. In vitro, CQCQD protected freshly isolated pancreatic acinar cells from H2O2-elicited oxidative stress and necrotic cell death. The docking results of AKT1 and the active compounds related to AKT1 in CQCQD showed high binding affinity. In conclusion, CQCQD ameliorates the severity of OA-AP by activating of the antioxidant protein response and down-regulating of the PI3K/Akt signaling pathway in the pancreas and visceral adipose tissue.

6.
Acta Trop ; 231: 106433, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35364046

ABSTRACT

Schistosomes are blood-dwelling parasites that are constantly exposed to high-level oxidative stress arising from parasite-intrinsic and host defense mechanisms. To survive in their hosts, schistosomes require an antioxidant system to minimize with oxidative stress. Several schistosome antioxidant enzymes have been identified and have been suggested to play indispensable antioxidant roles for the parasite. In addition to antioxidant enzymes, non-enzymatic antioxidants including small molecules, peptides, and proteins have been identified and characterized. Neuroglobin (Ngb), a nervous system-specific heme-binding protein, has been classified as a non-enzymatic antioxidant and is capable of scavenging a variety of free radical species. The antioxidant activity of Ngb has been well-studied in humans. Ngb is involved in cellular oxygen homeostasis and reactive oxygen/nitrogen scavenging in the central and peripheral nervous systems, but its functions in schistosome parasites have not yet been characterized. In this study, we aimed to characterize the molecular properties and functions of Schistosoma mekongi Ngb (SmeNgb) using bioinformatic, biochemical, and molecular biology approaches. The amino acid sequence of Ngb was highly conserved among schistosomes as well as closely related trematodes. SmeNgb was abundantly localized in the gastrodermis, vitelline, and ovary of adult female S. mekongi worms as well as in the tegument of adult male worms. Assessment of antioxidant activity demonstrated that recombinant SmeNgb had Fe2+ chelating and hydrogen peroxide scavenging activities. Intriguingly, siRNA silencing of SmeNgb gene expression resulted in tegument pathology. Understanding the properties and functions of SmNgb will help in future development of effective treatments and vaccines against S. mekongi, other schistosome parasites, and other platyhelminths.


Subject(s)
Antioxidants , Schistosoma , Animals , Antioxidants/metabolism , Female , Male , Neuroglobin/metabolism , Oxidative Stress , Oxygen/metabolism , Schistosoma/genetics , Schistosoma/metabolism
7.
Biochem Biophys Res Commun ; 568: 124-130, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34217011

ABSTRACT

Many thioredoxin-h (Trx-h) proteins, cytosolic isotypes of Trxs, have been functionally characterized in plants; however, the physiological function of Arabidopsis Trx-h2, which harbors two active site cysteine (Cys) residues and an N-terminal extension peptide containing a fatty acid acylation site, remains unclear. In this study, we investigated the physiological function of Trx-h2 by performing several abiotic stress treatments using trx-h1-3 knockout mutant lines, and found that the reductase function of Trx-h2 is critical for cold resistance in Arabidopsis. Plants overexpressing Trx-h2 in the trx-h2 mutant background (Trx-h2OE/trx-h2) showed strong cold tolerant phenotypes compared with Col-0 (wild type) and trx-h2 mutant plants. By contrast, Trx-h2(C/S)OE/trx-h2 plants expressing a variant Trx-h2 protein, in which both active site Cys residues were substituted by serine (Ser) residues, showed high cold sensitivity, similar to trx-h2 plants. Moreover, cold-responsive (COR) genes were highly up-regulated in Trx-h2OE/trx-h2 plants but not in trx-h2 and Trx-h2(C/S)OE/trx-h2 plants under cold conditions. These results explicitly suggest that the cytosolic Trx-h2 protein relays the external cold stress signal to downstream cold defense signaling cascades through its protein disulfide reductase function.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Thioredoxin h/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cold-Shock Response , Gene Expression Regulation, Plant , Oxidation-Reduction , Thioredoxin h/genetics
8.
J Clin Med ; 10(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071365

ABSTRACT

Despite significant progress in trisomy 21 (T21) diagnostic tools, amniocentesis is still used for the confirmation of an abnormal fetal karyotype. Invasive tests carry the potential risk of miscarriage; thus, screening biomarkers are commonly used before undergoing invasive procedures. In our study, we investigated the possible application of oxidative stress markers in the prenatal screening of trisomy 21. The DNA/RNA oxidative stress damage products (OSDPs), advanced glycation end (AGE) products, ischemia-modified albumin (IMA), alfa-1-antitrypsin (A1AT), asprosin, and vitamin D concentrations were measured in both maternal plasma and amniotic fluid in trisomy 21 (T21) and euploid pregnancies. The obtained results indicated increased levels of DNA/RNA OSDPs and asprosin with simultaneous decreased levels of vitamin D and A1AT in the study group. The diagnostic utility of the plasma measurement based on the area under the received operative characteristic (ROC) curve (AUC) calculation of asprosin (AUC = 0.965), IMA (AUC = 0.880), AGE (AUC = 0.846) and DNA/RNA OSDPs (AUC = 0.506) in T21 screening was demonstrated. The obtained results indicate a potential role for the application of oxidative stress markers in the prenatal screening of T21 with the highest screening utility of plasma asprosin.

9.
Proteomics ; 21(15): e2100017, 2021 08.
Article in English | MEDLINE | ID: mdl-34009737

ABSTRACT

Antioxidant proteins can terminate a chain of reactions caused by free radicals and protect cells from damage. To identify antioxidant proteins rapidly, a computational model was proposed based on the optimized recoding scheme, sequence information and machine learning methods. First, over 600 recoding schemes were collected to build a scheme set. Then, the original sequence was recoded as a reduced expression whose g-gap dipeptides (g = 0, 1, 2) were used as the features of proteins. Furthermore, a random forest method was used to evaluate the classification ability of the obtained dipeptide features. After going through all schemes, the best predictive performance scheme was chosen as the optimized reduction scheme. Finally, for the RF method, a grid search strategy was used to select a better parameter combination to identify antioxidant proteins. In the experiment, the present method correctly recognized 90.13-99.87% of the antioxidant samples. Other experimental results also proved that the present method was efficient to identify antioxidant proteins. Finally, we also developed a web server that was freely accessible to researchers.


Subject(s)
Antioxidants , Proteins , Electrolytes , Machine Learning
10.
Front Cell Dev Biol ; 8: 591487, 2020.
Article in English | MEDLINE | ID: mdl-33195258

ABSTRACT

Excessive oxidative stress responses can threaten our health, and thus it is essential to produce antioxidant proteins to regulate the body's oxidative responses. The low number of antioxidant proteins makes it difficult to extract their representative features. Our experimental method did not use structural information but instead studied antioxidant proteins from a sequenced perspective while focusing on the impact of data imbalance on sensitivity, thus greatly improving the model's sensitivity for antioxidant protein recognition. We developed a method based on the Composition of k-spaced Amino Acid Pairs (CKSAAP) and the Conjoint Triad (CT) features derived from the amino acid composition and protein-protein interactions. SMOTE and the Max-Relevance-Max-Distance algorithm (MRMD) were utilized to unbalance the training data and select the optimal feature subset, respectively. The test set used 10-fold crossing validation and a random forest algorithm for classification according to the selected feature subset. The sensitivity was 0.792, the specificity was 0.808, and the average accuracy was 0.8.

11.
Genomics ; 112(6): 4666-4674, 2020 11.
Article in English | MEDLINE | ID: mdl-32818637

ABSTRACT

Natural antioxidant proteins are mainly found in plants and animals, which interact to eliminate excessive free radicals and protect cells and DNA from damage, prevent and treat some diseases. Therefore, accurate identification of antioxidant proteins is important for the development of new drugs and research of related diseases. This article proposes novel method based on the combination of random forest and hybrid features that can accurately predict antioxidant proteins. Four single feature extraction methods (188D, profile-based Auto-cross covariance (ACC-PSSM), N-gram, and g-gap) and hybrid feature representation methods were used to feature extraction. Three feature selection methods (MRMD, t-SNE, and the optimal feature set selection) were adopted to determine the optimal features. The new hybrid feature vectors derived by combining 188D with the other three features all have indicators ranging from 0.9550 to 0.9990. The novel method showed better performance compared with the other methods.


Subject(s)
Antioxidants/chemistry , Machine Learning , Sequence Analysis, Protein/methods , Proteins/chemistry
12.
Antioxidants (Basel) ; 9(1)2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31877933

ABSTRACT

(1) Background: Inflammation molecular cues and insulin resistance development are some of the main contributors for the development and advance of the pathogenesis of inflammatory-related diseases; (2) Methods: We isolated and purified γ-conglutin protein from narrow-leafed lupin (NLL or blue lupin) mature seeds using affinity-chromatography to evaluate its anti-inflammatory activities at molecular level using both, a bacterial lipopolysaccharide (LPS)-induced inflammation and an insulin resistance pancreatic cell models; (3) Results: NLL γ-conglutin achieved a plethora of functional effects as the strong reduction of cell oxidative stress induced by inflammation through decreasing proteins carbonylation, nitric oxide synthesis and inducible nitric oxide synthase (iNOS) transcriptional levels, and raising glutathione (GSH) levels and modulation of superoxide dismutase (SOD) and catalase enzymes activities. γ-conglutin induced up-regulated transcriptomic and protein levels of insulin signalling pathway IRS-1, Glut-4, and PI3K, improving glucose uptake, while decreasing pro-inflammatory mediators as iNOs, TNFα, IL-1ß, INFγ, IL-6, IL-12, IL-17, and IL-27; (4) Conclusion: These results suggest a promising use of NLL γ-conglutin protein in functional foods, which could also be implemented in alternative diagnosis and therapeutic molecular tools helping to prevent and treat inflammatory-related diseases.

13.
In Vitro Cell Dev Biol Anim ; 55(2): 94-103, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30632027

ABSTRACT

This research demonstrates fluctuation of glutathione peroxidase1 (Gpx1) throughout cell cycle progression with significant decreased expression at mitosis of HeLa cell. This was achieved with western blot (WB) analysis of target proteins from each phase of synchronized cells. The synchronizations were performed with double thymidine (T/T) for G1/S arrest and thymidine followed by nocodazole (T/N) for G2/M arrest. The G1/S arrested cells were released in fresh medium for 3, 6, 9, 10, and 15h to obtain cell at each phase such as gap1 (G1), synthesis (S), gap2 (G2), mitosis (M), and gap1 (G1) phase, respectively, for investigating Gpx1 expression throughout a complete cycle. The synchronizations were confirmed using fluorescence activated cell sorting (FACS) and WB analysis of phase-specific markers. The fluctuations of Gpx1 expression were verified with universal protein actin and peroxiredoxin1 (Prx1) which are stable throughout the cell cycle. Intriguingly, immunoblots showed the level of Gpx1 decreases at mitosis phase and increased during mitotic exit to G1 phase in HeLa cells, while Prx1 protein level remained constant. The fractionation experiments reveal that only the cytosolic Gpx1 was decreased while their levels at mitochondria remain constant. The highest levels of mitochondrial ROS were measured in mitosis phase with FACS analysis using Mito sox indicating that antioxidant activity of Gpx1 for detoxifying excessive induced endogenous reactive oxygen species (ROS) in the mitosis phase could be the reason for such decreasing level. For unfolding the molecular mechanism of such decreased expression, the Gpx1 was investigated at transcriptional, translational, and proteosomal level. The results revealed that translational mechanism is involve in the decreased expression rather than transcriptional or proteosomal degradation at mitosis phase. This finding supports that Gpx1 is involved in the cell cycle progression through regulation of endogenous ROS. Based on this observation, further research could uncover their possible association with the infinitive division of a cancer cell.


Subject(s)
Cell Cycle , Glutathione Peroxidase/metabolism , Antioxidants/metabolism , Free Radical Scavengers/metabolism , Glutathione Peroxidase/genetics , HeLa Cells , Humans , Mitosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism
14.
Fish Shellfish Immunol ; 86: 301-310, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30453048

ABSTRACT

Thioredoxin domain-containing protein 17 (TXNDC17) is a small protein (∼14 kDa) involved in maintaining cellular redox homeostasis via a thiol-disulfide reductase activity. In this study, TXNDC17 was identified and characterized from Hippocampus abdominalis. The open reading frame (ORF) consisted of 369 bp and 123 amino acids. Similar to the other thioredoxins, TXNDC17 contained a conserved WCXXC functional motif. The highest spatial mRNA expressions of HaTXNDC17 were observed in the muscle, brain, and intestine. Interestingly, the mRNA expression of HaTXNDC17 in blood showed significant upregulation at 48 h against all the pathogen associated molecular patterns (PAMPs) and bacteria. Further, HaTXNDC17 transcripts in the trunk kidney were significantly upregulated at 24-48 h by bacterial endotoxin lipopolysaccharides (LPS), viral mimic polyinosinic: polycytidylic acid (poly I:C), and gram-negative bacteria (Edwardsiella tarda). The DPPH assay showed that the radical scavenging activity varies in a concentration-dependent manner. The insulin reduction assay demonstrated a significant logarithmic relationship with the concentration of rHaTXNDC17. Moreover, FHM cells treated with recombinant HaTXNDC17 significantly enhanced cellular viability under oxidative stress. Together, these results show that HaTXNDC17 function is important for maintaining cellular redox homeostasis and that it is also involved in the immune mechanism in seahorses.


Subject(s)
Smegmamorpha/genetics , Smegmamorpha/immunology , Thioredoxins/genetics , Thioredoxins/immunology , Amino Acid Sequence , Animals , Edwardsiella tarda/physiology , Enterobacteriaceae Infections , Fish Diseases/immunology , Fish Proteins/chemistry , Fish Proteins/genetics , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Lipopolysaccharides/pharmacology , Oxidative Stress , Pathogen-Associated Molecular Pattern Molecules , Poly I-C/pharmacology , Sequence Alignment , Thioredoxins/chemistry , Thioredoxins/isolation & purification
15.
Free Radic Biol Med ; 129: 35-45, 2018 12.
Article in English | MEDLINE | ID: mdl-30196081

ABSTRACT

Human leishmaniasis caused by Leishmania (Viannia) braziliensis can be presented as localized cutaneous leishmaniasis (LCL) or mucosal leishmaniasis (ML). Macrophages kill parasites using nitric oxide (NO) and reactive oxygen species (ROS). The aim of this study was to evaluate the ability of parasites obtained from patients with LCL or ML to produce and resist NO or ROS. Promastigotes and amastigotes from LCL or ML isolates produced similar amounts of NO in culture. Promastigotes from ML isolates were more resistant to NO and H2O2 than LCL parasites in a stationary phase, whereas amastigotes from LCL isolates were more resistant to NO. In addition, in the stationary phase, promastigote isolates from patients with ML expressed more thiol-specific antioxidant protein (TSA) than LCL isolates. Therefore it is suggested that infective promastigotes from ML isolates are more resistant to microbicidal mechanisms in the initial phase of infection. Subsequently, amastigotes lose this resistance. This behavior of ML parasites can decrease the number of parasites capable of stimulating the host immune response shortly after the infection establishment.


Subject(s)
Antiprotozoal Agents/pharmacology , Hydrogen Peroxide/pharmacology , Leishmania braziliensis/drug effects , Life Cycle Stages/drug effects , Nitric Oxide/pharmacology , Animals , Antioxidants/chemistry , Antioxidants/metabolism , Culture Media/chemistry , Female , Host-Parasite Interactions , Humans , Immunity, Innate , Leishmania braziliensis/growth & development , Leishmania braziliensis/isolation & purification , Leishmania braziliensis/metabolism , Leishmaniasis, Diffuse Cutaneous/immunology , Leishmaniasis, Diffuse Cutaneous/metabolism , Leishmaniasis, Diffuse Cutaneous/parasitology , Leishmaniasis, Mucocutaneous/immunology , Leishmaniasis, Mucocutaneous/metabolism , Leishmaniasis, Mucocutaneous/parasitology , Life Cycle Stages/physiology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Nitric Oxide Donors/pharmacology , Nitroprusside/pharmacology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
16.
Int J Mol Sci ; 19(6)2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29914044

ABSTRACT

Antioxidant proteins can be beneficial in disease prevention. More attention has been paid to the functionality of antioxidant proteins. Therefore, identifying antioxidant proteins is important for the study. In our work, we propose a computational method, called SeqSVM, for predicting antioxidant proteins based on their primary sequence features. The features are removed to reduce the redundancy by max relevance max distance method. Finally, the antioxidant proteins are identified by support vector machine (SVM). The experimental results demonstrated that our method performs better than existing methods, with the overall accuracy of 89.46%. Although a proposed computational method can attain an encouraging classification result, the experimental results are verified based on the biochemical approaches, such as wet biochemistry and molecular biology techniques.


Subject(s)
Oxidative Stress , Sequence Analysis, Protein/methods , Support Vector Machine , Animals , Humans , Protein Domains , Software
17.
Fish Shellfish Immunol ; 75: 181-189, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29427717

ABSTRACT

Thioredoxin is a highly conserved protein found in both prokaryotes and eukaryotes. Reactive oxygen species (ROS) are produced in response to metabolic processes, radiation, metal oxidation, and pathological infections. High levels of ROS lead to cell death via autophagy. However, thioredoxin acts as an active regulatory enzyme in response to excessive ROS. Here, we performed in-silico analysis, immune challenge experiments, and functional assays of seahorse thioredoxin-like protein 1 (ShTXNL1). Evolutionary identification showed that ShTXNL1 protein belongs to the thioredoxin superfamily comprising 289 amino acids. It possesses an N-terminal active thioredoxin domain and C-terminal proteasome-interacting thioredoxin domain (PITH) of ShTXNL1 which is a component of 26S proteasome and binds to the matrix or cell. Pairwise alignment results showed 99.0% identity and 99.7% similarity with the sequence of Hippocampus species. Conserved thiol-disulfide cysteine residue containing Cys-X-X-Cys motif may be found in the first few amino acids in the second beta sheet starting from the N-terminus. This motif can be discovered in ShTXNL1 as 14CRPC17 and comprised two N-linked glycosylation sites at 72NISA75 and 139NESD142. According to the quantitative real-time polymerase chain reaction analysis from healthy seahorses, highest ShTXNL1 mRNA expression was observed in muscle, followed by ovary, brain, gill, and blood tissues. Moreover, significant temporal expression of ShTXNL1 was observed in gill and blood tissues after bacterial stimuli. Thus, the ShTXNL1 gene may be identified as an immunologically important gene in seahorse.


Subject(s)
Fish Diseases/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Smegmamorpha/genetics , Smegmamorpha/immunology , Thioredoxins/genetics , Thioredoxins/immunology , Amino Acid Sequence , Animals , Edwardsiella tarda/physiology , Enterobacteriaceae Infections/immunology , Female , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Profiling , Lipopolysaccharides/pharmacology , Male , Phylogeny , Poly I-C/pharmacology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sequence Alignment/veterinary , Streptococcal Infections/immunology , Streptococcus iniae/physiology , Thioredoxins/chemistry
18.
Korean J Food Sci Anim Resour ; 37(5): 764-772, 2017.
Article in English | MEDLINE | ID: mdl-29147100

ABSTRACT

Fertilized hen eggs are rich in a variety of bioactive ingredients. In this study, we aimed to obtain an antioxidant protein from fertilized eggs and the radical scavenging abilities on 1, 1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical (•OH), superoxide anion (O2-•) were used to evaluate the antioxidant activity of the purified protein. During 20 d of incubation, the radical scavenging ability of protein extracted from fertilized eggs exhibited significantly differences and the protein on day 16 showed higher antioxidant capacity. Based on this, the antioxidant protein of the samples on day 16 were isolated for the follow-up study. With a molecular weight 43.22 kDa, the antioxidant protein was purified by Diethylaminoethyl cellulose -52 (DEAE-52) column and Sephadex G-100. The LC-MS analysis showed that the purified protein molecular weight was 43.22 kDa, named D2-S. The sequence of amino acids was highly similar to ovalbumin and the coverage reached to 84%. The purified protein showed a radical scavenging rate of 52.34±3.27% on DPPH and 63.49±0.25% on •OH, respectively. Furthermore, the C-terminal amino acid sequence was NAVLFFGRCVSP, which was consistent with the sequence of ovabumin. These results here indicated that purified protein may be a potential resource as a natural antioxidant.

19.
Arch Pharm Res ; 40(9): 1105-1116, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28918452

ABSTRACT

Reactive oxygen species (ROS) contribute to pathogenesis of many inflammatory skin diseases, including psoriasis. The aim of this study is to compare antioxidant protein expression in psoriasis vulgaris (PV) skin tissues with that in normal skin tissues in vivo and to evaluate the effects of dimethyl fumarate (DMF), used for the treatment of psoriasis, on ROS generation and apoptosis in a human keratinocyte cell line HaCaT. Compared with normal skin tissues, PV skin tissues showed increased protein oxidation as well as down-regulation of Nrf2 and its regulatory proteins such as HO-1 and AKR1C3. Using HaCaT cells to model DMF-induced pro-oxidant effects in the skin cells, we found that DMF treatment induced increased ROS levels and apoptotic cell death, as signified by increased proportion of cells with Annexin V-PE(+) staining and a sub-G0/G1 peak in the cell cycle. Preceding these changes, DMF treatment resulted in up-regulation of Nrf2, HO-1, and AKR1C3 proteins in these cells. Collectively, increased oxidative stress and impaired cellular anti-oxidant enzyme systems may participate in the pathogenesis of PV. DMF may exert an additive therapeutic efficacy in PV by attenuating the redox burden and subsequent oxidative damage to normal keratinocytes through activation of Nrf2 pathway relative to PV.


Subject(s)
Dimethyl Fumarate/pharmacology , NF-E2-Related Factor 2/metabolism , Psoriasis/drug therapy , Reactive Oxygen Species/metabolism , Adult , Antioxidants/metabolism , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line , Dermatologic Agents/pharmacology , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Male , Middle Aged , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Psoriasis/pathology , Up-Regulation/drug effects
20.
Interdiscip Sci ; 8(2): 186-191, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26345449

ABSTRACT

Antioxidant proteins are a kind of molecules that can terminate cellular and DNA damages caused by free radical intermediates. The use of antioxidant proteins for prevention of diseases has been intensively studied in recent years. Thus, accurate identification of antioxidant proteins is essential for understanding their roles in pharmacology. In this study, a support vector machine-based predictor called AodPred was developed for identifying antioxidant proteins. In this predictor, the sequence was formulated by using the optimal 3-gap dipeptides obtained by using feature selection method. It was observed by jackknife cross-validation test that AodPred can achieve an overall accuracy of 74.79 % in identifying antioxidant proteins. As a user-friendly tool, AodPred is freely accessible at http://lin.uestc.edu.cn/server/AntioxiPred . To maximize the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web server to obtain the desired results.


Subject(s)
Antioxidants/chemistry , Computational Biology/methods , Dipeptides/chemistry , Proteins/chemistry , Algorithms , Antioxidants/analysis , Databases, Protein , Dipeptides/analysis , Proteins/analysis , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...